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Abstract

A class of adaptive reduced-rank interference suppression algorithms is presented based on

the multistage Wiener �lter introduced by Goldstein & Reed. The performance is examined

in the context of Direct-Sequence (DS)-Code-Division Multiple-Access (CDMA). Unlike the

principal-components method for reduced-rank �ltering, the algorithms presented perform well

when the �lter rank is much less than the dimension of the signal subspace. We present batch and

recursive algorithms for estimating the �lter parameters, which do not require matrix inversion

or an eigen-decomposition. Algorithm performance in a heavily loaded DS-CDMA system is

characterized via computer simulation. Results show that the reduced-rank algorithms require

signi�cantly fewer training samples than other reduced- and full-rank algorithms.
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1 Introduction

Reduced-rank linear �ltering has been proposed for array processing and radar applications to

enable accurate estimation of �lter coe�cients with a relatively small amount of observed data

(e.g., see [1, 2] and the references therein). Other applications of reduced-rank �ltering include

equalization [3] and interference suppression in Direct-Sequence (DS) Code-DivisionMultiple Access

(CDMA) communications systems [4, 5, 6, 7, 8, 7]. In this paper we present reduced-rank adaptive

�ltering algorithms which are based on the multistage Wiener �lter of Goldstein and Reed [9]. The

performance of these techniques is studied in the context of DS-CDMA.

Reduced-rank interference suppression for DS-CDMA was originally motivated by situations

where the processing gain N is much larger than the dimension of the signal subspace (e.g., [4] and

[5]). This is relevant for some applications where a large processing gain is desired for covertness.

If an N -tap adaptive �lter is used to suppress interference (e.g., see [10]), then large N implies slow

response to changing interference and channel conditions.

Much of the work on reduced-rank interference suppression for DS-CDMA has been based on

\principal-components" in which the received vector is projected onto an estimate of the lower-

dimensional signal subspace with largest energy (e.g., [4, 7]). This technique can improve conver-

gence and tracking performance when N is much larger than the signal subspace. This assumption,

however, does not hold for a heavily loaded commercial cellular system. Furthermore, in that

application N can still be relatively large (i.e., > 100).

Two reduced-rank methods that do not require the dimension of the projected subspace to be

greater than that of the signal subspace are the \Cross-Spectral" method, proposed in [11] (see

also [12]), and the Multistage Wiener (MSW) �lter, presented in [9]. Unlike the Cross-Spectral and

principal components methods, the MSW �lter does not rely on an explicit estimate of the signal

subspace, but rather generates a set of basis vectors by means of a successive re�nement procedure

[13, 9]. (See also [8], in which an equivalent algorithm is presented.) This technique can attain

near full-rank Minimum Mean Squared Error (MMSE) performance with a �lter order which is
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much smaller than the dimension of the signal subspace [14]. As will be demonstrated, this low

rank enables a substantial reduction in the number of training samples needed to estimate the �lter

parameters.

We present a class of adaptive �ltering algorithms which are motivated by the MSW �lter. These

algorithms do not require an eigen-decomposition or matrix inversion, and are relatively simple

(especially for small �lter rank). Both batch and recursive algorithms are presented in this paper,

along with training-based, or decision-directed, and blind versions of each. The blind algorithms

require knowledge of the desired user's spreading code and associated timing (i.e., see [10]). The

performance of the adaptive MSW techniques are illustrated numerically, and are compared with

other adaptive reduced-rank techniques.

The next section presents the DS-CDMA model, Sections 3 and 4 review reduced-rank MMSE

�ltering and the MSW �lter, and Section 5 presents the adaptive MSW algorithms. Numerical

results are presented in Section 6, and adaptive rank selection is discussed in Section 7.

