The 3rd Israeli Conference on Robotics

Collaborative Control Theory for Robots

Shimon. Y. Nof

PRISM Center Production, Robotics, and Integration Software for Mfg. & Management Purdue University, W. Lafayette, IN, USA

10-11 November, 2010, Hertzlia, Israel

nof@purdue.edu

Robot Collaboration

- Collaboration revolution
- Co-Ro-Bots Robot; Agent
- Collaborate: Why? Who? How?

Nature of Robot Collaboration: Alliance vs. adversary

- CCT; Design recommendations for collaboration
 support
- Emerging trends
 - Evolutionary robotics
 - Bio-inspired robotics
 - Nano-robots
 - Social robotics
 - CI, Collaborative Intelligence

Why is collaboration needed? For better effectiveness & success

Who collaborates? H:H, H:R, R:R, H:H:R, H:R:R; 1:1, 1:N, N:M, teams, swarms, networks

A cobot assisting a human in assembling a car

pHRI in human power amplifiers

Ergonomics, work optimization: Stronger, safer, faster, more precise, reach further

How to collaborate?

R:R:R,

H:R:R

Optional Task Collaboration

Level of Resource Sharing Service load: (a) high, (b) low

Mandatory Task Collaboration

#

Who and How? H:R Bio-inspired sociable robots – attend, care, inform, act

PARO, therapeutical seal robots (AIST)

AIBO, robotic pet (Sony)

MEL, Conversational penguin robot (MERL)

Leonardo, media robot (MIT)

Cooperate vs. Collaborate Both: share space; time; information; knowledge; tools; capacity. In collaboration, share also in tasks execution

Cooperating robots: "I can see what you cannot"

Fig. 58.13 Robonaut using visual perspective taking to disambiguate the intended referent when asked to *hand me the wrench*. The human can only see one wrench, but the robot can see both. The robot correctly hands the wrench that both can see

Collaborating robots: Master-slave model

From rigid to bi-inspired control models:

- Autonomous / autonomic units (agents)
- Adaptability, evolutionary,
- Survivability (of fittest)
- Autonomous, collaborative systems
- Scalability, agility

How? Comm. \rightarrow Coordinate \rightarrow Cooperate \rightarrow Collaborate H:R:R in sensor networks: Response quality by CCT logic Co. to win: W-W; ZSG; MSG

de Fereitas et al. Coordinating aerial robots and sensors for intelligent surveillance.

Design Principles of Collaborative Control Theory (CCT)						
Design Principle	Brief Definition	Robots/Agents				
1 CRP I+II Collaboration Requirement Planning	Effective e-collaboration requires advanced planning and on-going re-planning	Operation plan and seq.; Adapt				
2. Parallelism & KISS Parallelize and "Keep it simple, system!"	Optimally exploit the fact that work in cyber work-spaces and human work-spaces can and must be allowed to advance in parallel	Optimize DOP, {R}, TAP; KISS for H, R				
3. CEDP Conflict & Error Detection and Prognostics	Minimize cost of resolving conflicts among collaborating agents by automated CSS, collaboration support systems	ld., detect, prevent, resolve errors, conflicts				
4. FTT Fault-Tolerance by Teaming	Fault-tolerant collaboration can yield better results by a team of weak agents, than a single optimized and even flawless agent	Sensors and robots networks				
5. JLR Join/Leave/ Remain in a CNO network	An agent: Decide when/ why to JLR a CNO by monitoring total participation gains/ costs. A CNO: Same, including more coordination, re each member	Dynamic team optimization				
6. LOCC Lines of Command and Collaboration	Evolutionary mechanisms of interaction and organizational learning for effective ad-hoc decisions, improvisation, on-the-spot contact creation, best matching protocols pairing planners with executors	Alerts, backup and best matching TAPs				

Nof, ARC 07; Velasquez & Nof, SHBA 09

PRISM Lab/

Group/Swarm robotics

Model based control, MPC (Model Based Predictive Control) used for formation control. MAS, Multi Agent distributed control applies to autonomous agents

Collaborative parallelism

PIEM (centralized optimization algorithms) and DPIEM (optimization with distributed protocols) for planning the communication and coordination trade-offs in collaborative design, mfg., logistics, operations with parallelism

Summary: Local and Integrated Teams [Ceroni,00]

	Ф	п	Т	No. of Sub- tasks	
Local Teams (A+B)	1.984 6	1.4239	0.5607	52	
Team A	1.390 8	1.0350	0.3558	16	
Team B	0.593 8	0.3889	0.2049	36	
Integrated Teams	1.807 1	1.1666	0.6404	26	
Depresented by Prism Lab/Purdue					

Optimize the DOP, Degree of Parallelism

The Principle of Conflict Resolution in Collaborative e-Work [Huang and Nof, 99; Chen and Nof, 09]

- Minimize the cost of resolving conflicts among collaborating agents by automated CSS (collaboration support systems)
 - Beyond reducing information and task overloads, agents must be designed to automatically prevent and overcome as many errors and conflicts as required to be effective

PRISM Lab/Purdue

Conflict & Error Detection Agents (CEDA) and Protocols (CEDP) are assigned to Network $N_0(t)$

Ex. Elimination of faults in inspection, testing, security

Critical Cost of Error Recovery / Conflict Resolution

Increases exponentially when human communications and operations are applied (assuming *q*=0.2)

q = % of human involvementS = rate of conflicts

Collaborative fault-tolerance TAP design in sensor/agent networks

Principles 1-6 at work: Alternative MEMS and nano sensor arrays / networks optimized along an artery for measurement and control

based control [Jeong, 2006]

TAP: Task Administration Protocols for complex workflow

Summary, Emerging Trends, open challenges

- CCT contributions continue and expand in networks of supply, knowledge supply, decision and policy making, healthcare delivery, cyber security, physical security, etc.
- 2. Modeling for CCT: Network theory; Networkaware models; bio-inspired models; swarm intelligence; game theory models (bargaining)
- 3. Collaborative Intelligence, CI
- 4. Collaborating with humanoids

Purdue IE Collaboratorium Initiative (2009 -) for Collaborative Intelligence

Collaboration Science = Collaborative Control Theory + Collaboration Support Systems

Access + Interaction Science e.g., human visualization

Collaboratorium quality impact: How well it facilitates

- Significantly accelerated and better synthesis and integration of knowledge and discoveries;
- 2. Understanding the dynamics of interactive-collaborative work;
- Timely delivery of critically needed discoveries and shared knowledge.
 16

Abstraction Scheme for Collaborative Visualization Co – Viz / Co-insight Approach (Ozsoy, 10)

Collaborating with Humanoids

Dancing with humanoids

Socially interactive humanoid robots

Acknowledgement

- Research reported in this plenary presentation has been developed at the PRISM Center with NSF, Indiana 21st Century fund for Science and Technology, and industry support.
- Special thanks to my colleagues, Visiting Scholars and students at the PRISM Lab and the PRISM Global Research Network, and in IFAC Committee CC5 for Manufacturing and Logistics Systems, who have collaborated with me to develop the collaborative control and robotics knowledge.