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Abstract

In this paper, we propose an algorithm for the joint estimation of the angle of arrival (AOA)
and delay of each dominant multipath for the desired user for use in a reduced dimension space-
time RAKE receiver for DS-CDMA communications that is “near-far” resistant. After we estimate
the desired spatio-frequency signal vector, we propose the 2D unitary ESPRIT algorithm as our
estimator which provides closed-form as well as automatically paired AOA-delay estimates. We
effectively have a single snapshot of 2D data and thus require 2D smoothing for extracting multiple
snapshots. The comparative performance of two 2D smoothing schemes, pre-eigenanalysis and
post-eigenanalysis 2D smoothing, is discussed. The space-time data model for the IS-95 uplink is
presented. The simulation results are compared with the Cramer-Rao Bound (CRB) of the joint
estimation algorithm for the space-time data model at the post-correlation processing stage. The
performance of a reduced dimension space-time RAKE receiver for the IS-95 uplink using the AOA-
delay estimates is assessed through Monte-Carlo simulations.

1This research work was supported by AFOSR under contract no. F49620-97-1-0275 and the National Science Foun-
dation under grant no. MIPS-9708309.



1 Introduction

In this paper, we present joint angle and delay estimation algorithms 2 for both classical DS-CDMA

communication systems and the IS-95 uplink, assuming known spreading waveform of the desired

user and approximate bit synchronization. Our algorithm can accurately estimate the angle of arrival

(AOA) and time delay for each multipath component of the desired user even under “near-far” condi-

tions. We propose the 2D Unitary ESPRIT algorithm [2] as our estimator which provides closed-form

and automatically paired 2D parameter estimates.

The joint angle and delay estimation algorithm using the shift-invariance techniques applied to the

estimated channel impulse response in [3] was proposed for a single source in a multipath scenario.

A joint estimation algorithm for cellular TDMA based communication systems was proposed in [4].

A angle-only estimation algorithm for DS-CDMA systems was proposed in [5], and the power control

was assumed for this scheme. A propagation delay estimation algorithm in a asynchronous DS-CDMA

system was proposed in [6] by using MUSIC algorithm. This algorithm was shown to combat over

“near-far” problem. However, this approach needs exhaustive search and does not provide a close-form

solution.

A major benefit of the joint estimation algorithm is that the number of multipaths can be larger

than the number of antennas, which overcomes the limitation of separable estimation. We also present

the utility of the joint angle-delay estimates in a reduced dimension space-time RAKE receiver. The

AOA information is also useful for “smart” FDD downlink beamforming or geolocation problems.

The structure of this paper is as follows. Section 2 provides the space-time data models for the

classical DS-CDMA communication systems and the IS-95 uplink. Section 3 gives the overview of

the 2D Unitary ESPRIT algorithm. The developments of the proposed joint delay-angle estimation

algorithms with two different processing orders in 2D smoothing scheme are described in Section 4.

The Cramer-Rao Bound of the estimation algorithms at the post-correlation processing stage is derived

in Section 5. In Section 6, we address the application of the angle and delay estimates to a reduced

dimension space-time RAKE receiver for the DS-CDMA communication systems. Various Simulation

results are presented in Section 7. Finally, we make conclusions in Section 8.

2Portions of this work were previously reported at a conference [1]
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2 Space-Time Data Model

2.1 Classical DS-CDMA space-time data model

The M × 1 array snapshot vector x(t) containing the outputs of each of the M antennas comprising

the array at time t is modeled as

x(t) =
P∑
k=1

ρk

Nb−1∑
m=0

a(θdk)D(m)c(t −mTb − τk) +
J∑
i=1

Nb−1∑
m=0

a(θi)σiDi(m)ci(t−mTb) + nw(t) (1)

where d denotes the desired user. a(θ) is the spatial response of the array. For the sake of notational

simplicity, we here assume that the spatial response vector depends on a single directional parameter,

θ, the direction of arrival (DOA) of a given source. 1/Tb is the symbol rate common to all sources.

P is the number of different paths the Signal of Interest (SOI) arrives from, θdk denotes the directions

associated with the k-th path, and τk is the corresponding relative delay of the k-th path. ρk is

the complex amplitude of the k-th multipath arrival for the SOI at the reference element. D(m) and

Di(m) are the digital information sequences for the SOI and MUAI sources, respectively. J broadband

interferers ( MUAI) impinge upon the array. σi is the complex amplitude of the i-th interferer at the

reference element of the array. c(t) and ci(t) are the spreading waveforms for the SOI and i-th MUAI,

respectively. The vector nw(t) contains white noise. Nb is the number of bits over which all parameters

characterizing the model in (1) are assumed to be constant. Nb might be quite small in cases of rapidly

evolving dynamics. The spreading waveform for the i-th MUAI is modeled as

ci(t) =
Nc−1∑
l=0

si(l)pc(t− lTc) (2)

where 1
Tc

is the chip rate, si(l) is a PN sequence, pc(t) is the chip waveform assumed common to all

sources, Nc is the number of chips per bit common to all MUAI’s. The spreading waveform for the

desired source, c(t), is defined similarly but with a different PN sequence. 3

2.2 Space-Time Data Model for IS-95 Uplink

The transmitter block diagram for the uplink of IS-95 is shown in Figure 1. Two information bits

are mapped to six bits via a rate 1/3 convolutional encoder. These six bits are grouped together as

an index to select one of 64 Walsh-Hadamard functions, which is then subsequently multiplied by a

(time-varying) user’s spreading waveform ci(t) with four chips per “Walsh” chip. Note that the period

of ci(t) is 242 -1. The data is further spread by two short codes aI(t) and aQ(t) with period equal

to 215 to create the I and Q channels, respectively. The resulting I and Q channels, which carry the

3Note that this model is easily modified for the case where the spreading waveform varies from bit to bit as will be
seen in the the IS-95 uplink space-time data model.
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same information bits, are then input to an offset-QPSK modulator with the PN modulated Q channel

signal delayed by a half chip period, Tc/2, relative to the PN modulated I channel. The j-th symbol

transmitted by the i-th user is described as

si(t) =
√
PiW

j
i (t)a

I
i (t)cos(ωct) +

√
PiW

j
i (t−

Tc
2

)aQ
i (t−

Tc
2

)sin(ωct) , 0 ≤ t ≤ Tw (3)

The various quantities in (3) are described below. Define W j
i (t) as Walsh symbol, and j is referred to

as the Walsh function index: j = 1, 2, .., 64. Pi is the transmitted power per symbol. ωc is the carrier

frequency in radians. Tw is the duration of a Walsh symbol. aIi (t) and aQi (t) are the PN spreading

codes applied to the I and Q channels, respectively:

aIi (t) = ci(t)a
I(t) aQi (t) = ci(t)a

Q(t)

Denoting the chip waveform as p(t),

aIi (t) =
∞∑

n=−∞

aIi,np(t− nTc)

aQi (t) =
∞∑

n=−∞

aQi,np(t− nTc), (4)

where aIi,n and aQi,n are distinct PN sequences.