2 CDMA System Model

An asynchronous CDMA system model is considered in which the kth user, 1 � k � K, transmits

a baseband signal

xk(t) =
X
i

Akbk(i)pk(t� iT � �k); (1)

where bk(i) is the ith symbol transmitted by user k, pk(t) is the spreading waveform associated

with user k, and �k and Ak are, respectively, the delay and amplitude associated with user k. We

assume binary signaling, so that bk(i) 2 f�1g. For DS-CDMA,

pk(t) =

N�1X
i=1

ak[i]	(t� iTc); (2)

where ak[i] 2 f�1=
p
Ng, i = 0; : : : ; N � 1, is the real-valued spreading sequence, 	(t) is the chip

waveform, Tc is the chip duration, and N = T=Tc is the processing gain. It is assumed that the same

spreading code is repeated for each symbol. The numerical results in Section 6 assume rectangular
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chip shapes.

Let y(i) be the N -vector containing samples at the output of a chip-matched �lter during the

ith transmitted symbol, assuming that the receiver is synchronized to the desired user. Letting

k = 1 correspond to the user to be detected, we can write

y(i) = b1(i)p1 +

KX
k=2

Ak

�
bk(i)p

+
k + bk(i� 1)p�k

�
+ n(i); (3)

where p1 is the spreading sequence associated with the desired user, p�
k
and p+

k
are the two N -

vectors associated with the kth interferer due to asynchronous transmission, and n(i) is the vector

of noise samples at time i, assumed to be white with covariance �2I. In what follows, we will use

the more convenient notation

y(i) = P�Ab(i� 1) +P+Ab(i) + n(i); (4)

where P� is the N �K matrix with columns given by the corresponding signal vectors, b(i) is the

vector of transmitted symbols across users, and A is the diagonal matrix of amplitudes.

3 Reduced-Rank Linear MMSE Filtering

The MMSE receiver consists of the vector c, which is chosen to minimize the MSE

M = Efjb1(i) � cyy(i)j2g: (5)

where y represents Hermitian transpose. For simplicity, we assume that c contains N coe�cients

and spans a single symbol interval, which is suboptimal for asynchronous DS-CDMA [10]. The

following discussion is easily generalized to the case where the vector c spans multiple symbol

intervals.

The vector c can be estimated from received data via standard stochastic gradient or least

squares estimation techniques [10]. However, large N implies slow convergence speed. A reduced-

rank algorithm reduces the number of adaptive coe�cients by projecting the received vectors onto

a lower dimensional subspace. Speci�cally, let SD be the N �D matrix with column vectors which
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are an orthonormal basis for a D-dimensional subspace, where D < N . The projected received

vector corresponding to symbol i is then given by

~y(i) = S
y
Dy(i); (6)

where, in what follows, all D-dimensional quantities are denoted with a \tilde".

The sequence of projected received vectors f~y(i)g is the input to a tapped-delay line �lter,

represented by theD-vector ~c(i) for symbol i. The �lter output corresponding to the ith transmitted

symbol is

z(i) = ~cy(i)~y(i): (7)

Assuming coherent detection, the vector ~c(i) which minimizes the Mean Squared Error (MSE)

E(je(i)j2), where e(i) = b1(i)� ~cy(i)~y(i), is

~cmmse = ~R�1~p; (8)

where

~R = E[~y(i)~yy(i)] = S
y
DRSD; (9)

R = E[y(i)yy(i)] = P�A2P�y +P+A2P+y + �2I; (10)

and

~p = S
y
DE[b

�
1(i)y(i)] = S

y
Dp1: (11)

The associated MMSE for a rank D �lter is given by

MD = 1� ~py1
~R�1~p1 (12)

Before presenting the MSW �lter, we briey mention other reduced-rank �lters, which have

been previously proposed. The performance of the adaptive MSW algorithms to be described will

be compared with the performance of these other methods in Section 6. A simulation study of the

adaptive eigen-decomposition and partial despreading methods is presented in [5].
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3.1 Eigen-decomposition Techniques

Principal Components (PC) reduced-rank �ltering is based on the eigen-decomposition

