ECE600 Random Variables and Waveforms Spring 2024

Mark R. Bell MSEE 336

Homework Assignment #1

Should be completed by Session 3

Reading Assignment: Sections 1-1, 1-2, 1-3, 2-1, and 2-2 of Papoulis

- 1. Reduce the following expressions to the simplest possible forms: (a) $(A \cap \overline{B}) \cup (B \cap \overline{A})$. (b) $(A \cap \overline{B}) \cap (A \cap B)$. Use DeMorgan's laws to show that: (c) $\overline{A \cap (B \cup C)} = (\overline{A} \cup \overline{B}) \cap (\overline{A} \cup \overline{C})$. (d) $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$.
- 2. Let $\{A_1, \ldots, A_n\}$ be a partition of the space S, and define the family of sets $\{B_1, \ldots, B_n\}$ by

$$B_j = G \cap A_j, \quad j = 1, \dots, n,$$

where $G \subset S$. Show that $\{B_1, \ldots, B_n\}$ is a partition of the set G.

3. Let $F_r = [0, 1/r)$, $r \in (0, 1]$. Find

$$\bigcup_{r \in (0,1]} F_r \quad \text{and} \quad \bigcap_{r \in (0,1]} F_r.$$

- 4. Prove that a finite set with n elements has 2^n distinct subsets.
- 5. Using the definitions of union, intersection, and complement, show that

 (a) A∪B = A∩B.
 (b) A∩B = A∪B.
- 6. Prove that if $A \cup B = A$ and $A \cap B = A$, then A = B.
- 7. Let S be the totality of all undergraduate students at Purdue University. Let A_1 , A_2 , A_3 , A_4 be the sets of freshmen, sophmores, juniors, and seniors, respectively, let F denote the set of female students, and let H denote the set of students who are Indiana natives. Express in words each of the following sets:
 - (a) $(A_1 \cup A_2) \cap F$.
 - (b) $F \cap \overline{H}$.
 - (c) $A_1 \cap \overline{F} \cap \underline{H}$.
 - (d) $A_3 \cap F \cap \overline{H}$.
 - (e) $(A_1 \cup A_2) \cap H \cap F$.