Mark R. Bell MSEE 336

Homework Assignment #5

Should be completed by Session 15

Reading Assignment: Reread Sections 5-1 and 5-2, and read Sections 5-3 through 5-5 of Papoulis.

- 1. (Papoulis 5-2) Find $F_{\mathbf{Y}}(y)$ and $f_{\mathbf{Y}}(y)$ if $\mathbf{Y} = -4\mathbf{X} + 3$ and \mathbf{X} is an exponentially distributed random variable with p.d.f. $F_{\mathbf{X}}(x) = 2e^{-2x} \cdot \mathbf{1}_{[0,\infty)}(x)$.
- 2. (Papoulis 5-3) If the random variable $\mathbf{X} \sim \mathcal{N}(0, c^2)$ and

$$g(x) = \begin{cases} x - c, & \text{for } x \ge c, \\ 0, & \text{for } -c < x < c, \\ x + c, & \text{for } x \le -c, \end{cases}$$

Find and sletch $f_{\mathbf{Y}}(y)$ and $F_{\mathbf{Y}}(y)$ if $\mathbf{Y} = g(\mathbf{X})$.

- 3. (*Papoulis* 5-4) If **X** is a uniformly distributed random variable on the interval (-2c, 2c), where c > 0, and $\mathbf{Y} = \mathbf{X}^2$, find and sketch $f_{\mathbf{Y}}(y)$ and $F_{\mathbf{Y}}(y)$.
- 4. (*Papoulis* 5-7(a)) We place 200 points at random in the interval (0, 100). The distance from 0 to the smallest of the 100 points is the random variable **Z**. Find $F_{\mathbf{Z}}(z)$.
- 5. (Papoulis 5-9) Express the density $f_{\mathbf{Y}}(y)$ of the random variable $\mathbf{Y} = g(\mathbf{X})$ in terms of $f_{\mathbf{X}}(x)$ if $\mathbf{Y} = g(\mathbf{X})$ when (a) g(x) = |x|, and (b) $g(x) = e^{-x} \cdot \mathbf{1}_{[0,\infty)}(x)$.
- 6. (Papoulis 5-11.) Show that if the random variable \mathbf{X} has a Cauchy p.d.f.

$$f_{\mathbf{X}}(x) = \frac{1}{\pi(1+x^2)}, \quad -\infty < x < \infty,$$

and $\mathbf{Y} = \arctan(\mathbf{X})$, then \mathbf{Y} is uniformly distributed on the interval $(-\pi/2, \pi/2)$.

- 7. Let **X** be a Gaussian random variable with mean $\mu = 1$ and standard deviation $\sigma = 1$. Let $g_1(x)$ be the function shown in Fig. 1 below. Define a new random variable $\mathbf{Y} = g_1(\mathbf{X})$. Find expressions for the cdf $F_Y(y)$ and the pdf $f_Y(y)$, and sketch them.
- 8. Let \mathbf{X} be an exponential random variable with pdf

$$f_X(x) = e^{-x} \cdot 1_{[0,\infty)}(x).$$

Let $g_2(x)$ be the function shown in Fig. 2 below. Define a new random variable $\mathbf{Y} = g_2(\mathbf{X})$. Find expressions for the cdf $F_Y(y)$ and the pdf $f_Y(y)$, and sketch them.

- 9. Let $\mathcal{S} = \mathbf{R}$, and let $A = [1, 3] \subset \mathcal{S}$.
 - (a) Show that the four sets $\{\emptyset, A, \overline{A}, \mathcal{S}\}$ constitute a σ -field.
 - (b) Define the function \mathbf{X} on \mathcal{S} by $\mathbf{X}(\omega) = \omega^2$. Show that \mathbf{X} is *not* a random variable if the four sets specified in A are the only events in the event space. (*Hint: Pick* any interval $(a, b) \subset \mathbf{R}$ and show that $\{\omega : \mathbf{X}(\omega) \in (a, b)\}$ is not an event.)
 - (c) Define the function $\mathbf{Y}(\omega) = 2 \cdot \mathbf{1}_A(\omega) + 3 \cdot \mathbf{1}_{\overline{A}}(\omega)$. Show that $\mathbf{Y}(\omega)$ is a random variable. (*Hint: Show that for any interval* $(a, b) \subset \mathbf{R}$ that you pick, $\{\omega : \mathbf{X}(\omega) \in (a, b)\}$ is one of the four events in part (a).)