Homework Assignment \#1

Should be completed by Session 3
Reading Assignment: Sections 1-1, 1-2, 1-3, 2-1, and 2-2 of Papoulis

1. Reduce the following expressions to the simplest possible forms:
(a) $(A \cap \bar{B}) \cup(B \cap \bar{A})$.
(b) $(A \cap \bar{B}) \cap(A \cap B)$.

Use DeMorgan's laws to show that:
(c) $\overline{A \cap(B \cup C)}=(\bar{A} \cup \bar{B}) \cap(\bar{A} \cup \bar{C})$.
(d) $\overline{A \cap B \cap C}=\bar{A} \cup \bar{B} \cup \bar{C}$.
2. Let $\left\{A_{1}, \ldots, A_{n}\right\}$ be a partition of the space \mathcal{S}, and define the family of sets $\left\{B_{1}, \ldots, B_{n}\right\}$ by

$$
B_{j}=G \cap A_{j}, \quad j=1, \ldots, n,
$$

where $G \subset \mathcal{S}$. Show that $\left\{B_{1}, \ldots, B_{n}\right\}$ is a partition of the set G.
3. Let $F_{r}=[0,1 / r), r \in(0,1]$. Find

$$
\bigcup_{r \in(0,1]} F_{r} \quad \text { and } \quad \bigcap_{r \in(0,1]} F_{r} .
$$

4. Prove that a finite set with n elements has 2^{n} distinct subsets.
5. Using the definitions of union, intersection, and complement, show that
(a) $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
(b) $\overline{A \cap B}=\bar{A} \cup \bar{B}$.
6. Prove that if $A \cup B=A$ and $A \cap B=A$, then $A=B$.
7. Let \mathcal{S} be the totality of all undergraduate students at Purdue University. Let A_{1}, A_{2}, A_{3}, A_{4} be the sets of freshmen, sophmores, juniors, and seniors, respectively, let F denote the set of female students, and let H denote the set of students who are Indiana natives. Express in words each of the following sets:
(a) $\left(A_{1} \cup A_{2}\right) \cap F$.
(b) $F \cap \bar{H}$.
(c) $A_{1} \cap \bar{F} \cap H$.
(d) $A_{3} \cap F \cap \bar{H}$.
(e) $\left(A_{1} \cup A_{2}\right) \cap H \cap F$.
