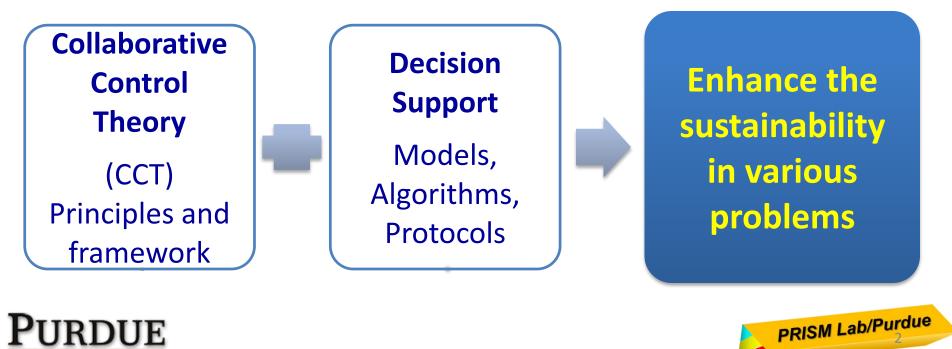
Modeling and Analysis for Sustainable Development Based on Collaborative Control Theory (CCT)

PRISM Lab/Purdue

PRISM Center Production, Robotics, and Integration Software for Manufacturing and Management

"Knowledge through information; Wisdom through collaboration"

Shimon Y. Nof


PRISM Center, and School of Industrial Engineering, Purdue University

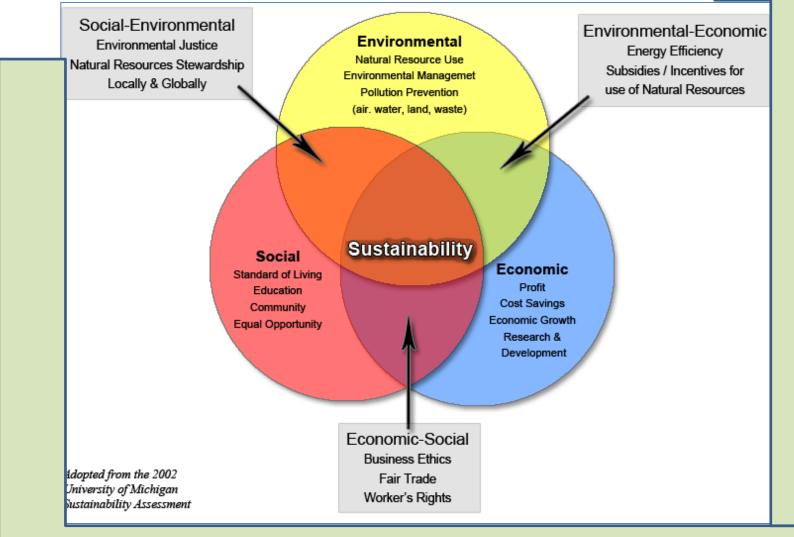
9th International Conference on Modeling, Optimization & SIMulation

Bordeaux, France, 6-8 June, 2012

Motivation / Objective

- Sustainability challenges: Strategically reduce waste, energy, hazards; overcome cultural / political differences; sustain profitability and viable communities
- Sustainability decisions: Complex, interdependent, need advanced modeling and control techniques, effective collaboration

What is sustainability?


Many definitions, three common bottom lines of sustainability:

Environmental, Social, and Economic sustainability

Source	Definition
Oxford English	Capacity to keep a person or community from failing; maintain at
Dictionary, 1989	the proper level; support life and nature with needs
Rosenbaum, 1993	Using methods, systems, materials that would not deplete resources or harm natural cycles
Vieria, 1993	Development that looks at a site's natural land, water, and energy resources as integral aspects of the development
Valentin & Spangenberg, 2000	Sustainable development is structured around four thematic imperatives: economic, social, environmental, and institutional, and six inter-thematic links, one for each bi-dimensional interconnection
Swiss Federal Statistical Office, 2005	Three main elements: Social solidarity; Economic efficiency and Ecological responsibility; and 45 postulates classified in 20 categories
U.N. General Assembly, 2005	The reconciliation of environmental, social and economic demands - the "three pillars" of sustainability
Villeneuve, 2006	Four dimensions define sustainable development: Ecological, economic, social, and ethical.

