Homework Assignment \#8

Should be completed by Session 24
Reading Assignment: Read Sections 6-4 through 6-7 of Papoulis.

1. (Papoulis 6-40) Let \mathbf{X} and \mathbf{Y} be independent, discrete random variables having $P(\{\mathbf{X}=n\})=a_{n}$ and $P(\{\mathbf{Y}=n\})=b_{n}$, for $n=0,1,2, \ldots$ Show that if $\mathbf{Z}=\mathbf{X}+\mathbf{Y}$, then

$$
P(\{\mathbf{Z}=n\})=\sum_{k=0}^{n} a_{k} b_{n-k}, \quad n=0,1,2, \ldots
$$

2. Papoulis The random variables \mathbf{X} and \mathbf{Y} are Gaussian, independent, and have identical variance σ^{2}. Show that if

$$
\mathbf{Z}=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}
$$

then

$$
f_{Z}(z)=\frac{z}{\sigma^{2}} I_{0}\left(\frac{z \eta}{\sigma^{2}}\right) e^{-\left(z^{2}+\eta^{2}\right) / 2 \sigma^{2}},
$$

where $\eta=\sqrt{\eta_{X}^{2}+\eta_{Y}^{2}}$, and $I_{0}(x)$ is the modified Bessel function of order zero:

$$
I_{0}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{x \cos \theta} d \theta
$$

Hint: See Example 6-16 on pages 191-192 of Papoulis.
3. (Papoulis 6-48) Show that if the random variables \mathbf{X} and \mathbf{Y} are jointly Gaussian and statistically independent, then

$$
P(\{\mathbf{X} \mathbf{Y}<\mathbf{0}\})=\mathbf{\Phi}\left(\frac{\eta_{\mathbf{X}}}{\sigma_{\mathbf{X}}}\right)+\boldsymbol{\Phi}\left(\frac{\eta_{\mathbf{Y}}}{\sigma_{\mathbf{Y}}}\right)-\mathbf{2} \boldsymbol{\Phi}\left(\frac{\eta_{\mathbf{X}}}{\sigma_{\mathbf{X}}}\right) \mathbf{\Phi}\left(\frac{\eta_{\mathbf{Y}}}{\sigma_{\mathbf{Y}}}\right)
$$

where

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

4. (Papoulis 6-49) Let \mathbf{X} and \mathbf{Y} be independent jointly distributed Gaussian random variables, both having mean 0 and variance σ^{2}. Show that if $\mathbf{Z}=|\mathbf{X}-\mathbf{Y}|$, then

$$
\mathrm{E}[\mathbf{Z}]=\frac{2 \sigma}{\sqrt{\pi}} \quad \text { and } \quad \mathrm{E}\left[\mathbf{Z}^{\mathbf{2}}\right]=2 \sigma^{2}
$$

5. (Papoulis 6-50) Show that if \mathbf{X} and \mathbf{Y} are two jointly distributed independent exponential random variables, both with mean 1 , and $\mathbf{Z}=(\mathbf{X}-\mathbf{Y}) \cdot 1_{[0, \infty)}(\mathbf{X}-\mathbf{Y})$, then $\mathrm{E}[\mathbf{Z}]=1 / 2$.
6. (Papoulis 6-51) Show that for any two jointly distributed random variable \mathbf{X} and \mathbf{Y}, real or complex,
(a) $|\mathrm{E}[\mathbf{X Y}]|^{2} \leq \mathrm{E}\left[|\mathbf{X}|^{2}\right\} \mathrm{E}\left[|\mathbf{Y}|^{2}\right\}$;
(Schwarz inequality)
(b) $\sqrt{\mathrm{E}\left[|\mathbf{X}+\overline{\mathbf{Y}}|^{2}\right.} \leq \sqrt{\mathrm{E}\left[|\mathbf{X}|^{2}\right.}+\sqrt{\mathrm{E}\left[|\mathbf{Y}|^{2}\right.}$.
(triangle inequality)
7. (Papoulis 6-52) Show that if correlation coefficient $r_{\mathbf{X Y}}$ between two jointly distributed random variables equals 1 , then $\mathbf{Y}=a \mathbf{X}+b$.
8. (Papoulis 6-54) Let \mathbf{N} and \mathbf{X} be two independent, jointly distributed random variables, where \mathbf{N} is a Poisson random variable with mean λ and \mathbf{X} has p.d.f.

$$
f_{\mathbf{X}}(x)=\frac{\alpha}{\pi\left(\alpha^{2}+x^{2}\right)}, \quad x \in(-\infty, \infty)
$$

Show that if $\mathbf{Z}=\mathbf{N X}$, then the characteristic function of \mathbf{Z} is given by

$$
\Phi_{\mathbf{Z}}(\omega)=\exp \left[\lambda e^{-\alpha|\omega|}-\lambda\right] .
$$

9. (Papoulis 6-71) Let \mathbf{X} and \mathbf{Y} be two independent, jointly distributed random variables that are both uniformly distributed on the interval $9-1,1)$. Find the conditional density $f_{\mathbf{R}}(r \mid M)$, of the random variable $\mathbf{R}=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}$, where M is the event $M=\{\mathbf{R} \leq 1\}$.
10. (Papoulis 6-74) We have a pile of m coins. The probability of "heads" on the i-th coin is p_{i}. We select one of the coins at random and toss it n times. "Heads" shows k times. Show that the probability we selected the r-th coin is

$$
\frac{p_{r}^{k}\left(1-p_{r}\right)^{n-k}}{\sum_{i=1}^{m} p_{i}^{k}\left(1-p_{i}\right)^{n-k}}
$$

11. (Papoulis 6-77) Show that for any two jointly distributed random variable \mathbf{X} and \mathbf{Y}, and any $\epsilon>0$,

$$
P(\{|\mathbf{X}-\mathbf{Y}|>\epsilon\}) \leq \frac{1}{\epsilon^{2}} \mathrm{E}\left[|\mathbf{X}-\mathbf{Y}|^{2}\right]
$$