R = V�Vy (13)

where V is the orthonormal matrix whose columns are eigenvectors of R, and � is the diagonal

matrix of eigenvalues. If we assume the eigenvalues are ordered as �1 � �2 � : : : � �N , then

for given subspace dimension D, the projection matrix for PC is SD = V1:D, the �rst D columns

of V. This technique can allow a signi�cant reduction in rank when the dimension of the signal

subspace is much less than N . If this is not the case, then projecting onto the subspace SD for small

D is likely to reduce the desired signal component. This is especially troublesome in a near-far

environment where the energy associated with the interference subspace is greater than that for

the desired user.

An alternative to PC is to choose the set of D eigenvectors for the projection matrix which

minimizes the MSE. Speci�cally, if SD consists of D eigenvectors of R, then the MSE can be

written in terms of projected variables as

MD = 1� k��1~p1k2 (14)

To minimize MD, the basis vectors should be the eigenvectors of R associated with the D largest

values of j~p1;k=�kj2, where ~p1;k = V
y
kp1 is the kth component of ~p1, and Vk is the kth column of

V. (Note the inverse weighting of j�kj2 in contrast with PC.)

This technique, called \Cross-Spectral (CS)" reduced-rank �ltering, was proposed in [12] and

[11]. This technique can perform well for D < K since it takes into account the energy in the

subspace contributed by the desired user. Unlike PC, the projection subspace for CS requires

knowledge of the desired user's spreading code p1. A disadvantage of eigen-decomposition tech-

niques in general is the complexity associated with estimation of the signal subspace.
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3.2 Partial Despreading

In this method, proposed in [15], the received DS-CDMA signal is partially despread over consecutive

segments of m chips, where m is a parameter. The partially despread vector has dimension D =

dN=me, and is the input to the D-tap �lter. Consequently, m = 1 corresponds to the full-rank

MMSE �lter, and m = N corresponds to the matched �lter. The columns of MD in this case are

nonoverlapping segments of p1, where each segment is of length m.

Speci�cally, if N=m = D, the jth column of MD is

[MD]j
0 = [0 : : : 0 p1;[(j�1)m+1:jm]

0 0 : : : 0] (15)

where 1 � j � D, and there are (j � 1)m zeros on the left and (D � j)m zeros on the right. This

is a simple reduced-rank technique that allows the selection of MMSE performance between the

matched and full-rank MMSE �lters by adjusting the number of adaptive �lter coe�cients.

4 The Multistage Wiener (MSW) Filter

The MSW �lter was presented in [9] for the known statistics case, i.e., known covariance matrix

R and steering vector p1. A block diagram of a four-stage MSW �lter is shown in Figure 1. The

stages are associated with the sequence of nested �lters c1; : : : ; cD, where D is the order of the

�lter. If D = N , then the �lter is the full-rank MMSE (Wiener) �lter. Let Bm denote a blocking

matrix, i.e.,

By
mcm = 0: (16)

Referring to Figure 1, let dm(i) denote the output of the �lter cm, and ym(i) denote the output of

the blocking matrix Bm, both at time i. The (m+ 1)st multi-stage �lter is determined by

cm+1 = E[d�mym] (17)

For m = 0, we have d0(i) = b1(i) (the desired input symbol), y0(i) = y(i), and c1 is the matched

�lter p1. As in [9], it will be convenient to normalize the �lters c1; : : : ; cD so that kcmk = 1.
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The �lter output is obtained by linearly combining the outputs of the �lters c1; : : : ; cD via the

weights w1; : : : ; wD�1. This is accomplished stage-by-stage. Referring to Figure 1, let

�m(i) = dm(i)� wm+1�m+1(i) (18)

for 1 � m � D and �D(i) = dD(i). Then wm+1 is selected to minimize E[j�mj2].

y0(i) = y(i)
w1

B1
y1(i)

w2

B2
y2(i)

w3

B3
y3(i)

w4
d4(i) ×

+ ε3(i) ×d3(i)

+ ε2(i) ×d2(i)

+ ε1(i) ×d1(i)
+d0(i) = b1(i) ε0(i)

−

−

−

a3

a2

a1

a4

Figure 1: Multi-stage Wiener �lter.