Sustainability and Collaboration

VERS

Collaboration, & Cyber-support for effective collaboration

Sustainability issues in various industries

Common to all sustainable industries:

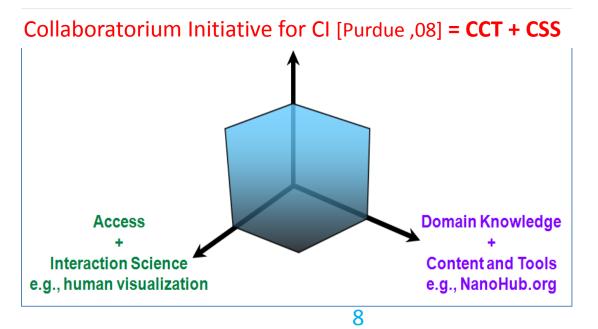
- A process of continuous Improvement
- Assess/reassess areas to improve sustainability performance
- Sustainable construction industry: Construction sites and production facilities for construction suppliers
- Sustainable transportation industry: Combine societal needs, efficiency, and impacts on the natural environment
- Environmentally conscious and product recovery manufacturing:
 - Life cycle analysis; Material selection; Design for environment + for disassembly + for recycling
 - Reverse logistics
 - Remanufacturing and disassembly

2012 Production Planning & Control Special Issues

Special Issue Topic	Sample Article Topics	Authors
Sustainable Mfg. Garetti, Mummolo, Taisch(eds.) PPC 23(2-3)	Environmental sustainability value cycle	Barber, Beach, Zalkiewski
	Sustainable supply chain design	Abdalla, Diabat, Simchi-Levi
	Environmental costing for sustainable mfg.	Cagno, Micheli, Trucco
	Sustainable managmnt. of end-of-life systems	Godichaud, Tchangani, Peres, lung
	Reverse supply chain and product recovery	Loomba, Nakashima
Sustainable Collaborative Networks – Case Studies Matos & Boucher (eds.) PPC 23(4)	Carbon friendly supply chains	Jaegler, Burlat
	Clothing industry sustainable supply networks	MacCarthy, Jayarathne
	RFID adoption in Italian silk industry	Quetti, Pigni, Clerici
	Fuzzy model for food safety risk assessment	Wang, Li, Shi
	Collaborative networks for product services	Lelah, Mathieux, Brissaud, Vincent
	Collaborative network success and trust	Becket, Jones

Collaboration is Key

CCT, Collaborative Control Theory, is useful


Value of Collaboration (VOC)

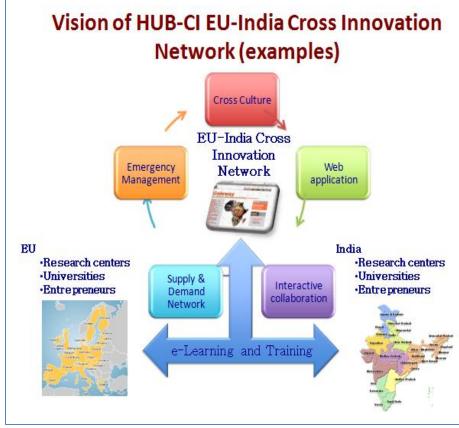
- Effective collaboration can overcome sustainability challenges:
 - Resolve conflicts, negotiate agreements
 - Prevent errors
 - Fault tolerance by teaming and back-up
 - Optimize sharing (of transportation, resources), reuse, etc.
- CCT comprises six design principles plus a common analytic framework to enable different systems achieve better sustainability through collaboration.
- Webinar: Collaborative Systems for Education, Innovation, and Supply Networks, <u>IIE.org</u>, 2012
- Velasquez & Nof: Ch. 88, *Springer HB of Automation*, 2009
- Nof: CCT for e-Work, e-Production, and e-Service, Annual Reviews in Control, 2007

CCT principles, and CSS, Collaboration Support Systems

- 1. CRP : Collaboration Requirement Planning
- 2. PARK: Parallelism + KISS: "Keep It Simple, cyber System!"
- *3. CEDP* : Conflict & Error Detection and Prognostics
- *4. FTT* : Fault-Tolerance by Teaming
- 5. JLR : Join/ Leave/ Remain in a collaborative network
- 6. LOCC: Lines Of emergent Command and Collaboration
- HUBs ("Internet on steroids") enable CI, Collaborative Intelligence focused on improving human ability to collaborate effectively

