Homework Assignment \#3

Should be completed by Session 8

Reading Assignment: Sections 3-1, 3-2, 4-1, 4-2, and 4-3 of Papoulis.

1. (Papoulis, Problem 2-10) Show that for n events A_{1}, \ldots, A_{n},

$$
P\left(A_{n} \cap A_{n-1} \cap \cdots \cap A_{2} \cap A_{1}\right)=P\left(A_{n} \mid A_{n-1} \cap \cdots \cap A_{2} \cap A_{1}\right) \cdots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right) .
$$

2. (Papoulis, Problem 2-11) We select at random m objects from a set B of n objects and we denote the set of selected objects by A_{m}. Show that the probability p that a particular element ξ_{0} is in A_{m} is equal to m / n. (Hint: p is equal to the probability that a randomly selected element of B is in A_{m}.)
3. (Papoulis, Problem 2-12) A call occurs at time t, where t is a randomly selected point in the interval $(0,10)$ (all points in the interval being equally likely). (a) Find $P(\{6 \leq t \leq 8\})$. (b) Find $P(\{6 \leq t \leq 8\} \mid\{t>5\})$.
4. (Papoulis, Problem 2-13) Let the sample space \mathcal{S} consist of all positive real numbers, and let t be the outcome of the random experiment. Show that if

$$
P\left(\left\{t_{0} \leq t \leq t_{0}+t_{1}\right\} \mid\left\{t \geq t_{0}\right\}\right)=P\left(\left\{t \leq t_{1}\right\}\right)
$$

for all positive t_{0} and t_{1}, then

$$
P\left(\left\{t \leq t_{1}\right\}\right)=1-e^{-c t_{1}},
$$

where c is a constant.
5. (Papoulis, Problem 2-16) A box contains n identical balls labeled 1 through n. Suppose k balls are drawn in succession (without replacement.) (a) What is the probability that m is the largest number drawn? (b) What is the probability that the largest number drawn is less than or equal to m ?
6. (Papoulis, Problem 2-19) A box contains m white and n black balls. Suppose k balls are drawn. Find the probability of drawing at least one white ball.
7. (Papoulis, Problem 2-20) A player tosses a penny from a distance onto the surface of a square table ruled in 1 inch squares. If the penny is $3 / 4$ inches in diameter, what is the probability that it will fall entirely inside a square (assuming that the penny lands on the table)?
8. (Papoulis, Problem 3-1) Let p be the probability of an event A. (a) What is the probability that A occurs at least twice in n independent trials? (b) What is the probability that A occurs at least three times in n independent trials?
9. (Papoulis, Problem 3-2) A pair of dice is rolled 50 times. Find the probability of obtaining a double six at least three times. Hint: Consider $(p+q)^{n}$ and $(p-q)^{n}$.
10. (Papoulis, Problem 3-3) A pair of fair dice are rolled 10 times. Find the problem that "seven" will show at least once (i.e. by "seven", we mean that the sum of the two die on a toss equals 7.)
11. (Papoulis, Problem 3-8) Suppose there are r successes in n independent Bernouli trials. Fnd the conditional probability that there is a success on the i-th trial.