The rank D MSW �lter is given by the following set of recursions.

Initialization:

d0(i) = b1(i); y0(i) = y(i) (19)

For n = 1; : : : ;D (Forward Recursion):

cn = E[d�n�1yn�1(i)]=kE[d�n�1yn�1]k (20)

dn(i) = cynyn�1(i) (21)

Bn = I� cncyn (22)

yn = By
nyn�1 (23)

Decrement n = D; : : : ; 1 (Backward Recursion):

wn = E[d�n�1(i)�n(i)]=E[j�n(i)j2] (24)

�n�1(i) = dn�1(i)� w�
n�n(i) (25)
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where �D(i) = dD(i).

At stage n the �lter generates a desired sequence fdn(i)g and an \observation" sequence fyn(i)g.
Replacing cn in the MSW �lter by the MMSE �lter c

(mmse)
n for estimating fdn(i)g from fyn(i)g

gives the full-rank MMSE �lter. The MSW is \self-similar" in the sense that the MMSE �lter

c
(mmse)
n is replaced by the associated MSW �lter. The covariance matrix for the projected vector

~y = [d0; d1; : : : ; dD�1] is tri-diagonal [9].

It is shown in [14] that the MSW �lter has the following properties.

1. Let SD denote the D-dimensional subspace associated with the rank D MSW �lter. Then

SD = span fc1; : : : ; cDg (26)

= span
�
p1; Rp1; R

2p1; : : : ;R
D�1p1

	
(27)

where the �rst set of basis vectors is an orthonormal set, and the basis vectors in the second

set are not orthogonal.

2. The rank D needed to achieve full-rank performance does not scale with system size (K and

N). In particular, full-rank performance is essentially achieved with rank D � 8 for a wide

range of loads and Signal-to-Noise Ratios (SNRs).

5 Adaptive Reduced-Rank Algorithms

In this section, we present a family of adaptive algorithms which are related to the MSW �lter.

A straightforward way to derive such an adaptive algorithm is to replace statistical averages by

sample averages. This has the geometric interpretation of changing the metric space in which

variables are de�ned [16]. Namely, for the known statistics case, we de�ne the inner product

between two random variables X and Y as < X;Y >= E[X�Y ], which leads to an MMSE cost

criterion (minimize kb1 � cyyk2 for random b1 and y).

For the given data case, inner product between two vectors is de�ned in the standard way.
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Given a sequence of M received vectors and M training (or estimated) symbols,

Y = [y(1);y(2); : : : ;y(M)]; (28)

�b = [b1(1); : : : ; b1(M)]; (29)

the (M � 1) vector of errors is de�ned as

e = �b� cyY (30)

and our objective is to minimize kek2, which is the standard Least Squares (LS) cost function. For

rank D < N , the cost function becomes

CD =

MX
i=1

kb1(i) � ~cy~y(i)k2 (31)

where ~c and ~y are the associated projected variables. Speci�cally,

~y(i) = Ŝ
y
D(i)y(i) (32)

where the columns of ŜD(i) are the estimated basis vectors for the subspace SD at time i.

5.1 Batch Algorithms

Here we consider estimation of the MSW �lter parameters given Y and �b in (28) and (29). The

approach just described leads to Algorithm 1, the batch adaptive MSW �lter with training (35-43).

Following the approach in [9], it is straightforward to show that this algorithm tri-diagonalizes the

(N + 1)� (N + 1) extended sample covariance matrix

�̂R = �Y �Yy; (33)

where

�Y =

2
66664

�b

���
Y

3
77775 (34)
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Algorithm 1 Batch adaptive MSW algorithm with training.