PRISM Lab/Purdue

HUB-CI emerging advantages


- Better than existing HUBs based on CCT, HUB-CI is focusing on improving human collaboration through e-collaboration tools and services, by:
- 1. Significantly enhanced synthesis and integration of knowledge and discoveries
- 2. Understanding the dynamics of interactivecollaborative research work
- 3. Timely delivery of critically needed discoveries and shared knowledge

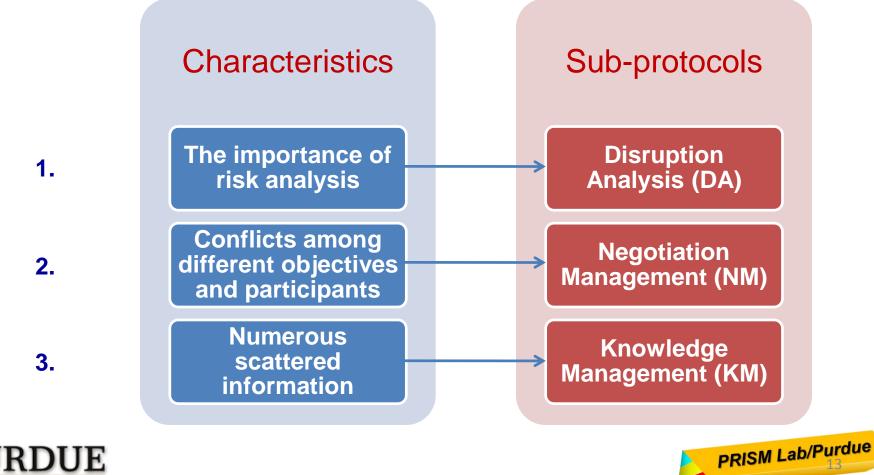
Innovation network HUB Models & challenges

- **Emerging global networks** (hubs/clouds) to trade/adapt/engage/learn diverse ideas through collaboration with sustainability
- ...challenges:
 - Cross-culture capabilities?
 - Multi-cultural interaction and infrastructures?
 - Challenged web-based applications?
 - Asynchronous multimedia?

Entre preneurs Demand collaboration Network e-Learning and Training Challenges of EU-India Cross Innovation Network targeted by **HUB-CI**

Innovation HUB-CI

- 1. **Cross-culture capabilities** There is a need for effective tools and ontologies for communicating across multiple languages and cultures through text, illustrations, and multimedia tools.
- 2. Multi-cultural interaction and linking multi-cultural infrastructures Human, social and environmental factors necessitate support and incentive mechanisms to promote engagement for dialog and knowledge sharing.
- 3. **Challenged web-based applications** Working with limited bandwidth and constrained computing infrastructure capabilities (e.g., in remote regions needing human support).
- 4. Asynchronous multimedia interactive collaboration -- "emails" and nonreal-time tele-meetings are required so people from different time zones can virtually meet "off line" while progressing effectively to meet timeconstrained goals with minimal delays.


Decision support models, algorithms and protocols* based on CCT for sustainability enhancement in real cases

- 1. Sustainability decision support protocol (S-DSP)
 - a. Sustainable supplier selection problem
 - b. Sustainable delivery scheduling problem
- 2. Collaborative production line control protocol (CPLCP)
- Collaborative demand and capacity sharing protocol (CDCSP)
- * Protocol: Distributed algorithm/procedure of algorithms for workflow optimization (vs. Protocol agreements)

Decision Support Protocol - S-DSP (Seok & Nof, 2011)

Model: Decisions for complicated sustainability conflicts; it consists of three sub-parts: (1) Disruption Analysis (DA), (2) Negotiation Management (NM), (3) Knowledge Management (KM)

S-DSP (Cont.)

Disruption Analysis (DA)

- Prediction and management of possible disruptions related with specific sustainability issue, based on historical information and similar case studies.
- DA can choose and use appropriate analysis tools for risk analysis: fuzzy logic, stochastic methods including MCMC, forecasting methods, and Bayesian models.

