Homework Assignment \#2

Should be completed by Session 5

Reading Assignment: Read Section 2-3 of Papoulis. Review all class notes.

1. (Papoulis, Problem 2-2) If $A=\{2 \leq x \leq 5\}$ and $B=\{3 \leq x \leq 6\}$, Find $A \cup B, A \cap B$, and $(A \cup B) \cap(\overline{A \cap B})$.
2. (Papoulis, Problem 2-3) Show that if $A \cap B=\emptyset$, then $P(A) \leq P(\bar{B})$.
3. (Papoulis, Problem 2-4) Show that
(a) if $P(A)=P(B)=P(A \cap B)$, then $P((A \cap \bar{B}) \cup(B \cap \bar{A}))=0$;
(b) if $P(A)=P(B)=1$, then $P(A \cap B)=1$.
4. (Papoulis, Problem 2-5.) Prove and generalize the following identity:
$P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$.
By generalize, we mean to the union of n events.
5. (Papoulis, Problem 2-6) Show that if sample space \mathcal{S} of a random experiment consists of a countable number of outcomes ξ_{i} and each subset $\left\{\xi_{i}\right\}$ is an event in the event space, then every subset of \mathcal{S} is an event in the event space of the random experiment.
6. (Papoulis, Problem 2-7) If $\mathcal{S}=\{1,2,3,4\}$ is the sample space of a random experiment, find the smallest σ-field that contains the events $\{1\}$ and $\{2,3\}$.
7. (Papoulis, Problem 2-8) If $A \subset B, \mathrm{P}(\mathrm{A})=1 / 4$, and $P(B)=1 / 3$, find $P(A \mid B)$ and $P(B \mid A)$.
8. (Papoulis, Problem 2-9) Show that

$$
P(A \cap B \mid C)=P(A \mid B \cap C) P(B \mid C)
$$

and

$$
P(A \cap B \cap C)=P(A \mid B \cap C) P(B \mid C) P(C)
$$

9. Show that for any two events A and B in a probability space $(\mathcal{S}, \mathcal{F}, P)$ the following relationship holds:

$$
P(A) P(B)-P(A \cap B)=P(\bar{A} \cap B)-P(\bar{A}) P(B)=P(A \cap \bar{B})-P(A) P(\bar{B}) .
$$

10. Express each of the following events in terms of the events A, B, and C and the operations of complementation, union, and intersection:
(a) at least one of the events A, B, C occurs;
(b) at most one of the events A, B, C occurs;
(c) none of the events A, B, C occurs;
(d) aall three events occur;
(e) exactly one of the events A, B, C occurs;
(f) A and B occur, but not C;
(g) A occurs, if not then B does not occur either.
11. Let \mathcal{S} be the sample space corresponding to the random experiment of tossing a coin three times and noting the sequence of H and T (heads and tails). Let A be the event that heads occurs exactly twice, let B be the event that at least two heads appear, and let C be the event that heads appears when tails has appeared at least once.
(a) Give the elements of A, B, and C;
(b) Describe the events: (i) $\bar{A} \cap B$, (ii) $\bar{A} \cap \bar{B}$, (iii) $A \cap C$.
