Homework Assignment \#3 Due: Wednesday, October 18, 2021

1. Let X be the outcome of the roll of a pair of fair dice. Let Y be a random variable taking on only two different values. How large can $I(X ; Y)$ be? Explicitly describe at least one Y for which $I(X ; Y)$ is maximum.
2. The channel we consider in this problem is called a binary erasure channel. Such a channel can be a useful model of a detection process in which one of two possible signals is sent and a decision is made at the receiver if it is clear which signal was sent. Otherwise an erasure "?" is declared. Assume the channel input X has probabilities $\operatorname{Pr}\{X=0\}=p$ and $\operatorname{Pr}\{X=1\}=1-p$. Compute $I(X ; Y)$ as a function of p. For what value of p is $I(X ; Y)$ maximum?

3. The channel below, called the Z channel, is useful for modeling binary optical communication channels in which the receiver threshold is sufficiently high such that the probability of receiving a noise photon is negligible. Find the capacity of the Z Channel.

4. Find the capacity of three independent Z channels with identical crossover probability ϵ cascaded in a row.

5. Find the capacity and optimizing input probability distribution for each of the following five DMC's: (counts double)

$$
\begin{align*}
& \left(\begin{array}{ccc}
1-\delta-\epsilon & \delta & \epsilon \\
\epsilon & \delta & 1-\delta-\epsilon
\end{array}\right) ; \tag{a}\\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 4 \\
0 & 1 / 2 & 1 / 2
\end{array}\right) ; \tag{b}\\
& \left(\begin{array}{ccc}
1-\epsilon & \epsilon & 0 \\
0 & 1-\epsilon & \epsilon \\
\epsilon & 0 & 1-\epsilon
\end{array}\right) ; \tag{c}\\
& \left(\begin{array}{ccc}
3 / 4 & 1 / 4 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 4 & 3 / 4
\end{array}\right) ; \tag{d}\\
& \left(\begin{array}{cccc}
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 0 & 1 / 3 & 1 / 3
\end{array}\right) .
\end{align*}
$$

(e)
6. Cover and Thomas, Chapter 5, Problem 28 (First Edition Chapter 5, Problem 25 (p. 123).)

