
18th International Conference on Production Research

DESIGN OF A PRODUCTION CONFLICT AND ERROR DETECTION MODEL WITH
ACTIVE PROTOCOLS AND AGENTS

C.L. Yang, X. Chen, S.Y. Nof

PRISM Center
School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, U.S.A.

Abstract
A production conflict and error detection model has been developed to detect problems that occur in a
collaborative environment. A case study was performed on three automobile company agencies (vehicle
delivery center, shipping yard, and dealers) in a finished vehicle distribution/shipping environment. The
vehicle shipping plan was investigated and possible errors and conflicts were identified. A proposed
conceptual model, conflict/error detection model (CEDM) with active middleware, which is able to detect
possible errors and conflicts and reduce the loss or damage in the car shipping plan, was developed. A
computerized simulator, The Management Interactive Case Study Simulator (MICSS), was adopted to
simulate and detect errors and conflicts in three agencies, which are represented by three MICSS views,
production, purchasing, and marketing, respectively. Experiment results show that the proposed CEDM can
detect all errors and conflicts as simulated by parameters in MICSS.

Keywords:
Production conflict and error, Active middleware, Agent, Detection model, Detection protocol, Collaborative
e-Work

1 INTRODUCTION

1.1 Finished vehicle shipping plan
For a modern automobile company, various kinds of car
models and millions of cars are assembled in different
locations. After car assembly is completed, shipping those
finished cars to customers or dealers is an important
planning issue. This planning is part of collaborative e-
Work [8]. All personnel, schedules of shipping
transportation, and resources such as truck and train, and
even third-party shipping company have to be planed and
coordinated well to fulfill the shipping requirements. In this
complicated collaborative environment, however, conflicts
and errors (CE) are unavoidable because of human
mistakes, planning conflicts, and limited resources. Since
detecting CE is an initial step for resolving them, a
sophisticated detection model is needed. In order to detect
all possible conflict and error problems, an agent-based
detection model is proposed to perform a detection
process in a shipping network.
A case study of finished vehicle shipping/delivery plan is
investigated in this research. Three major agencies:
shipping yard, vehicle delivery center (VDC), and dealers,
coordinate with each other to deliver finished vehicles to
customers. Figure 1 illustrates this finished vehicle
shipping network.

Shipping yard
The shipping yard is a temporary storage close to
assembly factory. Once car assembly operations are
completed, the finished vehicles will be deposited at the
shipping yard temporarily and wait for delivery to VDC. The
finished vehicles will be delivered to VDC by truck and rail.
In the shipping yard, moving vehicles to pre-assigned
parking lot and delivering them to VDC according to the
shipping plan/schedule are major tasks.

Vehicle delivery center (VDC)
VDC is a contracted partner that is in charge of delivering
finished vehicles to different car dealers according to
orders from dealers. VDC plays a “relay” role in vehicle
delivery and manages the delivery plan. VDC also

maintains the vehicle trucks to ship finished vehicles to
different dealers at different locations.

Car dealers (assumptions)
Car dealers can be grouped to several demand areas. In
this study it is assumed that in each demand area, 10 to 25
dealers might be distributed. Each VDC will serve 10 to 50
demand areas on average. Dealers will send orders to
VDC weekly based on their customers’ orders. On
average, each order may contain 10 to 30 vehicles.

Figure 1: One VDC with two “parallel” shipping yards.

1.2 Possible errors and conflicts in a finished vehicle
shipping plan

Several kinds of errors and conflicts may occur in this
collaborative delivery operation. For instance, if workers
make a mistake in placing the wrong car at the shipping
yard, or have a typo in paperwork, a wrong vehicle might
be delivered to the wrong VDC. In this situation, re-
transporting the vehicle to the correct destination is costly.
This kind of error should be detected as soon as possible
and be prevented in advance.
In addition, conflict problems may also occur in dispatching
plans. For example, a schedule conflict might happen when
ordered vehicles are out of stock in VDC or there is a
delivery delay from a shipping yard to VDC. Further
reschedule or modification of the delivery plan might also
lead to other conflict situations, such as labor dispatching

conflicts. This kind of conflict situation is common since the
prediction of orders is usually not precise. In order to
increase service level, such as reducing customers’ waiting
time, conflict and error detection on the finished vehicle
delivery plans is crucial for elimination or minimization of
such damages. Typical possible conflict and error
problems are listed below:

Table 1: Typical possible conflicts and errors.