Similarly, for the IS-95 uplink, the baseband representation of the M × 1 array snapshot vector

x(t) containing the outputs of each of the M antennas comprising the array at time t is modeled as

x(t) =
Pd∑
k=1

ρdka(θdk)[W
j
d (t− τ

d
k )aI

d(t− τ
d
k ) + jW

j
d (t−

Tc
2
− τdk )aQ

d (t−
Tc
2
− τdk )] +

J∑
i=1

Pi∑
k=1

ρika(θik)[W
j
i (t− τ

i
k)a

I
i (t− τ

i
k) + jW j

i (t−
Tc
2
− τ ik)a

Q
i (t−

Tc
2
− τ ik)] + nw(t) (5)

For a given user i(d denotes the desired user): Pi is the number of different paths the i-th signal arrives

from, θik denotes the arrival direction of the k-th multipath, and τ ik is the corresponding relative delay

of the k-th multipath. ρik is the complex amplitude of the k-th multipath arrival for the i-th signal

at the reference element. J multi-user access interferers (MUAI) impinge upon the array. The vector

nw(t) represents the contribution of additive white noise.

3 Overview of 2D Unitary ESPRIT

The core of the joint angles of arrival and time delays estimation algorithms in the paper is the

utilization of 2D Unitary ESPRIT which does not need time-consuming 2D exhaustive search as in
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the MUSIC-type algorithms. We here present a brief development of 2D Unitary ESPRIT which

provides the automatically paired source azimuth and elevation angle estimates in closed-form with

uniform rectangular array (URA) of M ×L elements. In the final stage of the algorithm, the real and

imaginary parts of the i-th eigenvalue of a matrix are one-to-one related to the respective direction

cosines of the ith source relative to the two major array axes. Note that 2D Unitary ESPRIT is

applicable for the problems which can be reduced to a matrix with shift-invariant property in both

axes. Hence, it can be employed in a variety of applications other than 2D angle estimation including

2D harmonic retrieval problems. 2D Unitary ESPRIT offers a number of advantages. Here, we

point out some of them which are related to our joint estimation problem. First, except for the final

eigenvalue decomposition of dimension equal to the number of sources, it is efficiently formulated in

terms of real-valued computation throughout. Second, it easily handles sources having one member of

the spatial frequency coordinate pair in common.

For developing the idea of 2D Unitary ESPRIT, we describe the relations of 1-D case first. Em-

ploying the center of the uniform linear array (ULA) as the phase reference, the array manifold is

conjugate centrosymmetry. For example, if the number of elements comprising the ULA M is odd,

there is a sensor located at the array center and the array manifold is

aM (µ) = [e−j(
M−1

2
)µ, · · · , e−jµ, 1, ejµ, · · · , ej(

M−1
2

)µ]
T

(6)

where µ = 2πλ∆xu with λ equal to the wavelength, ∆x is equal to the interelement spacing, and

u = cos(θ) is equal to the direction cosine relative to the array axis.

Define

QM =



1√
2

[
IK jIK
ΠK −jΠK

]
; if M = 2K

1√
2

 IK 0 jIK
0T

√
2 0T

ΠK 0 −jΠK

 ; if M = 2K + 1

where

ΠK =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 ∈ RK×K

Then, we have the real-valued manifold dM (µ):

dM (µ) = QH
MaM (µ) (7)

=
√

2×
[
cos (

M − 1

2
µ), · · · , cosµ,

1
√

2
,− sin (

M − 1

2
µ), · · · ,− sinµ

]T
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Define:

K1 = Re(QH
M−1JQM ) ; K2 = Im(QH

M−1JQM ) (8)

where

J =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ R(M−1)×M

Invoking the definition of the tangent function yields the following invariance relationship satisfied

by dM (µ) involving only real-valued quantities:

tan (
µ

2
)K1dM (µ) = K2dM (µ) (9)

For P < M sources, we define M × P real-valued AOA matrix as

D = [dM (µ1),dM (µ2), · · · ,dM (µP )] .

The real-valued manifold relation in (8) translates into the real-valued AOA matrix relation

K1DΩµ = K2D (10)

where Ωµ = diag{tan (µ1

2 ), · · · , tan (µP2 )}.

if X denotes the M × P element space data matrix containing P snapshots as columns, the sig-

nal eigenvectors may be computed as the ”largest” left singular vectors of the real-valued matrix

[Re{Y}, Im{Y}], where Y = QH
MX. Asymptotically, the M × P real-valued matrix of signal eigen-

vectors Es is related to the real-valued M × P AOA matrix D as

ES = DT (11)

where T is an unknown P × P real-valued matrix. Substituting D = EST
−1 into (10) yields

K1ESΨ = K2ES (12)

where Ψ = T−1ΩµT. Thus, the eigenvalues of the P × P solution Ψ to the (M − 1) × P matrix

equation above are tan (µi2 ), i = 1, · · · , P .