Initialization:

d0 = �b Y0 = Y (35)

For n = 1; : : : ;D (Forward Recursion):

p̂n = Yn�1d
y
n�1 (N � n+ 1)� 1 (36)

�n = kp̂nk (37)

cn = p̂n=�n (38)

dn = cynYn�1 1�M (39)

Bn = null(cn) (N � n+ 1)� (N � n) (40)

Yn = By
nYn�1 (N � n)�M (41)

Decrement n = D; : : : ; 1 (Backward Recursion):

wn = (�nd
y
n�1)=k�nk2 = �n=k�nk2 (42)

�n�1 = dn�1 � w�
n�n (43)

where �D = dD.
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The choice of blocking matrices Bn, n = 1; : : : ;D, can a�ect performance for a speci�c data

record, although asymptotically, as M !1, the corresponding MSE is independent of this choice.

The numerical results in Section 6 assume

Bn = IN�n+1;N�n � cnc
y

n;(1:N�n) (44)

where Im;n is the m�n identity matrix and the subscript (1 : m) denotes the �rst m components of

the corresponding vector. Note that �0 = min CD, the minimized LS cost function in (31). When

used in decision-directed mode, the estimate of the block of transmitted symbols �b is w�
1�1, where

�n is computed from (43).

A non-training based, or blind version of the preceding algorithm can be obtained simply by

substituting p1 (spreading code for the desired user) for p̂1 in the preceding algorithm. The

resulting set of forward recursions does not exactly tri-diagonalize the extended sample covariance

matrix, and hence does not perform as well as a training-based algorithm. An illustrative example

is given in Section 6.

We remark that the computational requirements of the preceding algorithm for small D are

modest in comparison with reduced-rank techniques that require the computation of eigenvectors

of the sample covariance matrix R̂ = YYy.

5.2 Recursive Algorithms

A recursive version of the preceding batch adaptive MSW algorithm tri-diagonalizes the sample

covariance matrix R̂ at each iteration. A recursive update for the extended sample covariance

matrix is:

�̂R(i) = (1� �) � �̂R(i� 1) + ��y(i)�yy(i); (57)

where � is a smoothing factor which discounts past data. Algorithm 2, given by (45-56), tri-

diagonalizes the sample covariance matrix R̂ at each i [9]. Speci�cally, let �D = [d1;d2; : : : ;dD],

where dn is de�ned by (39), and \;" separates rows, so that �D is D � M . Then Algorithm 2
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Algorithm 2 Adaptive MSW algorithm based on tri-diagonalization of R̂.

Initialization:

T1 = �̂R(i) p̂1 = �̂R1;(2:N;1)(i) (45)

�1 = kp̂1k c1 = p̂1=�1 (46)

y0 = y(i) d0 = b1(i) (47)

For n = 1; : : : ;D (Forward Recursion):

Bn = null(cyn) (48)

Ln =

2
666666664

In;n j 0n;N�n

0N�n;n j
c
y
n

����
B
y
n

3
777777775

(49)

Tn+1 = LnTnL
y
n (50)

p̂n+1 = Tn+1;(n+2:N;n+1) (51)

�n+1 = kp̂n+1k cn+1 = p̂n+1=�n+1 (52)

yn = By
nyn�1 dn = cynyn (53)

Decrement n = D � 1; : : : ; 1 (Backward Recursion):

�n = TD;(n+1;n+1) � w�
n+1�n+1 (54)

wn = �n=�n (55)

�n�1 = dn�1 � w�
n�n (56)

where �n = k�nk2 in (43), �D = TD;(D+1;D+1), and �D = dD.

Symbol estimate = w�
1(i)�1(i)
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computes the tri-diagonal matrix TD = �D �Dy. In Algorithm 2, X(l;k:m) denotes the row vector

containing the kth through mth components of the lth row of the matrix X.