Error Conflict

• Job missing
• Task misunderstanding
• Facility crash
• Machine fatigue
• Human mistake
• Unaccepted quality
• Abnormal event
• Exceed resource

capability
• Insufficient

ability/capacity
• Error in specification
• Information network

break down

• Time (schedule) mismatch
• Unexpected cost
• Unsatisfied profit
• Different processes or

operations
• Various task specifications
• Resource overuse
• Violation of common goal
• Collision (path conflict)
• Layout overlap
• Different data format
• Different units of measures

In Section 2, the proposed conflict and error detection
model is addressed. Section 3 describes the experiment
design that is supported by MICSS, and Section 4 shows
the results. Section 5 provides a short discussion and
concludes the article.

2 CONFLICT AND ERROR DETECTION MODEL

2.1 Active middleware and detection model
Middleware is a class of software technologies designed to
help manage the complexity and heterogeneity inherent in
distributed systems [4] [6]. It is an enabling layer of
software that resides between the business application and
the networked layer of heterogeneous platforms and
protocols [1]. According to Anussornnitisarn and Nof [2] [3],
the major components of active middleware are: Multi-
Agent-based Systems (MAS), Workflow Management
Systems (WFMS), coordination protocols, Decision
Support Systems (DSS), modeling language/tools, task/
activity databases. Their conceptual model is shown in
Figure 2.
In a distributed, collaborative environment, each participant
has its own goals, tasks, and resources. The management
system of each participant, e.g., information system,
project planning system, database system, Enterprise
Resource Planning (ERP) system, or manufacturing
execution system plays an important role in managing the
project, manipulating the operation of tasks, and monitoring
the resources. Because of the heterogeneity of those
distributed participants’ systems, smooth collaboration
between these systems is difficult to achieve. Active
middleware can serve as a bridge between distributed
systems and provides an integrated platform to
communicate and cooperate. The term “Active” implies that
in addition to normal middleware function, there are
automated, e-Work supported decisions made for more
effective integration.
Agent technology plays an important role in detecting CE
problems [8]. In our proposed detection model, conflict and
error detection model (CEDM) [9][10], each operator and
participant should deploy a conflict and error detection
agent (CEDA) to collect the needed information such as
current shipping quantity, the updated shipping plan, or
current status regarding shipping operations. After
gathering relevant information, each agent will compare it

with the existing shipping guidelines and regulations to
detect any error or conflict situation. Besides, the agent
also transmits the obtained information and evaluation
results to collaborating parties by applying a designed
protocol, conflict and error detection protocol (CEDP). The
protocol regulates and rationalizes agents in
communicating with each other. Then, the on-line detection
process is executed iteratively and continually among the
collaborative networked parties. All activities performed by
CEDA are supported by active middleware in CEDM
model. More details about CEDA and CEDP are addressed
in following sections. Figure 3 shows the basic architecture
of CEDM with active middleware, based on the production
shipping environment.

Figure 2: Active middleware architecture [2].

2.2 Conflict/error detection agent

CEDA is a software agent that is used to perform the CE
detection process in a Collaborative Unit (Co-U), such as
shipping yards, VDCs, and dealers of a shipping network.
There are three components in the CEDA: 1. Detection
Policy Evaluation Mechanism (DPEM), 2. Error Monitoring
Mechanism (EMM), and 3. Conflict Evaluation Mechanism
(CEM). These three components coordinate together to
detect possible errors and conflicts and notify the
correlated (potentially infected) Co-Us by CEDP.

