School of Industrial Engineering, Purdue University

IE 674 Cyber Methods for Production Control

Classroom TBD

Instructor: Professor S.Y. Nof nof@purdue.edu

Prerequisite: Graduate student, background in computing, programming not required

Reading: Required reading list and handouts – Posted on BB

Revolutionizing Collaboration through e-Work, e-Business, and e-Service, Nof, Ceroni, Jeong, Moghaddam, Springer 2015; *Springer Handbook of Automation*, Nof (ed.), 2009. Both e-Books in Purdue Library.

Course Objectives -- What we will learn:

- Automation 5.0: The theoretical foundation and relevance of advanced cyber, real-time control, computing, communication, and brain models for (1) robotics and (2) automation of planning and decisions in distributed production and supply installations, global supply, logistics, and service systems/networks.
- Current and emerging functions, algorithms, protocols, and models for future factories; how to apply them in research projects and presentations, and in the field. Focus will be on the five top levels of automation (Nof, Ch. 3, *Springer Handbook of Automation*, 2009):

Level	Automation	Automated Human Attribute	Example
A ₈	Mobile machine	Guided mobility	Hovering motes
٩A	Collaborative network	Collaboration	Hub-Cl
A ₁₀	Originality	Creativity	Virtual reality game
A ₁₁	Human and animal special needs Support	Compassion	Nursing device
A ₁₂	Interactive companion	Humor	Advisory agent

Study and Research Topics include:

- 1. e-Collaborative algorithms and protocols, and active interaction theories
- 2. Synchronization and recovery with wireless facility networks
- 3. Visual analytics and informatics for supply flow decisions
- 4. Swarm algorithms and sensor/RFID networks
- 5. Human-robot interaction and collaborative robotics
- 6. Data mining, brain models, and machine learning in cyber-physical production and manufacturing.

Requirements and Grading

- Bi-weekly homework -- 35%;
- Mid-term take-home exam 30%;
- Semester project (individual) in three parts 35%.