1. Papoulis 2-2: $A=[2,5], B=[3,6], \&=\mathbb{R}=(-\infty,+\infty)$.

$$
\begin{aligned}
& A \cup B=[2,5] \cup[3,6]=[2,6] \\
& \begin{aligned}
& A \cap B=[2,5] \cap[3,6]=[3,5] \\
&(A \cup B) \cap(\overline{A \cap B})=[2,6] \cap[3,5] \\
&=[2,6] \cap((-\infty, 3) \cup(5, \infty)) \\
&=([2,6] \cap(-\infty, 3)) \cup([2,6] \cap(5, \infty)) \\
&=[2,3) \cup(5,6]
\end{aligned}
\end{aligned}
$$

2. Papoulis 2-3: If $A \cap B=\phi \Rightarrow A$ and B are disjoint

Then $A \subset \bar{B} \Rightarrow P(A) \leq P(\bar{B})$.
nib. If $A \subset \bar{B}$, then $\bar{B}=A \cup(\bar{A} \cap \bar{B})$

$$
\begin{aligned}
\Rightarrow P(\bar{B}) & =P(A \cup(\bar{A} \cap \bar{B})) \quad \text { disjoint } \\
& =P(A)+P(\bar{A} \cap \bar{B})
\end{aligned}
$$

and since $P(\bar{A} \cap \bar{B}) \geq 0 \Rightarrow P(A) \leqslant P(\bar{B})$.
3. Papoulis 2-4:
(a)

$$
\begin{aligned}
& A=(A \cap B) \cup(A \cap \bar{B}) \text { and } B=(A \cap B) \cup(\bar{A} \cap B) \\
& \text { disjoint } \\
& \text { disjoint } \\
& \text { Now given that } P(A)=P(B)=P(A \cap B) \text {, it } \\
& \text { follows that } \\
& P(A)=P(A \cap B)+P(A \cap \bar{B}) \Rightarrow P(A \cap \bar{B})=0 \\
& P(B)=P(A \cap B)+P(\bar{A} \cap B) \Rightarrow P(\bar{A} \cap B)=0
\end{aligned}
$$

Now noting that $A \cap \bar{B}$ and $\bar{A} \cap B$ are disjoint, we have

$$
\begin{aligned}
P((A \cap \bar{B}) \cup(\bar{A} \cap B)) & =P(A \cap \bar{B})+P(\bar{A} \cap B) \\
& =0+0 \\
& =0
\end{aligned}
$$

(3- continued)
(b) If $P(A)=P(B)=1$, then it must also be the case that $P(A \cup B)=1$, since

$$
A \subset B \Rightarrow P(A) \leqslant P(A \cup B) \text {, but } P(A \cup B) \leqslant 1
$$

So because

$$
\begin{aligned}
& 1=P(A \cup B)=P(A)+P(B)-P(A \cap B)=2-P(A \cap B) \\
& \Rightarrow 1=2-P(A \cap B) \Rightarrow P(A \cap B)=1 .
\end{aligned}
$$

4. Papoulis 2-5: We know that for any two events

$$
E \text { and } F, P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Thus we have

$$
\begin{aligned}
P(A \cup B \cup C)= & P(A \cup(B \cup C))=P(A)+P(B \cup C)-P(A \cap(B \cup C)) \\
= & P(A)+P(B)+P(C)-P(B \cap C) \\
& -P((A \cap B) \cup(A \cap C)) \\
= & P(A)+P(B)+P(C)-P(B \cap C)-P(A \cap C)-P(A \cap B) \\
& -(-P(A \cap B \cap A \cap C)) \\
= & P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C) .
\end{aligned}
$$

This can be generalized by induction +0

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{n}\right) \\
&-P\left(A_{1} \cap A_{2}\right)-P\left(A_{1} \cap A_{3}\right) \cdots+P\left(A_{n-1} \cap A_{n}\right) \\
&+P\left(A_{1} \cap A_{2} \cap A_{3}\right)+\cdots+P\left(A_{n-2} \cap A_{n-1} \cap A_{n}\right) \\
& \vdots \\
& \pm P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)
\end{aligned}
$$

Homework \#2 Solutions
5. Papoulis 2-6: There is not much to prove. Every event is an element of the event space, and hence can be written as a countable union of the elementary events $\left\{\rho_{1}\right\},\left\{\rho_{2}\right\}, \ldots,\left\{\rho_{n}\right\}, \ldots$. Thus all subsets of $\&$ are events contained in the event space.
6. Papoulis 2-7: We construct the smallest field by listing all unions, intersections, and complements of these elements and the elements that these operations generate. (of course ϕ and \& are in the field).

