ECE642 Information Theory and Source Coding Fall 2023

Homework Assignment #2(RevB)

Reading Assignment: Chapters 3 and 5. Due: Midnight, Tuesday, Sept. 26, 2023.

- 1. Consider a binary memoryless source X with $Pr{X = 0} = 0.995$ and $Pr{X = 1} = 0.005$. A binary codeword is provided for every 100-symbol sequence containing 3 or fewer 1's.
 - (a) If the codewords are all the same length, find the minimum length required to provide distinct codewords for the specified set of source words.
 - (b) Find the probability of getting a source sequence for which no codeword has been provided.
- 2. Consider a source with alphabet $A = \{a_1, a_2, a_3, a_4\}$ and associated probabilities $\mathbf{p} = \{1/2, 1/4, 1/8, 1/8\}$. Now consider the 4⁸ 8-letter words that can be formed from the 4 letters.
 - (a) Estimate as closely as you can the number of ϵ -typical sequences of length 8 words, for $\epsilon = 0.0$ and $\epsilon = 0.25$.
 - (b) For each of these two values of ϵ , find the smallest rate R such that the ϵ -typical sequences can all be represented by distinct binary sequences of length Rn (here, n = 8).
- 3. In this problem, you are to try to construct UD codes over the code alphabet $B = \{0, 1, 2, 3\}$ with the prescribed codeword lengths. In the following table, K_i denotes the number of codewords of length *i* in the putative code. Construct a UD code in each case if possible.

	Ki			
i	Case 1	Case 2	Case 3	Case 4
1	3	2	1	0
2	3	7	7	7
3	3	3	3	3
4	3	3	7	11
5	4	5	4	3
6	0	0	0	4

- 4. A source has alphabet $A = \{a_1, \dots, a_8\}$ with probabilities 0.50, 0.15, 0.12, 0.10, 0.04, 0.04, 0.03, 0.02. Construct a binary Huffman code for this source. What is the resulting average codeword length n? How does this compare to the entropy H of the source?
- 5. A set of eight messages with probabilities of 0.2, 0.15, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1 is to be encoded into a ternary prefix-free code. Construct two sets of codewords whose lengths have the same minimum average value but different variances. Evaluate the common average length and the two variances. State a reason (or reasons) why one code might be preferable to the other for implementation purposes.
- 6. Consider a game of "twenty questions" in which you are required to determine, after asking a certain number of questions that can be answered "yes" or "no," the sum of the outcomes on the roll of a pair of fair dice. What is the minimum number of questions you need to ask, on the average. [*Hint:* If you asked "Is it 2?" "Is it 3?" etc., you would average a little under six questions. It is possible to do better, however.]
- 7. Cover and Thomas, Ch. 2, Problem 4 (Problem 5 in first edition.)
- 8. Cover and Thomas, Ch. 2, Problem 7 (a) (Problem 13 (a) in first edition.)
- 9. Cover and Thomas, Ch. 2, Problem 8 (Problem 14 in first edition.)
- 10. Cover and Thomas, Ch. 3, Problem 8 (Problem 4 in first edition.)
- 11. Cover and Thomas, Ch. 3, Problem 9 (Problem 5 in first edition.)