For the 2D case, let URA of M × L elements lying in the x − y plane and equi-spaced by ∆x in

the x direction and ∆y in the y direction. In addition to µ = 2π
λ ∆xu, where u is the direction cosine

variable relative to the x− axis, we define the spatial frequency variable ν = 2π
λ ∆yv, where v is the

direction cosine variable relative to the y−axis. In matrix form, the array manifold may be expressed

as

A(µ, ν) = aM (µ)aTL(ν) (13)
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where aL(ν) is defined by (6) with M replaced by L and µ replaced by ν. Similar to the 1-D case,

premultipling A(µ, ν) by QH
M and post-multiplying by Q∗L, creates the M × L real-valued manifold

D(µ, ν) = QH
MA(µ, ν)Q∗L

= QH
MaM (µ)aTL(ν)Q∗L

= dM (µ)dTL(ν) (14)

Given dM (µ) satisfies the invariance relationship in (8), it follows that D(µ, ν) satisfies

tan (
µ

2
)K1D(µ, ν) = K2D(µ, ν) (15)

It follows that the ML× 1 real-valued manifold in vector form d(µ, ν) = vec(D(µ, ν)) satisfies

tan (
µ

2
)Kµ1d(µ, ν) = Kµ2d(µ, ν) (16)

where Kµ1 and Kµ2 are the (M − 1)L×ML matrices

Kµ1 = IL ⊗K1 ; Kµ2 = IL ⊗K2 (17)

Similarly, the 1-D real-valued manifold dL(ν) satisfies tan (ν2 )K3dL(ν) = K4dL(ν), where K3 =

Re(QH
L−1J2QL),K4 = Im(QH

L−1J2QL). it follows that

tan (
ν

2
)Kν1d(µ, ν) = Kν2d(µ, ν) (18)

where Kν1 and Kν2 are the M(L− 1)×ML matrices

Kν1 = K3 ⊗ IM ; Kν2 = K4 ⊗ IM (19)

Consider the ML × P real-valued AOA matrix D = [d(µ1, ν1), · · · ,d(µP , νP )], where d(µ, ν) =

vec(D(µ, ν)). (15) dictates that D satisfies

Kµ1DΩµ = Kµ2D (20)

where Ωµ = diag{tan (µ1

2 ), · · · , tan (µP2 )}. In turn, (18) dictates that D satisfies

Kν1DΩν = Kν2D (21)

where Ων = diag{tan (ν1
2 ), · · · , tan (νP2 )}

Viewing the array output at a given snapshot as an M × L matrix, premultiply by QH
M and

postmultiply by Q∗L, apply the vec(·) operator, and place the resulting ML× 1 vector as a column of

an ML× P data matrix Y. Note that if X denotes the ML× P complex-valued element space data
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matrix, the relationship between X and Y may be expressed as Y = (QH
L ⊗QH

M )X. The approximate

ML×P matrix of signal eigenvectors, Es, for the 2D Unitary ESPRIT is computed as the P “largest”

left singular vectors of the real-valued matrix [Re{Y}, Im{Y}]. Asymptotically, ES = DT, where

T is an unknown P × P real-valued matrix. Substituting D = EST
−1 into (20) and (21) yields the

signal eigenvector relations

Kµ1EsΨµ = Kµ2Es where : Ψµ = T−1ΩµT (22)

Kν1EsΨν = Kν2Es where : Ψν = T−1ΩνT (23)

Automatic pairing of µ and ν spatial frequency estimates is facilitated by the fact that all of the

quantities in (22) and (23) are real-valued. Thus, Ψµ + jΨν may be spectrally decomposed as

Ψµ + jΨν = T−1{Ωµ + jΩν}T (24)

The 2D Unitary ESPRIT algorithm is summarized below:

1. Compute Es via P “largest” left singular vectors of [Re{Y}, Im{Y}] where Y = (QH
L ⊗QH

M )X

and X denotes the ML× P complex-valued element space data matrix.

2. (a) Compute Ψµ as the solution to the (M − 1)L× P matrix equation :

Kµ1EsΨµ = Kµ2Es.

(b) Compute Ψν as the solution to the M(L− 1)× P matrix equation :

Kν1EsΨν = Kν2Es.

3. Compute λi , i = 1, ..., P . as the eigenvalues of the P × P matrix Ψµ + jΨν .

4. Compute spatial frequency estimates µi = 2tan−1(Re(λi)), νi = 2tan−1(Im(λi)), i = 1, ..., P .

Note that the maximum number of sources 2D Unitary ESPRIT can handle is minimum {M(L−

1), L(M − 1)}, assuming that at least P
2 snapshots are available (it is inherently effecting a forward-

backward average that effectively doubles the number of snapshots.). If only a single snapshot is

available, one can extract P
2 or more identical rectangular subarrays out of the overall array to get the

effect of multiple snapshots, thereby decreasing the maximum number of sources that can be handled.

4 Joint Angle and Delay Estimation

Our goal is to jointly estimate the AOA and relative delay parameter pairs {(θdi , τ
d
i )}, i = 1, · · · , P,

under multipath propagation and “near-far” conditions. We consider applying the 2D Unitary ESPRIT
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algorithm to the data model formulated in such a way as to exhibit the shift-invariance property

required by ESPRIT. The desired data model may be achieved by adapting the space-frequency 2D

processing scheme previously proposed by Zoltowski [7] as shown in Figure 2. This 2D RAKE receiver

was proposed for direct sequence spread spectrum communication systems and achieve two primary

goals: (1) optimal combination of the desired user’s multipath in a RAKE-like receiver fashion and (2)

simultaneous cancellation of strong multi-user access interference and other forms of interference. To

achieve these goals, it only exploits: (1) known spreading waveform of desired user, (2) approximate

bit synchronization for desired user and (3) known maximum multipath time-delay spread τmax.

4.1 Blind Adaptive 2D RAKE Receiver for DS-CDMA Based on Space-Frequency
MVDR Processing

As shown in Figure 2 (the number of samples per chip Lc = 2, τmax = 8µsec, Tb = 128µsec ), The

received signal at each antenna is sampled at a rate Lc/Tc. The sampled output of each antenna

is passed through a filter whose impulse response is an oversampled version of the time-reverse and

conjugate of the spreading waveform of the desired user expressed as h[n] = c∗[−n], where c[n] =

c(nTc/Lc).