Rather than perform an exact tri-diagonalization of the sample covariance matrix at each itera-

tion, it is also possible to approximate the MSW �lter parameters via sample averages. This leads

to Algorithm 3, given by (58-66), the MSW \stochastic gradient" algorithm. This algorithm is

computationally simpler than the preceding algorithm (45-56), but does not exactly tridiagonalize

the extended sample covariance matrix �̂R(i) at each iteration. Consequently, Algorithm 3 does not

perform as well as the preceding \exact" Algorithm 2, as the results in Section 6 illustrate.

5.3 Algorithms Based on Powers of R̂

An alternative set of adaptive algorithms can be derived based on the second representation for SD
given in (27). For the given data case with training, we replace the matrix of basis vectors SD by

ŜD(i) =
h
p̂1(i); R̂(i)p̂1(i); R̂

2(i)p̂1(i); : : : ; R̂
D�1(i)p̂1(i)

i
(67)

where

p̂1(i) = (1� �)p̂1(i� 1) + �d�(i)y(i) (68)

and R̂(i) is updated according to (57).

Let

̂m = p̂
y
1R̂

mp̂1 (72)

̂l:m = [̂l ̂l+1 : : : ̂m]
0 (73)

�̂l:l+m = [̂l:l+m ̂l+1:l+m+1 : : : ̂l+m:l+2m] (74)

where the dependence on i is not shown for convenience. Note that �̂l:l+m is an (m+ 1)� (m+ 1)

matrix. Selecting ~c to minimize (31), where ~y is given by (32), gives

~cD = (ŜyDR̂ŜD)
�1Ŝ

y
Dp̂1 = �̂�1

1:D̂0:D�1 (75)
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Algorithm 3 Stochastic gradient adaptive MSW algorithm.

Initialization:

d0(i) = b1(i) y0(i) = y(i) (58)

At each i for n = 1; : : : ;D:

p̂n(i) = (1� �)p̂n(i� 1) + �d�n�1(i)yn�1(i) (59)

�n(i) = kp̂n(i)k; cn(i) = p̂n(i)=�n(i) (60)

Bn(i) = null[cyn(i)] (61)

dn(i) = cyn(i)yn�1(i) (62)

yn(i) = By
n(i)yn�1(i) (63)

Decrement n = D; : : : ; 1:

�n(i) = (1� �)�n(i� 1) + �j�nj2 (64)

wn(i) = �n(i)=�n(i) (65)

�n�1(i) = dn�1(i)� w�
n(i)�n(i) (66)

where �D(i) = dD(i).

Filter output (estimate of b1(i)) = w�
1(i)�1(i)

Algorithm 4 Batch adaptive algorithm based on powers of R̂.

R̂ = YYy; p̂1 = Y�by (69)

For m = 0; : : : ;D � 1, v̂m = R̂mp̂1

For m = 0; : : : ; 2D � 1, ̂m = v̂
y
jv̂l, j + l = m.

~cD = �̂�1
1:D̂0:D�1 (70)

For i = 1; : : : ;M :

~y(i) = Ŝ
y
Dy(i) Symbol estimate = ~cy~y(i) (71)
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Given Y and �b in (28) and (29), a reduced-rank batch algorithm with training is given by

Algorithm 4 (69-71). If p1 is known, then in the absence of training, p̂1(i) in (67) and (72) can be

replaced by p1.

Following the same argument used to prove Theorem 2 in [14], it can be shown that Algorithm 4

is equivalent to Algorithm 1 with blocking matrix Bn = I�cncyn. That is, both algorithms produce

the same �lter output. Of course, the preceding algorithm can be implemented recursively, where

the variables v̂m and ̂m are recomputed for each i.

