ECE600 Random Variables and Waveforms Spring 2024

Mark R. Bell MSEE 336

Homework Assignment #2

Should be completed by Session 5

Reading Assignment: Read Section 2-3 of Papoulis. Review all class notes.

- 1. (Papoulis, Problem 2-2) If $A = \{2 \le x \le 5\}$ and $B = \{3 \le x \le 6\}$, Find $A \cup B$, $A \cap B$, and $(A \cup B) \cap (\overline{A \cap B})$.
- 2. (Papoulis, Problem 2-3) Show that if $A \cap B = \emptyset$, then $P(A) \leq P(\overline{B})$.
- 3. (Papoulis, Problem 2-4) Show that (a) if $P(A) = P(B) = P(A \cap B)$, then $P((A \cap \overline{B}) \cup (B \cap \overline{A})) = 0$; (b) if P(A) = P(B) = 1, then $P(A \cap B) = 1$.
- 4. (Papoulis, Problem 2-5.) Prove and generalize the following identity:

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$

By generalize, we mean to the union of n events.

- 5. (*Papoulis*, Problem 2-6) Show that if sample space S of a random experiment consists of a countable number of outcomes ξ_i and each subset $\{\xi_i\}$ is an event in the event space, then every subset of S is an event in the event space of the random experiment.
- 6. (*Papoulis*, Problem 2-7) If $S = \{1, 2, 3, 4\}$ is the sample space of a random experiment, find the smallest σ -field that contains the events $\{1\}$ and $\{2, 3\}$.
- 7. (Papoulis, Problem 2-8) If $A \subset B$, P(A)=1/4, and P(B) = 1/3, find P(A|B) and P(B|A).
- 8. (Papoulis, Problem 2-9) Show that

$$P(A \cap B|C) = P(A|B \cap C)P(B|C)$$

and

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C).$$

9. Show that for any two events A and B in a probability space (S, \mathcal{F}, P) the following relationship holds:

$$P(A)P(B) - P(A \cap B) = P(\overline{A} \cap B) - P(\overline{A})P(B) = P(A \cap \overline{B}) - P(A)P(\overline{B}).$$

- 10. Express each of the following events in terms of the events A, B, and C and the operations of complementation, union, and intersection:
 - (a) at least one of the events A, B, C occurs;
 - (b) at most one of the events A, B, C occurs;
 - (c) none of the events A, B, C occurs;
 - (d) all three events occur;
 - (e) exactly one of the events A, B, C occurs;
 - (f) A and B occur, but not C;
 - (g) A occurs, if not then B does not occur either.
- 11. Let S be the sample space corresponding to the random experiment of tossing a coin three times and noting the sequence of H and T (heads and tails). Let A be the event that heads occurs exactly twice, let B be the event that at least two heads appear, and let C be the event that heads appears when tails has appeared at least once.
 - (a) Give the elements of A, B, and C;
 - (b) Describe the events: (i) $\overline{A} \cap B$, (ii) $\overline{A} \cap \overline{B}$, (iii) $A \cap C$.