After passing the output of each antenna through the matched filter, one estimates the signal plus

interference space-frequency correlation matrix, K̂S+I+N , during that portion of the bit interval where

the RAKE fingers occur, and the interference alone space-frequency correlation matrix, K̂I+N , during

that portion of the bit interval away from the fingers. Denote MNs × 1 post-correlation space-time

snapshot xst[n] is equal to:

[x1[n], x2[n], · · · xM [n], x1[n+ 1], · · · , x1[n+ (Ns − 1)], · · · xM [n+ (Ns − 1)]]T ,

where Ns = dLcτmaxTc
e = number of samples encompassing the maximum multipath time delay spread

τmax and xj[n] denote the sample of the output of the j-th antenna after the matched filter.

The ML×ML signal plus interference (plus noise) space-frequency correlation matrix is estimated

as

K̂S+I+N =
1

Nb

Nb−1∑
l=0

{(TC ⊗ IM )Hxst[lNt]}{x
H
st [lNt](TC ⊗ IM)} (25)

The interference (plus noise) space-frequency correlation matrix is estimated as

K̂I+N =
1

NbNAF

Nb−1∑
l=0

NAF∑
n=1

{(TC ⊗ IM )Hxst[nLs + lNt +Ns]}{x
H
st [nLs + lNt +Ns](TC ⊗ IM)} (26)

where Nt = NcLc = total number of samples in one bit period, Ls is the number of sample points

which the length Ns window is slid over in forming the new space-time snapshot after averaging in
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the current space-time snapshot, and NAF ≤ b
Nt−2Ns
Ls
c is the number of the snapshot extracted away

from the “RAKE fingers”. TH
C is simply the L columns of the Ns pt. DFT matrix for computing the

L spectrum values around DC component. ⊗ denotes the Kronecker product. 4

The optimum weight vector ŵopt for combining the L spectrum values computed from the Ns pt.

DFT of a time window with Ns time samples encompassing the “fingers” at each of the M antennas is

the “largest” generalized eigenvector of theML×ML space-frequency matrix pencil {K̂S+I+N , K̂I+N},

which is the solution to the SINR maximizing criterion:

Maximize
w

wHKS+I+Nw

wHKI+Nw

For the 64-ary orthogonal modulation used in the IS-95 uplink, we need to contruct 64 matched filters

forming a filter bank at each antenna receiver. Therefore, this matrix pencil is estimated from the

aforementioned matched filter outputs containing the “fingers” in a decision directed fashion [8, 9].

4.2 Joint Angle and Delay Estimation Algorithms

For the space-time data model of the classical DS-CDMA communication systems, the asymptotic

structure of K̂S+I+N may be expressed as:

KS+I+N = σ2
s(

P∑
i=1

gif(τi)⊗ a(θi))(
P∑
i=1

gif(τi)⊗ a(θi))
H + KI+N (27)

where σ2
b = E[D2(n)] and we have dropped superscript d for notational simplicity. Assuming the

antenna elements to be equi-spaced along a line and well-calibrated, gi is the complex gain of the

i-th multipath arrival, τi is the relative time-delay of the i-th multipath arrival, and a(θi) is the

array manifold = [1, ejµ, · · · , ej(M−1)µ]
T
, where µ = 2π

λ ∆x sin θi with λ is the wavelength, ∆x is the

interelement spacing, and θi is the angle of arrival relative to the normal to the array axis. f(τi) =

v(τi)� s where � is the Schur product and

s = [S(−K∆f), ..., S(−∆f), S(0), S(∆f), ..., S(K∆f)]T , (28)

where L=2K+1 and S(f) is sinc2(fTc) in the case of a rectangular chip waveform, for example. 1
Tc

is

the chip rate, v(τi) = e−jKν[1, ejν , · · · , ej2Kν ]
T
, where ν = 2π∆fτi. Typically, ∆f = 1

τmax
.

4The Kronecker product ⊗ of a p× q matrix A and an m× n matrix B is the pm× qn matrix defined by

A⊗B =


a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

ap1B ap2B · · · apqB


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The “largest” generalized eigenvector of the asymptotic ML×ML matrix pencil {KS+I+N ,KI+N}

is

wopt = K−1
I+Nes, (29)

where the post-correlation space-frequency signature of the desired user

es = σs

P∑
i=1

gif(τi)⊗ a(θi) (30)

Thus, es = KIwopt and the ML× 1 estimated signal vector

ês = K̂Iŵopt ≈ σs
P∑
i=1

gif(τi)⊗ a(θi) (31)

De-stacking the M × 1 sub-vectors of ês through the mat(·) operator yields the M × L matrix:

Ês = mat(ês) = mat(K̂Iŵopt) ≈ σs

P∑
i=1

gia(θi)f
T (τi) (32)

We consider applying 2D Unitary ESPRIT to Ês so that the final step yields eigenvalues of the form

tan
{µi

2

}
+ j tan

{νi
2

}
, where µi = 2π

λ ∆x sin θi and νi = 2π τi
τmax

, i = 1. · · · , P . Before we can apply the

2D Unitary ESPRIT algorithm, we need to adjust the structure of Ês such that the matrix exhibits the

shift-invariance property along both the space and frequency dimensions. Since we know the spectrum

of the chip waveform, we may divide out the “amplitude taper” represented by s in f(τi) = v(τi)� s.

To this end, define Γ = diag(s). Post-multiplying Ês by Γ−1 yields

Ê
′

s ≈ σs

P∑
i=1

gia(θi)v
T (τi) (33)

However, we effectively have a single snapshot of 2D data and thus require 2D smoothing for extracting

multiple snapshots. Note that the factor e−jKν in v(τi) can be absorbed in gi such that a(θi) and

v(τi) both have Vandermonde structure which allows us to perform 2D smoothing. We propose two

different orders of processing, pre-eigenanalysis 2D smoothing and post-eigenanalysis 2D smoothing,

prior to applying 2D Unitary ESPRIT. These schemes are discussed below.