Negotiation Management (NM)

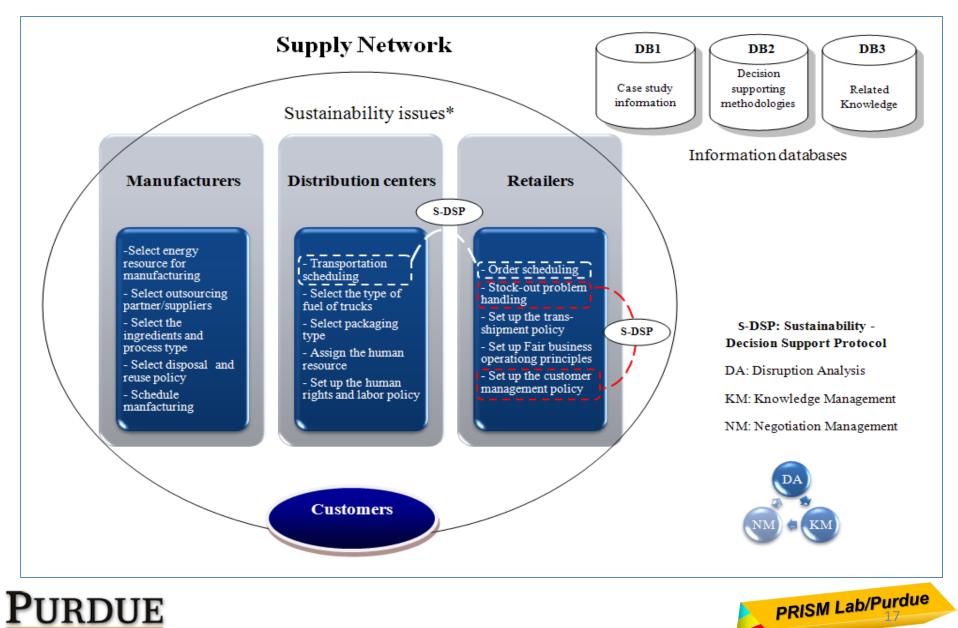
- For better decision making, negotiations for different objectives of participants in supply networks are processed.
- Multiple Criteria Decision Aids (MCDA); Weighted Sum Model (WSM), Weighted Product Model (WPM), Value Analysis (VA), fuzzy logic, Genetic Algorithm (GA) and Artificial Neural Networks (ANN) are applied for negotiations.

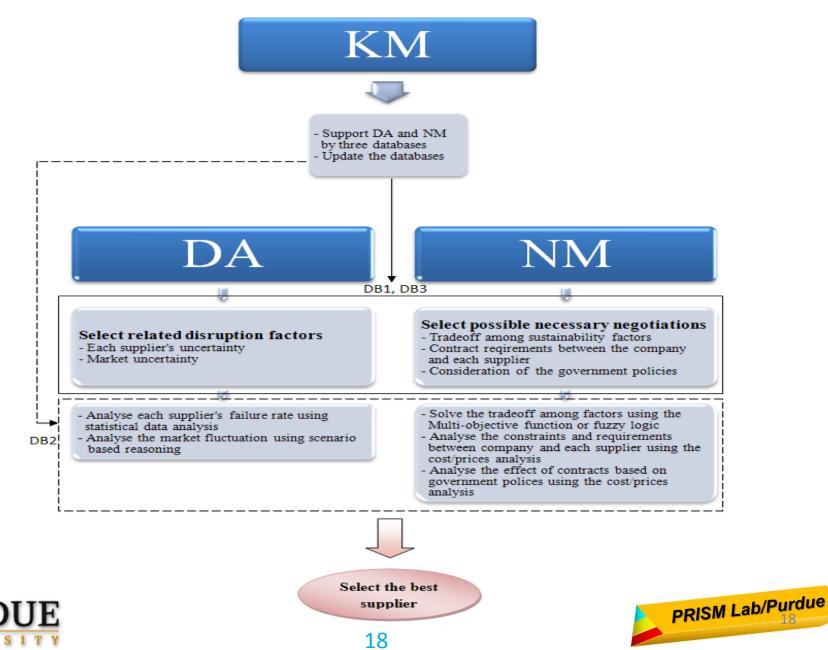
S-DSP (Cont.)