Detection Policy Evaluation Mechanism (DPEM)
The Detection Policy Evaluation Mechanism (DPEM) is
responsible for evaluating each detection method (dM)
regarding each possible CE problem and generating the
detection policy (dP)T for detecting it. The detection policy
is a guideline of how to detect a particular CE problem.
Based on the information stored in the CE knowledge
base, DPEM can evaluate all applicable dMs for a specific
CE and select the best one. Then, DPEM will evaluate the
cost-effectiveness of the selected dM and decide whether it
should be applied, based on cost aspect. After evaluation,
DPEM implements the effective detection policy (dP)T in
executing the CE detection when the Co-U intends to
perform particular task T.

Error Monitoring Mechanism (EMM)
The error monitoring mechanism (EMM) of the CEDA is in
charge of continually monitoring the Co-U’s activities.
CEDA obtains the run-time current state (Θ) from the input
of different monitoring devices. Based on the Co-U’s plan
of resource policy, shipping task specification, and current
state, an error can be detected, recognized and managed.
Until the error situation is recovered, EMM will continue to
track this error.

18th International Conference on Production Research

Figure 3: CEDM with active middleware

Conflict Evaluation Mechanism (CEM)
The conflict evaluation mechanism (CEM) is the kernel of
the CEDA with two functions, calculation and comparison,
to detect possible conflicts when a Co-U performs a
shipping task. Through these two functions, CEDA can
standardize all current states (Θ), tasks constrains (Ω), and
compare them to find a conflict when unsatisfied task
constraints (Ω’) exist. Figure 4 shows the components of
CEDA with their input and output.

Figure 4: Inputs, outputs, and components of CEDA.

2.3 Conflict/error detection protocol
CEDP is an agent-based protocol that facilitates the
exchange of detection information between organizations
participating in the shipping network. CEDP enables CEDA
to send or receive CE announcements, CE evaluation
requests, and CE evaluation results. Through this protocol,
not only CE events can be transmitted within a shipping
network, but also the CE evaluation information can be
shared when it is needed for the detection process.

Message Definition
CEDP handles the detection information exchange process
among Co-Us, such as shipping yard, VDC, and dealers.
Three kinds of messages are transmitted by this protocol: a
CE announcement, a CE evaluation request, and a CE
evaluation result.
1. CE announcement. Once a Co-U detects a CE inside

its system, CEDA will broadcast the CE announcement
to other correlated Co-Us through CEDP. When a CE
announcement is received, the CEDA of a Co-U will
evaluate this CE event.

2. CE evaluation request. A CE evaluation request is a
message to ask a Co-U to evaluate its activity and
return its evaluation result. The request receiver must
examine its task processes and evaluate their potential
influence.

3. CE evaluation result. After a CEDA receives a CE
announcement or CE evaluation request, the CEM of
the CEDA begins to evaluate its task activities and
return evaluation results to the requesters.

CEDP Operation
Two kinds of CEDP operations are executed between Co-
Us.
1. A CE is detected. Once a Co-U detects a CE problem

that occurs within its boundary, this Co-U is responsible
to inform other correlated Co-Us. Every Co-U that
receives a CE announcement evaluates the potential
influence of this CE and sends back the evaluation
result. Then, any Co-U that detects a CE can also
estimate the potential influence on other Co-Us.

2. A task specification is changed. If a Co-U wants to
change the task specification, this change might affect
other partners and cause conflicts. This change initiator
should inform other cooperative participants. After
evaluating the task activities regarding the new task
specification, all participants will send back their
evaluation result.

In the implementation perspective, CEDA is a software
agent that can build upon existing shipping information
system or managerial process. CEDA should access the
needed data that are stored in the existing system to
perform the CE detection. The detection logics and
experiences can be accumulated and provided by CE
Knowledge Base that is also part of the active middleware
layer. In addition, by applying CEDP, each CEDA is able to
transmit the detection information to CEDAs that represent
other collaborative participants. Once a CE problem is
detected by one CEDA, the corresponding CEDAs will
continue to analyze and detect the possible CE problems
that might propagate to other participants, until all detection
processes are completed.