4.2.1 Post-eigenanalysis 2D smoothing

As pointed out before, we need at least P/2 snapshots to handle P multipaths. Since there is effectively

a single snapshot available after computing ês, we can apply a 2D smoothing technique to Ê
′

s to extract

P/2 or more identical rectangular subarrays out of the overall pseudo-array to get the effect of multiple

snapshots (refer to Figure 3). Note that the maximum number of sources 2D Unitary ESPRIT can

handle is minimum {(m1− 1)m2,m1(m2− 1)}, given that the size of the subarray is m1×m2 and the
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number of extracted snapshots is (M −m1 + 1) × (L −m2 + 1). Therefore, these relationships must

be satisfied:

min{(m1 − 1)m2,m1(m2 − 1)} ≤ P and (M −m1 + 1)× (L−m2 + 1) ≥
P

2
(34)

Let E(m,l), 1 ≤ m ≤ (M − m1 + 1), 1 ≤ l ≤ (L − m2 + 1) denote the (m, l)-th extracted snapshot

with dimension m1 × m2. Applying the vec(·) operator, we stack the columns of E(m,l) to form

the m1m2 × 1 vector e(m,l). We then form an m1m2 × (M − m1 + 1)(L − m2 + 1) matrix X =

[e(1,1), e(2,1), · · · , e(M−m1+1,L−m2+1)] which plays the role of the data matrix needed for 2D Unitary

ESPRIT. The subsequent steps of the 2D Unitary ESPRIT algorithm are easily applied to calculate

{(θi, τi)}, i = 1, · · · , P .

Summary of the joint estimation algorithm with post-eigenanalysis 2D smoothing

1. Compute wopt as the “largest” generalized eigenvector of space-frequency matrix pencil {K̂S+I+N , K̂I+N},

and estimate ML× 1 signal vector es by: ês = K̂I+Nwopt.

2. De-stacking the ML× 1 sub-vectors of ês through the matrix operator mat(·) yields the M ×L

matrix E = mat{ês}. Then, applying 2D smootihing technique to EΓ−1 to get E(i,j) with the

sub-matrix size equal to m1×m2, and arranging {E(i,j), 1 ≤ i ≤M−m1 +1; 1 ≤ j ≤ L−m2 +1}

as X =
[
e(1,1), e(2,1), · · · , e(M−m1+1,L−m2+1)

]
, e(i,j) = vec(E(i,j)).

3. Compute E
′

s via the P ”largest” left singular vectors of [Re(Y), Im(Y)] which are associated

with the first P largest singular value over some preset threshold, where Y = (QH
m2
⊗QH

m1
)X.

4. (a) Compute Ψµ as the solution to the (m1 − 1)m2 × P matrix equation Kµ1E
′

sΨµ = Kµ2E
′

s.

(b) Compute Ψν as the solution to the m1(m2 − 1)× P matrix equation Kν1E
′

sΨν = Kν2E
′

s.

5. Compute λi, i = 1, ..., P . as the eigenvalues of the P × P matrix Ψµ + jΨν .

6. Compute the spatial frequency estimates :

µi = 2arctan(Re(λi)), νi = arctan(Im(λi)), i = 1, ..., P ., then map the spatial frequency µi

and νi to the AOA and multipath time delay by θi = 180 arcsin(µπ )/π (in degree) and τi =

( TcLc )Nsνi/(2π).

4.2.2 Pre-eigenanalysis 2D smoothing

As an alternative, we may effect 2D smoothing on each original space-frequency snapshot vector to

generate multiple snapshots with lower dimension m1 × m2 and form the smoothed version of the
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correlation matrix pencil denoted {KS+I+N ,KI+N}. Note that we need to post-multiply each space-

frequency snapshot by Γ−1 to achieve the required Vandermonde structure before performing 2D

smoothing (This also facilitates the use of forward-backward averaging). The effect of 2D smoothing

is to “decorrelate” the multipaths such that we can choose the P m1m2×1 generalized “largest” eigen-

vectors of the smoothed version of {KS+I+N ,KI+N} as the P “snapshots”. Denote E = [e1
...e2

... · · ·
...eP ],

where ei is the i-th “largest” generalized eigenvector of {KS+I+N ,KI+N}. The subspace spanned by

X = KI+NE will be the same as the subspace spanned by A
′

= [a
′
(θ1, τ1), · · · ,a

′
(θP , τP )], where

a
′
(θi, τi) = v

′
(τi) ⊗ a

′
(θi), 1 ≤ i ≤ P ; the dimensions of v

′
(τi) and a

′
(θi) are m2 × 1 and m1 × 1

respectively, which are defined similarly as v(τi) and a(θi) . It follows that we can apply the 2D

Unitary ESPRIT algorithm to the m1m2 × P matrix X for the joint AOA-delay estimation.

Summary of the joint estimation algorithm with pre-eigenanalysis 2D smoothing

1. Apply 2D smoothing to the snapshots of “fingers” portion and away from the “fingers” portion

where the snapshots are deconvoluted by post-multiplying Γ−1, and form the “decorrelated”

space-frequency matrix pencil {K̂S+I+N , K̂I+N} with the dimension equal to m1m2 ×m1m2.

2. Compute the first P “largest” generalized eigenvector e1, · · · , eP which are associated with the

first P “largest” generalized eigenvalues of the space-frequency matrix pencil {K̂S+I+N , K̂I+N}

over some preset threshold, and form m1m2 × P matrix X = K̂I+N [e1, · · · , eP ].

3. Compute E
′

s via the first P “largest” left singular vectors of [Re(Y), Im(Y)], where Y = (QH
m2
⊗

QH
m1

)X.

4. (a) Compute Ψµ as the solution to the (m1 − 1)m2 × P matrix equation Kµ1E
′

sΨµ = Kµ2E
′

s

(b) Compute Ψν as the solution. to the m1(m2 − 1)×P matrix equation Kν1E
′

sΨν = Kν2E
′

s.

5. Compute λi, i = 1, ..., P . as the eigenvalues of the P × P matrix Ψµ + jΨν .

6. Compute the spatial frequency estimates :

µi = 2tan−1(Re(λi)), νi = tan−1(Im(λi)), i = 1, ..., P , then map the spatial frequency µi

and νi to the AOA and multipath time delay by θi = 180 arcsin(µπ )/π (in degree) and τi =

( TcLc )Nsνi/(2π).

