ECE600 Random Variables and Waveforms Spring 2024

Mark R. Bell MSEE 336

Homework Assignment #10 Should be completed by the Final Exam

Reading Assignment: Read Sections 7-4, 9-1 and 9-2 of Papoulis.

- 1. (*Papoulis* 7-20) We place at random n points in the interval (0, 1) and we denote by **X** and **Y** the distance from 0 to the first (closest) and last (furthest) point, respectively. Find $F_{\mathbf{X}}(x)$, $F_{\mathbf{Y}}(y)$, and $F_{\mathbf{XY}}(x, y)$.
- 2. (Papoulis 7-25) Show that if $a_n \to a$ and $E[|\mathbf{X}_n a_n|^2] \to 0$, then $\mathbf{X}_n \to a$ in mean-square as $n \to \infty$.
- 3. (Papoulis 7-27) An infinite sum is by definition a limit:

$$\sum_{k=1}^{\infty} \mathbf{X}_k = \lim_{n \to \infty} \mathbf{Y}_n, \quad \text{where} \quad \mathbf{Y}_n = \sum_{k=1}^n \mathbf{X}_k.$$

Show that if the random variables \mathbf{X}_k are independent with zero-mean and variances σ_k^2 , then the infinite sum exists in the mean-square sense iff

$$\sum_{k=1}^{\infty} \sigma_k^2 < \infty.$$

Hint:

$$E[(\mathbf{Y}_{n+m} - \mathbf{Y}_n)^2] = \sum_{k=n+1}^{n+m} \sigma_k^2.$$

4. Consider a random experiment $\{S, \mathcal{F}, P\}$ with sample space $S = \{1, 2, 3, ...\}$ and associated pmf $p(n) = P(\{\omega = n\}) = \alpha/n^2$. Consider the sequence $\{\mathbf{X}_n\}$ of random variables defined by

$$\mathbf{X}_{n}(\omega) = \begin{cases} n, & \text{if } \omega = n, \\ 0, & \text{if } \omega \neq n. \end{cases}$$

Prove that $\{\mathbf{X}_n\}$ converges almost everywhere to $\mathbf{X} = 0$, but does not converge in the mean square sense; that is $\mathrm{E}\{|\mathbf{X}_n - 0|^2\}$ does not converge to 0 as $n \to \infty$.

5. (Papoulis 7-13) The random variables $\{\mathbf{X}_k\}$ are i.i.d. with moment generating function $\phi_{\mathbf{X}}(s) = E[e^{i\omega\mathbf{X}}]$. The random variable **N** takes on values 0, 1, 2..., and it's discrete moment function $\Gamma_{\mathbf{N}}(z)$ is defined as

$$\Gamma_{\mathbf{N}}(z) = E[z^{\mathbf{X}}] = \sum_{n=0}^{\infty} p_{\mathbf{N}}(n) z^n,$$

where $p_{\mathbf{N}}(n)$ is the p.m.f. of **N**.

(a) Show that if

$$\mathbf{Y} = \sum_{j=1}^{\mathbf{N}} \mathbf{X}_j,$$

then

$$\phi_{\mathbf{Y}}(s) = E[e^{s\mathbf{Y}}] = \Gamma_{\mathbf{N}}(\phi_{\mathbf{X}}(s)).$$

Hint: $E[e^{s\mathbf{Y}}|\mathbf{N}=k] = E[e^{s(\mathbf{X}_1+\ldots+\mathbf{X}_k)}] = \phi_{\mathbf{X}}^k(s).$

(b) Special Case: Show that if \mathbf{N} is Poisson with mean a, then

$$\phi_{\mathbf{Y}}(s) = e^{a(\phi_{\mathbf{X}}(s)-1)}.$$

- 6. (Papoulis 9-1) Assume we toss a fair coin. If "heads" occurs, $\mathbf{X}(t) = \sin 2\pi t$; if "tails" occurs, set $\mathbf{X}(t) = 2t$.
 - (a) Find $E[\mathbf{X}(t)]$.
 - (b) Find $F_{\mathbf{X}(t)}(x)$ for t = 0.25, t = 0.5, and t = 1.
- 7. (Papoulis 9-2) The random process

 $\mathbf{X}(t) = e^{\mathbf{A}t}$

is a family of exponentials depending on the random variable **A**. Express the mean function $\eta_{\mathbf{X}}(t)$, the autocorrelation function $R_{\mathbf{X}\mathbf{X}}(t_1, t_2)$, and the first order density function $f_{\mathbf{X}(t)}(x)$ of $\mathbf{X}(t)$ in terms of the density function $f_{\mathbf{A}}(a)$ of **A**.

- 8. (Papoulis 9-3) Suppose that $\mathbf{X}(t)$ is a homogeneous Poisson counting process (this will be discussed in the last lecture) such that $E[\mathbf{X}(9)] = 6$.
 - (a) Find the mean and variance of $\mathbf{X}(8)$.
 - (b) Find $P({\mathbf{X}(2) \le 3})$.
 - (c) Find $P({\mathbf{X}(4) \le 5} | {\mathbf{X}(2) \le 3})$.
- 9. (Papoulis 9-8) The random process $\mathbf{X}(t)$ is WSS and Gaussian with mean $E[\mathbf{X}(t)] = 0$ and autocorrelation $R_{\mathbf{X}}(\tau) = 4e^{-2|\tau|}$.
 - (a) Find $P({\mathbf{X}(t) \le 3})$.
 - (b) Find $E[(\mathbf{X}(t+1) \mathbf{X}(t-1))^2]$.
- 10. (*Papoulis* 9-10) Assume $\mathbf{X}(t)$ is a WSS, zero-mean, Gaussian random process. Show that if $\mathbf{Z}(t) = \mathbf{X}^2(t)$, then

$$C_{\mathbf{Z}\mathbf{Z}}(\tau) = 2C_{\mathbf{X}\mathbf{X}}^2(\tau).$$

11. (Papoulis 9-37) The random process $\mathbf{X}(t)$ is a WSS Gaussian random process with zero-mean and

$$R_{\mathbf{X}}(\tau) = I e^{-\alpha |\tau|} \cos \beta \tau.$$

Show that if $\mathbf{Y}(t) = \mathbf{X}^2(t)$, then

$$C_{\mathbf{Y}}(\tau) = I^2 e^{-2\alpha |\tau|} (1 + 2\cos 2\beta \tau).$$

Find the power spectral density $S_{\mathbf{Y}\mathbf{Y}}(\omega)$.

(Problems 12 and 13 have been removed from the assignment.)

14. Let $\mathbf{X}(t)$ be two real, independent, wide-sense stationary random processes defined on a random experiment. Let $\mathbf{Z}(t)$ be a new random process defined as

$$\mathbf{Z}(t) = \mathbf{X}(t)\mathbf{Y}(t).$$

Under what conditions is $\mathbf{Z}(t)$ wide-sense stationary (WSS)?

15. If the random process $\mathbf{X}(t)$ s given by

$$\mathbf{X}(t) = \cos\left(\omega_o t + \mathbf{\Theta}\right),$$

where Θ is a random variable uniformly distributed on the interval $[0, 2\pi)$ and $\mathbf{Y}(t)$ is a wide-sense stationary random process with autocorrelation function

$$R_{\mathbf{Y}}(\tau) = e^{-\alpha|\tau|},$$

where α is a positive constant. Assume $\mathbf{X}(t)$ and $\mathbf{Y}(t)$ are statistically independent. Let

$$\mathbf{Z}(t) = \mathbf{X}(t)\mathbf{Y}(t).$$

Find the power spectral density of $\mathbf{Z}(t)$.