3 EXPERIMENTAL DESIGN

3.1 MICSS as a simulation tool
The Management Interactive Case Study Simulator
(MICSS) by MBE-Simulations Ltd [7] is a computerized
case study that simulates the realities of a manufacturing
company. The objective of MICSS is to simulate complex
systems, the rules that govern those systems, and the
techniques needed to control the performance of such
systems.
The simulated company is driven by four functions:
Marketing, Production, Purchasing and Finance. Each
function provides its own "view," including information,
managerial actions and policies. To obtain better results
(profit, sales, etc.), it is necessary to synchronize and

coordinate the decisions and actions of all four views. This
synchronization is called “the global view of the system.”
Attaining a global view is part of the challenge of MICSS.
Any errors or conflicts in the company will affect the results
in a complicated, often counter-intuitive way. The
simulation can be run for any time period less than or equal
to one year.

Marketing View
The marketing view displays the products the simulated
company sells. MICSS recognizes two types of markets:
the customer market and the contracted market. The
customer market consists of many casual customers who
place orders for a small quantity of a particular product.
They pay the list price and are supposed to get their order
at the specified quoted lead time (QLT). The contracted
market is based on contracts with large clients.

Production View
The Production View displays the work centers and their
occupants on the production floor. The production floor is
driven by work orders (WOs). There can be no production
unless a WO is issued. Every WO specifies a product and
the number of units to be produced. The raw materials are
released from the stockroom by the WO. Every work center
has a list of work orders to be fulfilled. The WOs are
created automatically by the embedded information system
that is part of MICSS. The parameters of the planning
algorithm that creates the WOs are set by the users.

Purchasing View
The purchasing view deals with providing the necessary
“materials” (vehicles) to production. In our experiments,
vehicles are purchased from suppliers. Available suppliers
are listed in the "Actions" menu. Users can also change the
default supplier. Purchasing is usually done automatically
according to the rules users set. The basic rule is the
order-maximum level. When the stock at hand plus the
open orders from the vendor is less than the order-level, an
automatic order is issued to the default supplier for the
quantity to replenish up to the maximum level. The
alternative is to purchase according to the MRP (ERP)
algorithm. In the parallel operation, vehicles are purchased
from two suppliers. In the nonparallel operation, vehicles
are purchased from one supplier.

Finance View
The finance view does not have any "Actions" or "Policies"
entries. Its purpose is to provide financial information. The
finance main screen displays the current profit and loss
statement. This statement is updated every month, from
the start of the year until the end of the last month.

3.2 Detect errors and conflicts with MICSS
MICSS is sufficient to simulate the errors and conflicts in a
company [5]:
 • Inputs (may include errors) to the system are

determined by users (employees of the company).
 • Different inputs produce same or different outputs

(profits, sales, etc.)
 • Different combinations of inputs (may include conflicts)

have different outputs (results and impacts on the
company).

In MICSS there are 20~40 parameters that are used as
inputs to the system, depending on the scenarios used.
Some inputs yield relatively better outputs (higher profits
and sales, short production time) while some inputs yield
worse outputs (losses, bankruptcy). However, it is
recognized that better outputs (higher profits and sales) do
not always indicate better performance of a company; they
may be only short-termed. Therefore, a combination of

best inputs (baseline policy) can be determined by the
company and errors and conflicts corresponding to various
inputs are defined by comparing the outputs with errors or
conflicts to the outputs of the baseline policy. The detection
of errors and conflicts in MICSS can then be simulated by
examining the outputs of the company with the help of
CEDA and CEDP. The outputs to be examined include not
only long term or final outputs, such as profits and sales
(the identification of them may be meaningless because
catastrophic results already happen), but also short term
(midway) or sensitive outputs, such as customer order,
resource idle time, sales, etc.
The procedure of detecting errors and conflicts in MICSS is
shown in Figure 5. The outputs of the baseline and outputs
with errors and conflicts, as well as their corresponding
inputs, are learned in advance and stored in the knowledge
base. The outputs associated with any new inputs are
compared to the outputs of the baseline stored in the
knowledge base. If there are errors or conflicts, further
comparison is conducted to find out the type of error or
conflict. There could be several possible errors/conflicts of
which the knowledge is not stored in the knowledge base.
In that case, new knowledge is learned with the help of the
user.