5 Cramer-Rao Bound

The Cramer-Rao Bound (CRB) was derived in [6] for the delay estimation of the classical DS-CDMA

communication system, and it showed that the CRB on an estimator of a particular ray’s propagation
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delay - given by the appropriate diagonal element of the CRB(τ) - is independent of the mean power

of the other rays, or is independent of the “near-far” problem. In this section, we will derive the CRB

for the joint AOA-delay estimation algorithms applied to the IS-95 uplink signal model. Here for

simplicity of analysis due to more complicated modulation scheme in the IS-95 uplink with OQPSK

spread, we try to derive the CRB for the AOA and delay estimation at the post-correlation processing

stage. The derivation closely follows the procedures in [4, 10]. We also assumed the output of the

matched filter contributed from the interference plus noise with Gaussian process and the “correct”

matched filter output branches which contain “fingers” are chosen by using an initialization algorithm,

training sequence, or in the decision directed mode of operation. Then, for the n-th Walsh symbol

period, we have the MNs × 1 vector:

xRF [n] =
P∑
k=1

ρkt(τk)⊗ a(θk) + n[n] = d + n[n] (35)

where xRF [n] is the space-time snapshot containing the “fingers” corresponding to the matched filter

output of the “true” transmitted Walsh symbol. d is the post-correlation space-time signature of the

desired user that describes the gain and phase of each RAKE finger across space and time:

d =
P∑
k=1

ρkt(τk)⊗ a(θdk), (36)

t(τ) =
[
rcc (−τ) rcc

(
Tc
Lc

-τ
)
· · · rcc

(
(Ns-1)

Tc
Lc

-τ
) ]T

, and rcc(τ) is the autocorrelation function for

the SOI’s spreading waveform, c(t). In the case where the chip waveform, pc(t), is rectangular and the

processing gain is large, rcc(τ) approximately has the following triangular shape:

rcc(τ) =

{
1− |τ |Tc if |t| ≤ Tc
0 if |t| > Tc

(37)

n[n] represents the contribution of interference and Gaussian noise after the matched filter∼ N (0,Kst
I+N ).

For Gaussian noise only case, which will be used in a simulation setup for the simplicity of the per-

formance comparison to the CRB, we have:

Kst
I+N = σ2

N ·CN ⊗ IM (38)

where CN is a Toeplitz-symmetric matrix whose first column is rcc(
mTc
Lc

),m = 0, · · · ,Ns − 1.

ForNw Walsh symbol durations, the density function and the log-likelihood function of the observed

process in this model can be expressed as:

fα(xRF [1],xRF [2], ...,xRF [Nw]) =

(π)−MNSNw ‖ KI+N ‖
−Nw exp

{
−

Nw∑
n=1

[xRF [n]− d]HK−1
I+N [xRF [n]− d]

}
(39)
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ln(fα(xRF [1], ...,xRF [Nw])) = ln(L(α))

= const−Nw ln{‖ KI+N ‖} (40)

−
Nw∑
n=1

[xRF [n]− d]H{KI+N}
−1[xRF [n]− d]

The parameter vector is

α = [σ2
N , Re {ρ1} , Im {ρ1} , · · · , Re {ρP } , Im {ρP } ,θ, τ ]

and the Fisher information matrix is

J(α) = E
{
[ ∂
∂α ln(L(α))][ ∂

∂α ln(L(α))]T
}

Relating the above model to ĥ(t) = Ξ(θ, τ)β(t) + e(t) in [4], but substituting the color noise n(t)

for the white noise e(t), we can derive the CRB for the joint estimation algorithms:

CRB(θ, τ) =
1

2Nw
[Re{BHDH(K−1

I+N −K−1
I+NU(UHK−1

I+NU)−1UHK−1
I+N)DB}]

−1
(41)

where B = I2⊗ diag(ρ), D = [T �A
′
,T
′
�A], and U = T �A; � is the “Khatri-Rao” product, which

is a columnwise Kronecker product:A �B = [a1 ⊗ b1,a2 ⊗ b2 · · ·].

A = [a(θ1), · · · ,a(θP )] ; A
′
= [ ∂a

∂θ1
(θ1), · · · ,

∂a
∂θP

(θP )]

T = [t(τ1), · · · , t(τP )] ; T
′
= [ ∂t

∂τ1
(τ1), · · · ,

∂t
∂τP

(τP )]

6 Reduced Dimension Processing VIA Joint Angle-Delay Estima-
tion

In this section, we develop the reduced dimension space-time 2D RAKE receiver related to [9] with

knowledge of {(θi, τi)}. As substantiated in [9], reduced dimension processing offers faster convergence

if the compression matrix is designed judiciously. For the given i-th AOA-delay pair (θi, τi), the

optimal beamformer for the corresponding multipath arrival is given by the well-known Weiner solution

µiR
−1
I+Na(θi), where µi = 1

aH(θi)R
−1
I+Na(θi)

and RI+N is the interference plus noise spatial correlation

matrix. The approach is to optimally combine each multipath component after applying the optimal

beamforming weight vector to the corresponding time sample of the multipath arrival at each antenna.

The proposed reduced-dimension space-time RAKE receiver exploiting the estimates {(θ̂i, τ̂i)}, i =

1, · · · , P, is as follows. We may rewrite the maximizing SINR criterion with the compression matrix

Tr as:
Maximize

wr

wH
r Kr

S+I+Nwr

wH
r Kr

I+Nwr
,

where

Kr
S+I+N = TH

r K̂st
S+I+NTr Kr

I+N = TH
r K̂st

I+NTr, (42)
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and {K̂st
S+I+N , K̂

st
I+N} is the full dimension space-time matrix pencil, which is estimated in a similar

way as in Figure 2 by using time samples instead of the selected frequency samples. Similar to the

expression of the estimation of the space-frequency correlation matrix pencil, the MNs×MNs signal

plus interference (plus noise) space-time correlation matrix is estimated as

K̂st
S+I+N =

1

Nb

Nb−1∑
l=0

xst[lNt]x
H
st [lNt] (43)

The interference (plus noise) space-time correlation matrix is estimated as

K̂st
I+N =

1

NbNAF

Nb−1∑
l=0

NAF∑
n=1

xst[nLs + lNt +Ns]x
H
st [nLs + lNt +Ns] (44)

Making use of the estimated AOA and delay parameter pairs, we form the compression matrix Tr as:

Tr = [µ1δ1 ⊗ R̂−1
I+Na(θ̂1)

... · · ·
...µPδP ⊗ R̂−1

I+Na(θ̂P )] (45)

where

R̂I+N =
1

Ns

Ns−1∑
l=0

ΓTl K̂
st
I+NΓl (46)

with

Γl =

 0
I
0

 (l − 1)M
M

(Ns − l)M

and δi = [0, · · · , 0, 1, 0, · · · .0]T , where the 1 is in the i-th position corresponding to the time sample

closest to the estimate of the relative delay of the i-th multipath arrival.