6 Numerical Results

Figure 2 shows error rate vs. number of dimensions for reduced-rank adaptive algorithms after

training with 200 symbols. In this plot N = 128, K = 42, and the received powers are log-

normal with standard deviation 6 dB. Results are shown for the following algorithms: MSW,

Cross-Spectral (CS), and the matched �lter (MF). For the adaptive CS method, R and p1 in (13)

and (14) are replaced by R̂ and p̂1, respectively. Three curves are shown for Partial Despreading

(PD), corresponding to the way the vector ~c is updated given the sequence of training symbols

fb1(i)g and the projected (partially despread) vectors f~y(i)g. Stochastic Gradient with PD (SG-

PD) indicates that the vector ~c is updated according to a normalized Stochastic Gradient algorithm.

LS-PD and MMSE-PD correspond to LS and MMSE solutions for ~c.

The error rate Pe in Figure 1 is computed via the Gaussian approximation for residual interfer-

ence plus noise at the output of the adaptive �lter. Speci�cally,

Pe � Q

0
@
s
j~cyp1j2
~cyRI~c

1
A (76)

where RI is the covariance matrix for the interference plus noise (i.e., (10) without the desired

signal p1), and ~c is the reduced-rank �lter, which must be computed from the estimated MSW

�lter parameters (see [9]), or equivalently, from (75). Results are averaged over random spreading

codes, delays, and powers.

15



Figure 2 shows that the adaptive reduced-rank techniques generally achieve optimum perfor-

mance when D < N . Namely, when D is large, insu�cient data is available to obtain an accurate

estimate of the �lter coe�cients, whereas for small D, there are insu�cient degrees of freedom to

suppress interference. The minimum error rate for the MSW algorithm is achieved with only eight

stages (dimensions), which is much smaller than the minimizing order for the other reduced-rank

techniques. Furthermore, this minimum error rate for the MSW algorithm is substantially lower

than the error rate for the matched �lter receiver, and is not very far from the full-rank MMSE

error rate. Additional simulations with only 100 training samples show that the minimum error

rate for the MSW algorithm is again achieved with D = 8.
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Figure 2: Error rate vs. number of dimensions for reduced-rank adaptive algorithms after training

with 200 symbols. N = 128, 42 asynchronous users, power standard deviation= 6 dB

Figure 3 shows output SINR vs. time for the \exact" recursive MSW algorithm given by (45-

56). Curves corresponding to di�erent ranks D are shown. Analogous curves for the RLS algorithm

with PD are also shown. System parameters are the same as in Figure 2. The �gure shows that
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a low-rank MSW algorithm (e.g., D = 4) can converge signi�cantly faster than the full-rank RLS,

and has nearly the same asymptotic SINR. As expected, for the RLS with PD, as the dimension

decreases, convergence speed increases, but asymptotic SINR decreases.
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Figure 3: Output SINR vs. time for recursive MSW and RLS-PD algorithms.

Figure 4 compares the convergence of the di�erent MSW algorithms described in Section 5 for

D = 8. In this case N = 32, K = 16, and the power of each interferer is 6 dB greater than the

power of the desired user. Also shown are convergence curves for the full-rank RLS algorithm with

training and the stochastic gradient (LMS) algorithm. These results show that there is a noticeable

degradation in performance in going from training-based to blind to gradient MSW algorithms.

Still, these latter algorithms perform signi�cantly better than the full-rank LMS algorithm.

7 Rank Adaptation

Figure 2 indicates that the performance of the adaptive MSW �lter can be a sensitive function

of the rank D. Here we provide two adaptive methods for selecting the rank of the �lter. The
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Figure 4: Output SINR vs. time for di�erent adaptive MSW algorithms.

�rst method is based on the observation that for small sets of training data, the basis vectors

v̂1; v̂2; : : : ; v̂D�1, where v̂m = R̂mp̂1, are linearly dependent (or nearly dependent). Furthermore,

it is easily shown that if v̂D+1 is in SD, the subspace spanned by v̂1; : : : ; v̂D, then v̂n 2 SD for all

n > D. This leads to the stopping rule:

D = max

(
n :

kP?
Sn�1

(v̂n)k
kv̂nk > ��

)
(77)

where P?
S (x) is the orthogonal projection of the vector x onto the subspace S and �� is a small

positive constant.