$$
\begin{aligned}
& \mathcal{S}=\{1,2,3,4\} \\
& \phi \\
& \{1,2,3\} \\
& \{2,3,4\} \\
& \text { Given } \longrightarrow\{1\} \\
& \{1,4\} \\
& \{4\} \\
& \therefore F=\sigma(\{\{1\},\{2,3\}\}) \\
& =\{\phi,\{1\},\{4\},\{1,4\},\{2,3\},\{1,2,3\},\{2,3,4\}, \\
& \{1,2,3,4\}\}
\end{aligned}
$$

7. Papoulis 2-8:

If $A \subset B, P(A)=1 / 4$ and $P(B)=1 / 3$, then

$$
\begin{array}{ll}
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{1 / 4}{1 / 3}=\frac{3}{4}, & \text { because } \\
\text { An } B=A \\
\text { if } A \subset B .
\end{array}
$$

8. Papoulis 2-9:

$$
\begin{gathered}
P(A \mid B \cap C) P(B \mid C)=\frac{P(A \cap B \cap C)}{P(B \cap C)} \cdot \frac{P(B \cap C)}{P(C)} \\
=\frac{P(A \cap B \cap C)}{P(C)}=P(A \cap B \mid C)
\end{gathered}
$$

9. $B=(A \cap B) \cup(\bar{A} \cap B)$, and $(A \cap B) \cap(\bar{A} \cap B)=\phi$. Thus $A \cap B$ and $\bar{A} \cap B$ are a partition of B.
So

$$
P(B)=P((A \cap B) \cup(\bar{A} \cap B)=P(A \cap B)+P(\bar{A} \cap B)
$$

Furthermore, $P(\bar{A})=1-P(A)$. Thus we have

$$
\begin{align*}
& P(\bar{A} \cap B)-P(\bar{A}) P(B)=\underbrace{P(B)-P}_{P(\bar{A} \cap B)-P(B) \operatorname{An})} \underbrace{[1-P(A)]}_{P(\bar{A})} P(B) \\
& \quad=P(B)-P(A \cap B)-P(B)+P(A) P(B) \\
& \quad=P(A) P(B)-P(A \cap B) \\
& \therefore \quad P(A \cap B)-P(A) P(B)=P(\bar{A}) P(B)-P(\bar{A} \cap B) \tag{1}
\end{align*}
$$

Similarly, $P(A \cap \bar{B})=P(A)-P(A \cap B)$ and $P(\bar{B})=1-P(B)$ Thus we have

$$
\begin{align*}
& P(A \cap \bar{B})-P(A) P(\bar{B})=P(A)-P(A \cap B)-[1-P(B)] P(A) \\
& \quad=P(A)-P(A \cap B)-P(A)+P(A) P(B) \\
& \quad=P(A) P(B)-P(A \cap B) \\
& \therefore P(A \cap B)-P(A) P(B)=P(A) P(\bar{B})-P(A \cap \bar{B}) \tag{2}
\end{align*}
$$

Thus from (1) and (2), we have the desired result:

$$
P(A) P(B)-P(A \cap B)=P(\bar{A} \cap B)-P(\bar{A}) P(B)=P(A \cap \bar{B})-P(A) P(\bar{B})
$$

EE600 Homework \#2 Solutions
11. The sample space is

$$
\mathcal{S}=\{(H H H),(H H T),(H T H),(H T T),(T H H),(T H T),(T T H),(T T T)\}
$$

(a)

$$
\begin{aligned}
& A=\{(H H T),(H T H),(T H H)\} \\
& B=\{(H H T),(H T H),(T H H),(H H H)\} \\
& C=\{(T H H),(T H T),(T T H)\}
\end{aligned}
$$

(b) (i) $\bar{A} \cap B=\{(H H H)\}$: exactly three heads occur.
(ii) $\bar{A} \cap \bar{B}=\overline{A \cup B}=\bar{B}$ (because $A \subset B)=$

$$
=\{(H T T),(T T T),(T T H),(T H T)\}:
$$

at least two tails occur.
(iii) $A \cap C=\{(T H H)\}$: a tails occurs on the first toss, and then the secondand third tosses are both heads.