Knowledge Management (KM)

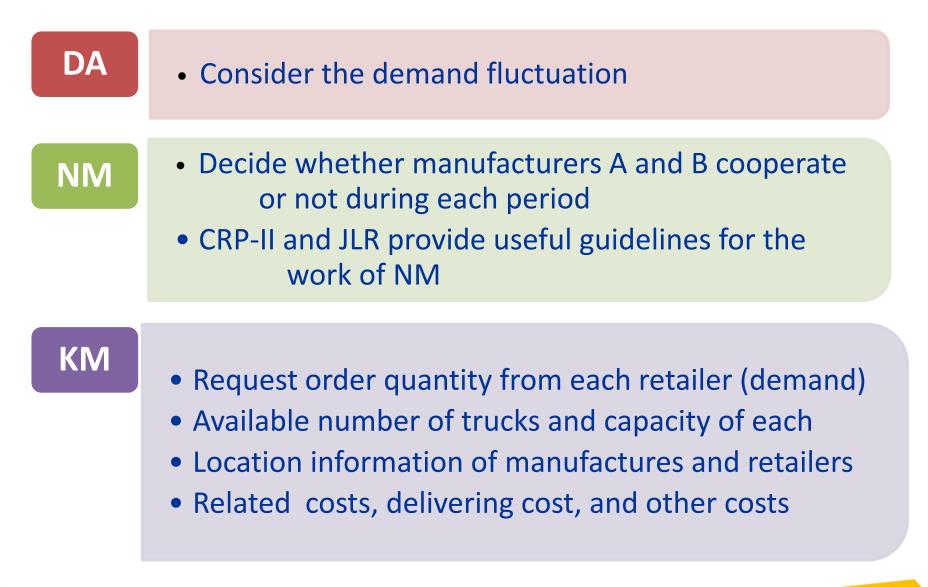
- Constant updating and analysis of databases and accurate connections between these databases and other subprotocols:
 - DB1: Relevant case studies and regulations/agreements of specific sustainability issues are organized according to the type of related members and characteristics of issues.
 - DB2: Various methodologies which help the decision making process are classified into two classes -- strategic and mathematical (operational) methods.
 - DB3: All other related and critical information, especially from outsources, are saved. Historical data of each member's demands, orders, accidents, violations, and specific events are saved here.

CCT principles in Decision Support Protocol, S-DSP

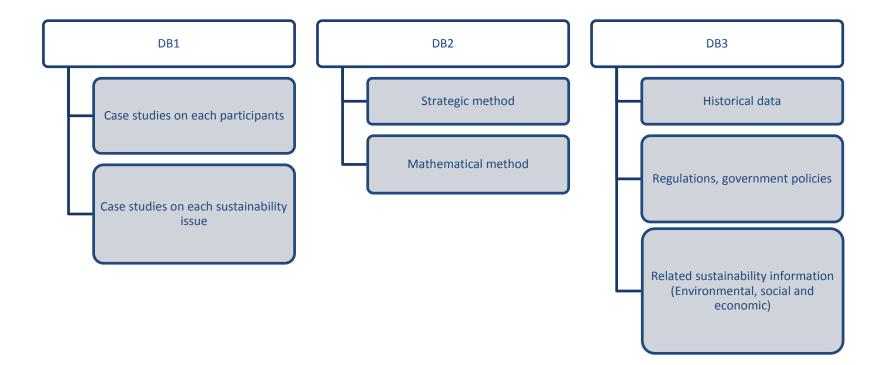

JLR Who participates in this "game"?	 With multiple parties, additional constraints and parameters of existing, negotiated formulations need to be considered. JLR analysis and decisions lead to add (or remove) "players" parameters, so the projected sustainability can be estimated effectively.
LOCC Optimize negotiation flows?	 Practically all industries are affected by sustainability goals, with mutually useful dynamic information flow between them, e.g., environmental policy changes. LOCC models use these information flows to negotiate and develop collaborative formulations and emergent organization changes.
CRP PARK Adapt parallel negotiation streams?	 Multiple sustainability criteria must be considered effectively and in parallel based on the characteristics of each party and within various situations. CRP/PARK are helpful when new constraints are added. Within CRP-II, the formulation can be revised in real time, adapted to temporal changes and constraints.