We previously proposed reduced dimension space-time 2D RAKE receivers for the IS-95 uplink

through a pre-spatial processing scheme followed by the beamspace-frequency processing in a decision

directed fashion [8, 9]. With the paired angle and delay estimated parameters, we can calculate the

decision variable for each possible Walsh symbol at a given symbol period as:

‖ŵH
r (TH

r x
(j)
RF [n])‖

2
, j = 1, · · · , 64, (47)

where x
(j)
RF [n] is a space-time snapshot from the j-th matched filter encompassing the “fingers” at the

n-th Walsh symbol period, and ŵr is the “largest” generalized eigenvector of the “compressed” P ×P

matrix pencil {K̂r
S+I+N , K̂

r
I+N}, which is estimated over the pass few Walsh symbol periods.

7 Simulation Results

Illustrative simulations are presented demonstrating the efficacy of the joint angle-delay estimation

algorithms for classical DS-CDMA communication systems and the IS-95 uplink signal model. The

simulation results for the application to the reduced dimension space-time 2D RAKE receiver are also

presented.
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7.1 Simulation Results for the Classical DS-CDMA

A linear array of 8 antennas equi-spaced by a half-wavelength was employed. Both the desired source

and the interferers were DS-CDMA signals with different maximal length sequences and 127 chips per

bit. A rectangular chip waveform was employed. The chip rate was 1 MHz and the sampling rate was

2 MHz. The two DS-CDMA interferers arrived at 50o and −35o, respectively, with power levels of 15

dB and 20 dB above the desired user’s direct path, respectively. A three-ray multipath model was

used for the desired source wherein the direct path arrived at an angle of 0o relative to broadside with

an SNR of −5 dB per element. The SNR of the specular multipaths were 1 and 2.5 dB below that of

the direct path and phase shifted by 45o and 90o at the first antenna element. The specular path for

the SOI arrived at 8o with delay by four and half chips, the other arrived at 15o with delay by seven

chips. The multipath delay spread was assumed to be 8 µs dictating 16 half-chip spaced taps at each

of the 8 antennas.

Figure 4 displays the estimated AOA and delay “scatter plots” obtained from 256 independent

runs with the space-frequency correlation matrix pencil {K̂S+I+N , K̂I+N} averaged over 12 bit periods

under the assumption that the channel characteristics remain approximately constant. Note that for

estimating K̂I+N , we extracted 70 snapshots per bit interval over that portion of away from “RAKE

fingers” by sliding the 8 microsecond time window a chip per time. The space-frequency correlation

matrices {K̂S+I+N , K̂I+N} were 72 × 72 if 9 frequency samples centered at DC were retained from

16 pt. DFT. The subarray size (m1,m2) was chosen to be (6, 5). Therefore, {K̂S+I+N , K̂I+N} were

30× 30.

It is observed that the scatter plots obtained with pre-eigenanalysis 2D smoothing are more local-

ized than that obtained using post-eigenanalysis 2D smoothing. Also, some outliers were incurred in

this simulation example using post-eigenanalysis 2D smoothing. Note that the angle-delay parameters

for the classical DS-CDMA communications systems are obtained blindly in the sense that we do not

need to estimate the corresponding bit values in the joint estimation interval. In contrast, for the

IS-95 uplink, we need use initialization algorithms or the decision directed mode in estimating Walsh

symbols to determine which matched filter outputs would contain “RAKE fingers” for estimating the

space-frequency correlation matrices.

7.2 Simulation Results for the IS-95 Uplink

The simulations presented here employ IS-95 uplink signal model parameters. The chip period is 0.8138

µs; the sampling rate was twice the chip rate; rectangular chip waveform was used. The number of

half-chip spaced taps at each antenna used to encompass the delay spread was 16. The number of
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Table 1: Signal and MUAI parameters
Signal MUAI1 MUAI2 MUAI3

SNR 1,2,3 x,x-1,x-3db x+20,x+10, - db x+4,x+6, - db x,x-3, - db

Phase 1,2,3 0o, 45o, 90o 45o, 50o,− −30o,−35o,− 180o, 170o,−
AOA 1,2,3 0o, 7o, 14o 50o, 55o,− −20o,−23o,− −10o,−7o,−

Delay 1,2,3 (×1
2Tc) 0,3,8 0, 3,− 0, 6,− 0, 10,−

selected DFT samples was 9. M = 8 antennas were used. A three-ray multipath model was used for

the desired user wherein the direct path arrived at an angle of 00 relative to broadside. The SNR’s of

the two specular multipaths were 1 and 3 dB below that the direct path and phase shifted by 900 and

450 at the array center, respectively. The relative delays of the specular multipaths for the desired

source were 11
2 chip and four chips respectively; the elevation angles were 7o and 14o, respectively.

To simulate multipath, each MUAI arrived via two paths having distinct arrival angles, time delays,

and phase shifts. Both the desired source and the interferers were CDMA signals with different long

PN codes and the same short I-Q PN codes. The generating polynomials for the long and short PN

sequences are listed below [11].

gL(x) = x42 + x35 + x33 + x31 + x27 + x26 + x25 + x22 + x21 + x19

+x18 + x17 + x16 + x10 + x7 + x6 + x5 + x3 + x2 + x1 + 1

gI(x) = x15 + x13 + x9 + x8 + x7 + x5 + 1

gQ(x) = x15 + x12 + x11 + x10 + x6 + x5 + x4 + x3 + 1

We adjust the value of x to conduct the following simulations.

