Homework Assignment \#5

Should be completed by Session 15

Reading Assignment: Reread Sections 5-1 and 5-2, and read Sections 5-3 through 5-5 of Papoulis.

1. (Papoulis 5-2) Find $F_{\mathbf{Y}}(y)$ and $f_{\mathbf{Y}}(y)$ if $\mathbf{Y}=-4 \mathbf{X}+3$ and \mathbf{X} is an exponentially distributed random variable with p.d.f. $F_{\mathbf{X}}(x)=2 e^{-2 x} \cdot 1_{[0, \infty)}(x)$.
2. (Papoulis 5-3) If the random variable $\mathbf{X} \sim \mathcal{N}\left(0, c^{2}\right)$ and

$$
g(x)= \begin{cases}x-c, & \text { for } x \geq c \\ 0, & \text { for }-c<x<c, \\ x+c, & \text { for } x \leq-c\end{cases}
$$

Find and sletch $f_{\mathbf{Y}}(y)$ and $F_{\mathbf{Y}}(y)$ if $\mathbf{Y}=g(\mathbf{X})$.
3. (Papoulis 5-4) If \mathbf{X} is a uniformly distributed random variable on the interval $(-2 c, 2 c)$, where $c>0$, and $\mathbf{Y}=\mathbf{X}^{2}$, find and sketch $f_{\mathbf{Y}}(y)$ and $F_{\mathbf{Y}}(y)$.
4. (Papoulis $5-7(\mathrm{a})$) We place 200 points at random in the interval $(0,100)$. The distance from 0 to the smallest of the 100 points is the random variable \mathbf{Z}. Find $F_{\mathbf{Z}}(z)$.
5. (Papoulis 5-9) Express the density $f_{\mathbf{Y}}(y)$ of the random variable $\mathbf{Y}=g(\mathbf{X})$ in terms of $f_{\mathbf{X}}(x)$ if $\mathbf{Y}=g(\mathbf{X})$ when (a) $g(x)=|x|$, and (b) $g(x)=e^{-x} \cdot 1_{[0, \infty)}(x)$.
6. (Papoulis 5-11.) Show that if the random variable \mathbf{X} has a Cauchy p.d.f.

$$
f_{\mathbf{X}}(x)=\frac{1}{\pi\left(1+x^{2}\right)}, \quad-\infty<x<\infty
$$

and $\mathbf{Y}=\arctan (\mathbf{X})$, then \mathbf{Y} is uniformly distributed on the interval $(-\pi / 2, \pi / 2)$.
7. Let \mathbf{X} be a Gaussian random variable with mean $\mu=1$ and standard deviation $\sigma=1$. Let $g_{1}(x)$ be the function shown in Fig. 1 below. Define a new random variable $\mathbf{Y}=g_{1}(\mathbf{X})$. Find expressions for the $\operatorname{cdf} F_{Y}(y)$ and the $\operatorname{pdf} f_{Y}(y)$, and sketch them.
8. Let \mathbf{X} be an exponential random variable with pdf

$$
f_{X}(x)=e^{-x} \cdot 1_{[0, \infty)}(x) .
$$

Let $g_{2}(x)$ be the function shown in Fig. 2 below. Define a new random variable $\mathbf{Y}=g_{2}(\mathbf{X})$. Find expressions for the $\operatorname{cdf} F_{Y}(y)$ and the $\operatorname{pdf} f_{Y}(y)$, and sketch them.

Figure

Figure :
9. Let $\mathcal{S}=\mathbf{R}$, and let $A=[1,3] \subset \mathcal{S}$.
(a) Show that the four sets $\{\emptyset, A, \bar{A}, \mathcal{S}\}$ constitute a σ-field.
(b) Define the function \mathbf{X} on \mathcal{S} by $\mathbf{X}(\omega)=\omega^{2}$. Show that \mathbf{X} is not a random variable if the four sets specified in A are the only events in the event space. (Hint: Pick any interval $(a, b) \subset \mathbf{R}$ and show that $\{\omega: \mathbf{X}(\omega) \in(a, b)\}$ is not an event.)
(c) Define the function $\mathbf{Y}(\omega)=2 \cdot 1_{A}(\omega)+3 \cdot 1_{\bar{A}}(\omega)$. Show that $\mathbf{Y}(\omega)$ is a random variable. (Hint: Show that for any interval $(a, b) \subset \mathbf{R}$ that you pick, $\{\omega: \mathbf{X}(\omega) \in$ $(a, b)\}$ is one of the four events in part (a).)