For the powers of R̂ method, the stopping rule (77) prevents the matrix �1:D in (70) from being

ill-conditioned. In the Appendix it is shown that

kP?
Sn�1

(v̂n)k =
nY
l=1

�l (78)

where �n is given by (37). We have not found an analogous expression for kv̂nk in terms of MSW

�lter parameters, which is easily computable. Consequently, we do not have an equivalent stopping
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rule which can be conveniently used with Algorithms 1-3.

The second method for selecting the �lter rank is based on estimating the MSE from the a

posteriori LS cost function

C0D(i) =
iX

m=1

jb1(m)� ~cyD(m� 1)~yD(m)j2 (79)

For each i, we can select the D which minimizes C0D(i).
The preceding rank selection techniques were simulated for the same system model and param-

eters used to generate Figure 3. The results essentially coincide with those shown for rank D = 8

in the �gure, although the second method, based on the a posteriori LS cost function, performs

slightly worse than the �rst method. Further simulations and analysis indicate that rank D = 8

appears to be optimal, or nearly optimal, for a wide range of system parameters [17]. This obser-

vation is consistent with the results in [14] (for synchronous CDMA), which show that the MSW

�lter achieves essentially full-rank performance with rank D = 8.

8 Conclusions

Adaptive reduced-rank linear �lters have been presented based on the MSW �lter. These algorithms

can be used in any adaptive �ltering application, although the performance has been examined in

the context of interference suppression for DS-CDMA. For large �lter lengths, the MSW �lter allows

a large reduction in rank, relative to other reduced-rank �lters, such as those based on an eigen-

decomposition of the sample covariance matrix. The adaptive MSW �lter can therefore achieve

near full-rank performance with many fewer training samples than what is required by other full-

and reduced-rank techniques. For the examples considered, an adaptive MSW �lter with rank eight

achieves near full-rank performance with signi�cantly less than 2N training samples, where N is

the number of �lter coe�cients. Methods for tracking the optimal rank have also been presented.

These methods successfully identify the optimal �lter rank for the cases considered.
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A Derivation of (78)

It is shown in [14] that

cn+1 =
1

�n+1

 
I�

nX
l=1

clc
y
l

!
Rcn

=
1

�n+1
P?
Sn
(Rcn) (80)

where cn is given by (20) for the MSW �lter and �n+1 = kP?
Sn
(Rcn)k is a normalization constant.

For the given data (unknown statistics) case, �n is given by (37).

From (27) and (80), we can write

cn =
1

�n

nX
l=1

al;nvl (81)

where vl = Rlp1, and the al;n's are constants, so that

Rcn =
1

�n

nX
l=1

al;nvl+1: (82)

Combining (82) with (80) gives

cn+1 =
1

�n+1�n
an;nP?

Sn(vn+1) (83)

To evaluate an;n, we combine (80) and (81) which gives

nX
l=1

al;nvl = P?
Sn�1

(Rcn�1)

= P?
Sn�1

 
R

1

�n�1

n�1X
l=1

al;n�1vl

!

=
1

�n�1
P?
Sn�1

 
n�1X
l=1

al;n�1vl+1

!

=
1

�n�1
an�1;n�1P?

Sn�1
(vn) (84)

Writing P?
Sn�1

(vn) = vn � PSn�1
(vn), and equating right- and left-hand coe�cients of vn shows

that

an;n =
1

�n�1
an�1;n�1 =

n�1Y
l=1

1

�l
; (85)
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since a1;1 = 1=�1. Combining with (83) establishes (78) for the known statistics case. The preceding

derivation also applies to the given data case, where statistical averages are replaced by sample

averages.
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