Figure 5: Conflict/error detection with MICSS evaluation.

The experiments are conducted in order to study the
application of CEDM for a specific complex enterprise with
parallel workflow, and compare the differences between
the parallel and nonparallel workflows. The basic concept
of the experiment design is to change the values of four
parameters in MICSS to simulate errors and conflicts.
Single input change is viewed as errors, and more than
one input variations are treated as conflicts. Outputs
(profits and sales) of the company are recorded and
compared with the outputs of the baseline policy
predefined by the company. The difference between
outputs, the economic impact in this designated
experiment design, serves as the indicator of the possible
impacts of uncontrolled errors and conflicts.
The experimental design is described as follows:
a. Four parameters including Price and QLT in the

marketing view, and Max. Level and Order Level in the
purchasing view are chosen to represent simulated
errors and conflicts.

b. The baseline policy (Tables 2 and 3), which is the best
ideal set of inputs is run to obtain the best performance
outputs [5]. The baseline policy is chosen to represent
the “ideal” situation of shipping operation. By running
MICSS with the baseline policy, ideally, it is possible to
calculate the best long-term profits and sales (not
necessarily the highest, which would be typically short-
term oriented).

18th International Conference on Production Research

c Two suppliers (shipping yards) are selected. Two “raw
materials”, representing two vehicle models, are
supplied by one supplier, and another vehicle model is
supplied by the second supplier. These two suppliers
have different prices (shipping cost, storage cost, etc.)
and QLT (delivery time) for each type of vehicle model.

d. To represent different levels of errors and conflicts,
adjust the value of four parameters to half or double,
producing a set of 80 different experiments (C indicates
the calculation of combination): C4

1 * 21 + C4
2 * 22 +

C4
3 * 2

3 + C4
4 * 2

4 = 80 experiments.
e. Record the monthly profits and sales for each

experiment.

Table 2: Baseline policy of marketing
Marketing (vehicle models) Para-

meters A1 A2 B1 B2 C1 C2
QLT
(Day)

16 16 18 18 16 16

Price
($ X100)

200 226 150 146 210 240

Table 3: Baseline policy of purchasing

Purchasing (vehicle models)
Parameters

W1 W2 W3
Max. Level (car) 5500 4500 4000
Order Level (car) 3500 3000 2500

Three vehicle models W1, W2, and W3 are further
categorized into six models A1, A2, B1, B2, C1, and C2 for
marketing purpose.

4 EXPERIMENT RESULTS AND ANALYSIS
Based on the design of experiment, two outcomes of
MICSS experiments can be obtained: profit and sales, for
each experiment with a particular parameter combination.
The results show the variation of profit and sales during
one simulated year and differences between parallel and
nonparallel workflows.

4.1 Analysis of experiment results
The profits at the end of the year are compared between
parameter modification scenarios and the baseline policy.
The results clearly show that the profit decreases if one or
more parameters have been changed, representing
undetected errors and conflicts. Furthermore, the profit
decreases relatively more in the two-supplier scenario than
in the one-supplier scenario, compared to the baseline
policy.
CEDM can be applied by detecting certain evaluation
metric change in the system. In terms of the profit, the
detection algorithm can be defined as:

