Homework Assignment \#4

Should be completed by Session 13
Reading Assignment: All of Chapter 4, and Sections 5-1 through 5-2 of Papoulis.

1. (Papoulis 4-1) Suppose that x_{u} is the u percentile of the random variable \mathbf{X}, that is, $F_{\mathbf{X}}\left(x_{u}\right)=u$. Show that if $f_{\mathbf{X}}(-x)=f_{\mathbf{X}}(x), \forall x \in \mathbf{R}$, then $x_{1-u}=-x_{u}$.
2. (Papoulis 4-2) Show that if $f_{\mathbf{X}}$ is symmetrical about the point $x=\eta$ and

$$
P(\{\eta-a<\mathbf{X}<\eta+a\})=1-\alpha
$$

then $a=\eta-x_{\alpha / 2}=x_{1-\alpha / 2}-\eta$. (n.b., α and a are different variables.)
3. (Papoulis 4-11) Assume the sample space \mathcal{S} consists of all points t_{i} in the interval $(0,1)$ and $P\left(\left\{0 \leq t_{i} \leq y\right\}\right)=y$ for every $y \in[0,1]$. The function $G(x)$ is increasing from $G(-\infty)=0$ to $G(\infty)=1$; hence $G(\cdot)$ has an inverse $G^{-1}(y)=H(y)$. The random variable \mathbf{X} is defined as $\mathbf{X}\left(t_{i}\right)=H\left(t_{i}\right)$. Show that $F_{\mathbf{X}}(x)=G(x)$.
4. Consider the result of the previous problem. Now suppose you have a random number generator that generates random variables with pdf

$$
f_{X}(x)=1_{(0,1)}(x)
$$

and suppose you want to generate a random variable Z with pdf $f_{Z}(z)$. How would you process the output of the uniform random number generator, X, to do this?
5. (Papoulis 4-13) A fair coin is tossed three times and the random variable \mathbf{X} equals the total number of "Heads" that occur in the three tosses. Find and sketch $F_{\mathbf{X}}(x)$ and $f_{\mathbf{X}}(x)$.
6. (Papoulis 4-16) Let ξ is the outcome of a random experiment and two random variables \mathbf{X} and \mathbf{Y} defined on the random experiment. Show that if $\mathbf{X}(\xi) \leq \mathbf{Y}(\xi), \forall \xi \in \mathcal{S}$, then

$$
F_{\mathbf{X}}(w) \geq F_{\mathbf{Y}}(w), \quad \forall w \in \mathbf{R}
$$

7. (Papoulis 4-17) Show that if

$$
\beta(t)=f_{\mathbf{X}}(t \mid\{\mathbf{X}>t\})
$$

is the conditional failure rate of the random variable \mathbf{X} and $\beta(t)=k t$ for a positive constant k, then $f_{\mathbf{X}}(x)$ is a Rayleigh density.
8. (Papoulis 4-19) Show that

$$
F_{\mathbf{X}}(x \mid A)=\frac{P(A \mid\{\mathbf{X} \leq x\}) F_{\mathbf{X}}(x)}{P(A)}
$$

9. (Papoulis 4-21) The probability of heads of a random coin is a random variable \mathbf{p} uniformly distruted on the unit interval $(0,1)$.
(a) Find $P(\{0.3 \leq \mathbf{p} \leq 0.7\})$.
(b) The coin is tossed 10 times and heads shows 6 times. Find the a posteriori probsbility that \mathbf{p} os between 0.3 and 0.7 .
10. Show that the Gaussian pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

satisfies the condition

$$
I=\int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

Hint: It might be easier to find I^{2} and then determine I.
11. Let X have exponential distribution

$$
f_{X}(x)=\frac{1}{\mu} e^{-x / \mu} 1_{[0, \infty)}(x) .
$$

Find the conditional density $f_{X}(x \mid \mu<X \leq 2 \mu)$.