7.2.1 Results of the joint AOA and time delays estimates

Basic performance of the proposed joint estimation algorithms:

Example 1.:near-far problem scenario: The MUAI parameters in Table 1 are listed for the “near

far” problem scenario. To simulate multipath, each MUAI arrived via two paths having distinct

arrival angles, time delays, and phase shifts. Figure 5 displays the estimated AOA and delay “scatter

plots” obtained from 1000 independent runs with the matrix pencil {K̂S+I+N , K̂I+N} averaged over

10 Walsh symbol periods, and the input SNR x of the direct path signal equal to -20 db. The subarray

size (m1,m2) was chosen to be (6, 5). Similarly, it is observed that the scatter plots obtained with

pre-eigenanalysis 2D smoothing are more localized than that obtained using post-eigenanalysis 2D

smoothing. Also, some outliers were incurred in this simulation example using post-eigenanalysis 2D

smoothing.
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Example 2.equal input power scenario: Here we create a simulation scenario with equal input power

for all the co-channel users. The signal of the desired user is the same as those of Example 1. The

input SNR x of the direct path was equal to -20db. The other 40 users with different PN codes and

single path were created with input SNR equal to -20db, and the AOAs were uniformly distributed

within 120◦. The other parameters are the same as those in Example 1. Figure 6 displays the esti-

mated AOA and delay “scatter plots” obtained from 500 independent runs. This demonstrates that

our estimation algorithms work well for both near-far problem and equal input power scenarios.

Performance comparison vs. CRB:

The bias of our joint estimation algorithms over the range of SNR’s we simulated was found to

be negligible. This facilitates the comparison with the Cramer Rao Bound (CRB). The simulation

parameters are the same as those in Example 1. Due to better performance by using pre-eigenanalysis

2D smoothing estimation algorithm, Figure 7 only displays the comparison for this algorithm to the

CRB while the number of Walsh symbols for averaging was varied from two to ten. The dash lines

represent the CRB’s for the estimates of each multipath component which are labelled with respect to

the correct angle and delay parameters. Note that we did not generate interferers in this simulation

example for the simplicity of comparison to the CRB by using the KI+N expression in (38) with

Gaussian noise only case.

7.2.2 Results of the application to the reduced dimension space-time 2D RAKE receiver

Basic performance of the reduced dimension space-time 2D RAKE receiver:

Figure 8 displays a typical result of the 64 normalized decision variables with the “correct” Walsh

symbol index marked with ’x’ for a single trial run for both the reduced dimension and the full di-

mension 2D RAKE receiver conducted at x = -21db in Table 1. The pre-eigenanalysis 2D smoothing

algorithm was used in estimating {(θi, τi)}, i = 1, 2, 3. Once the first three Walsh symbols have been

estimated (using either a training sequence or some blind initialization algorithm which was discussed

in [9]), K̂S+I+N and K̂I+N were averaged over the three past Walsh symbol periods using only the

one matched filter output per symbol corresponding to the estimated symbol, and the “largest” gener-

alized eigenvector was applied to each of the 64 Walsh correlator outputs generated for estimating the

next Walsh symbol as in a decision directed mode of operation. It shows that a significant increase

in separation between the value of the true Walsh symbol decision variable and the other 63 decision

variables can be achieved by using the knowledge of the angle-delay estimates to effect reduced dimen-

sion processing. Note that the size of the full dimension space-time correlation matrix is 128 × 128.
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In contrast, the size of the reduced dimension correlation matrix is only 3× 3. Figure 9 displays the

mean (connected by the horizontal line) and standard deviation (64 vertical lines) of the respective

magnitude of each of the 64 Walsh symbol decision variables for both the reduced dimension and the

full dimension 2D RAKE receiver from 256 independent runs conducted at x = -21db. It is observed

that the reduced dimension 2D RAKE receiver offers lower relative interference plus noise level and

smaller standard deviation of the decision variables.

Convergence: full dimension space-time RAKE receiver v.s. reduced dimension space-

time RAKE receiver:

Figure 10 displays the output SINR’s of the full space-time processing and reduce dimension

processing with AOA-delay estimates while the number of Walsh symbols for averaging K̂S+I+N and

K̂I+N ({K̂st
S+I+N , K̂

st
I+N}) was varied from two to ten, and the input SNR x in Talble 1 of the direct

path signal equal to -20 db. The reduced dimension space-time 2D RAKE receiver is observed to

yield a much larger output SINR when averaging over only a small number of symbol periods. This

demonstrates faster convergence with reduced dimension processing. Therefore, reduced dimension

processing is more feasible under the high variability of the mobile channel.

8 Conclusion

Simulation results show that our algorithms can accurately estimate the AOA and delay for each

multipath under “near-far” conditions. The AOA information is useful for FDD downlink beamforming

and source localization for emergency service. The pre-eigenanalysis 2D smoothing algorithm offers

better performance than the post-eigenanalysis 2D smoothing algorithm. The paired AOA and delay

information may be used to reduce the dimensionality of the space-time 2D RAKE receiver. Our

simulation results show that better separation between the value of the true Walsh symbol decision

variable and the other 63 decision variables may be achieved by using the knowledge of the paired

angle-delay estimates, as opposed to that obtained with full dimension space-time processing. This

better performance results from the faster convergence toward the optimal weight vector due to the

reduced dimensionality under conditions of limited available symbols where channel characteristics

remain approximately stationary.
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Figure 2: Diagram of the space-frequency 2D processing scheme
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Figure 3: 2D smoothing : 2D subarray grouping with array size (M × L) = 6 × 7 and subarray size
(m1 ×m2) = 5 × 6
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(a) Post-eigenanalysis 2D smoothing (b) Pre-eigenanalysis 2D smoothing

Figure 4: Scatter plots of the joint AOA-delay estimates for 256 trial runs (BPSK)
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Figure 5: Scatter plots of the joint AOA-delay estimates under near-far problem scenario
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Figure 6: Scatter plots of the estimates under equal input power scenario
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Figure 7: Performance comparison of the estimates (pre-eigenanalysis 2D smoothing) with the CRB
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Figure 8: Typical result of the decision variables for a single trial run
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Figure 9: Mean and Standard deviation of the decision variables
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Figure 10: Convergence Comparison
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