P
B

Bc γ
α

αα
≥×

−
100 (1)

cα is the current profit, Bα is the baseline profit and Pγ is
the organization’s predefined tolerance for variation; or the
benchmark from the knowledge base.
In the parallel environment (two vehicle suppliers), the
evaluation metric could have more dramatic change than in
the non-parallel (single supplier) environment. This
indicates the possibility of detecting CE problems promptly
at a lower cost if appropriate CEDM model is established
and monitored. On the other hand, the experiments results
show that if CE problems have not been detected promptly,

the potential losses could be more severe in the parallel
case.
In a practical CEDM model, CE problems should be
detected at many different time points with different
combinations of evaluation, metrics. In the experiments
conducted, profit and sales are considered as metrics.
Only the ends of the year profits are shown in Tables 4 and
5. The Pγ in Equation (1) can be set to 0.537%, which is
the smallest profit loss in both single and parallel
scenarios. However, profits might slightly decrease even
when there is no error or conflict, because of various
uncertainties: markets’ fluctuation, competitors’ products,
etc. It is not practical to determine a value for Pγ for all

different scenarios. Instead, Pγ can be set to 4.102% (the
second smallest profit loss), which yields a more robust
measure to detect errors and conflicts. Nevertheless, other
metrics are needed to detect CE problems together with
the profit.

Table 4: Maximum, minimum, and average profit loss with
four kinds of conflicts/errors (Single)

 One-para. Two-para. Three-para. Four-para.

of experiments 8 24 32 16
of bankruptcies 4 18 28 16
Max. profit loss (%) 212.786% 876.455% 891.298% Bankrupted
Min. profit loss (%) 4.102% 14.515% 247.189% Bankrupted
Avg. profit loss (%) 81.262% 295.406% 571.165% Bankrupted

Note: The profit loss can exceed 100% while comparing to
baseline.

Table 5: Maximum, minimum, and average profit loss with
four kinds of conflicts/errors (Parallel)

 One-para. Two-para. Three-para. Four-para.

of experiments 8 24 32 16
of bankruptcies 4 18 28 16
Max. profit loss (%) 388.148% 1451.11% 1472.71% Bankrupted
Min. profit loss (%) 19.179% 0.537% 407.026% Bankrupted
Avg. profit loss (%) 147.181% 493.135% 945.213% Bankrupted

Note: The profit loss can exceed 100% while comparing to
baseline.

It is observed that sales decrease in most scenarios when
CE problems occur. The comparison between sales in the
parallel and nonparallel environments does not provide
meaningful conclusion. Hence, the evaluation metrics need
to be carefully chosen when applying CEDM. However, the
sales give a good example of detecting CE problems at
different time points. The data collected at the end of
January do not provide any insight of possible CE
problems, while the data from February to December can
be used to detect if CE problems occur. A simplified CEDM
algorithm for both parallel and nonparallel environments
can be written as:

S
B

B γ
β

ββα ≤×
−

100 (2)

aβ is the magnitude of current sales, Bβ is the baseline

sales and Sγ is the organization’s predefined tolerance
magnitude, for variation or the benchmark from the
knowledge base.

The data collected show that %16.5−=Sγ (the smallest
sales drop, from February to December) can be used to

detect errors and conflicts. The effectiveness of this
algorithm, or the Type I error (CE problems exist but not
detected) can be calculated: 4 / 80 = 5% (sales increased
in four experiments). In other words, there is a 5%
probability that an existing CE problem is missed if a
random time point is picked to detect errors and conflicts.
On the other hand, data collected are the average sales
from one kind of parameter change in one month, instead
of the actual sales, which also affects the effectiveness of
the algorithm using sales as the evaluation metric.
Therefore, a combined profit-sales metric is proposed next.

4.2 Combined evaluation metric
As explained above, profit as the detection metric is not
robust. Meanwhile, using sales leads to a relatively larger
Type I error. Furthermore, the detection of CE problems
separately using profits and sales may give inconsistent or
even contradictory results. Thus, there is a need to find the
relationship among metrics and combine them in the
algorithm. A suggested algorithm using profits and sales is
as follows:

β
αλ

2

= , PSγλ > (3)

λ is the profit-sales ratio, α is the profit, β is the sales

and PSγ is the organization’s predefined tolerance to
variation, or the benchmark from the knowledge base.

The square of the profit () eliminates negative values of
profits. Equation (3) does not seem to be ‘reasonable” as
fewer sales but more profits are actually preferred, which
indeed indicate there are errors or conflicts. Equation (3)
defines a range within which the system has no errors or
conflicts. Because profits are more sensitive to the CE
problems, the square of the profit assigns it more weight
and the algorithm is relatively less sensitive. Figure 6
illustrates results of the impact of CE on

2α

λ . The operation
with CE problems has much bigger λ than that of the
operation defined by the baseline (without CE problems).

Figure 6: Impact of CE on λ

5 CONCLUSIONS
The proposed conflict/error detection model is developed
by the fundamental concept – “CE detection can be
collaboratively performed by distributed agents.” The ability
to communicate with each other among participants of CE
detection is important. Through designed CEDA interaction
and CEDP channel, each of the participants not only
connects with other participants, but also shares the
detection information and support of active middleware
components. This ability also extends the detection ability

from local point of view to global (entire shipping network)
consideration.
The experimental analysis shows that the impact of errors
and conflicts on the delivery operation is significantly larger
when more CE problems occur concurrently (average profit
loss is from 81% to 571% in the single shipping yard
scenario and from 147% to 945% if CE is not detected in
the parallel environment). The damage in the parallel
environment is relatively higher than the damage in the
non-parallel. Also, sales fluctuate dramatically when there
are CE problems and in most cases sales decrease (-79%
to 24% in the single shipping yard scenario and from -80%
to 19% in the parallel environment, compared to the
baseline policy). By and large, damages on both profits and
sales are higher if CE problems are not detected earlier in
time. The impact of CE problems is larger in the parallel
environment.
The next step of this research will focus on developing the
knowledge base of conflict/error detection and detection
tools such as decision trees and neural networks.

6 ACKNOWLEDGMENTS
This research has been developed with the PRISM Center
support, and support from GMR project on "Design of
Active Middleware for Error and Conflict Detection (2004)".

7 REFERENCES
[1] Anussornnitisarn, P., 2003, Design of Active

Middleware Protocols for Coordination of Distributed
Resources, Dissertation for Ph.D., Purdue University,
West Lafayette, IN, U.S.A.

[2] Anussornnitisarn, P., Nof, S. Y., 2001, The Design of
Active Middleware for e-Work Interactions, Research
Memorandum No. 2001-10, School of Industrial
Engineering, Purdue University, West Lafayette, IN,
U.S.A.

[3] Anussornnitisarn, P., Nof, S. Y., 2003, e-Work: The
Challenge of the Next Generation ERP Systems,
Production Planning and Control, v 14, n 8, 753-765.

[4] Bakken, D. E., 2003, Middleware, Chapter in
Encyclopedia of Distributed Computing, Urban J. and
Dasgupta P. (editors), Kluwer Academic Publishers.

[5] Bellocci, T., Lehto, M. R., Nof, S. Y., 2003, Assuring
Information Quality in Industrial Enterprises:
Experiments in an ERP Environment,
Proceedings of the 10th International Conference on
Human-Computer Interaction, June 22-26, Crete,
Greece, 654-658.

[6] Bishop, T. A., Karne, R. K., 2003, A Survey of
Middleware, 18th International Conference on
Computers and Their Applications, March 26-28,
Honolulu, Hawaii, U.S.A.

[7] MICSS (Management Interactive Case Study
Simulator), October 2004, http://www.mbe-
simulations.com.

[8] Nof, S. Y., 2003, Design of Effective e-Work: Review
of Models, Tools, and Emerging Challenges,
Production Planning and Control, v 14, n 8, 681-704.

[9] Yang, C. L., 2004, Conflict and Error Detection
Protocol with Active Middleware, M.S.I.E. Thesis,
Purdue University, West Lafayette, IN, U.S.A.

[10] Yang, C. L., Nof, S. Y., 2005, Design of a task
planning conflict and error detection system with
active protocols and agents, submitted to IJPR.