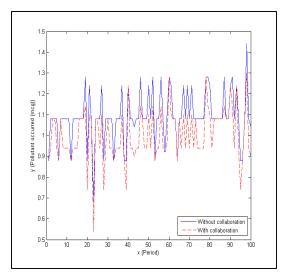
Applying S-DSP in Supply Networks


ERS

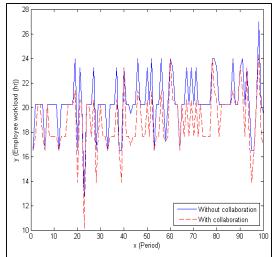
S-DSP for Sustainable Supplier Selection

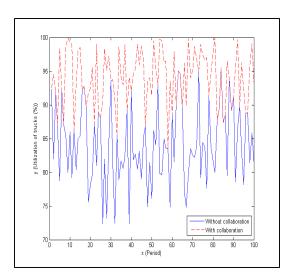


S-DSP for Sustainable Delivery Scheduling



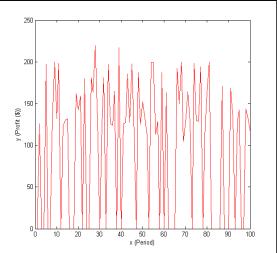
Data / Knowledge Bases

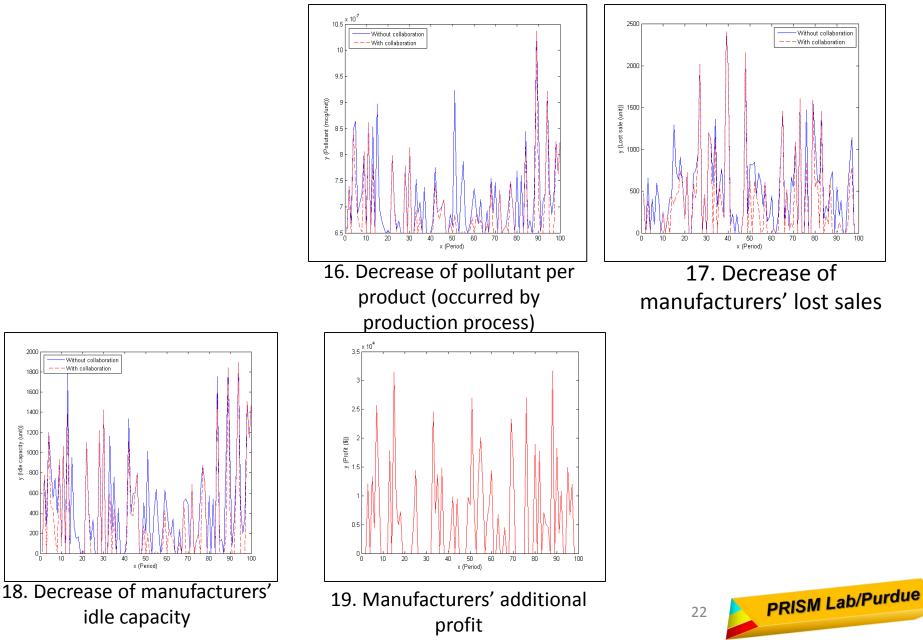

Case: Collaborative delivery scheduling and sustainability Significant impacts of employing S-DSP and CCT - -



a. Air pollutant (by delivery process) decreased

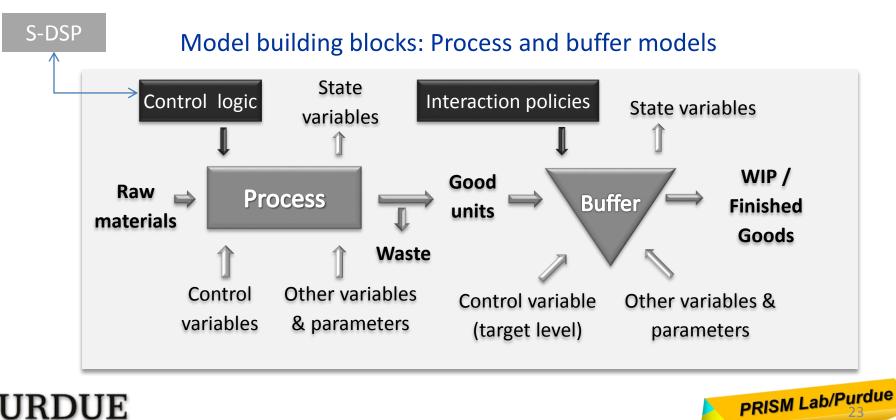
b. Employee workload decreased


Both reduced by between 9.7% and 20.6% with 12.8% average improvement


c. Manufacturers' trucksutilization increased on averageby 19.3%

d. Manufacturers' additional profit -- always non-negative

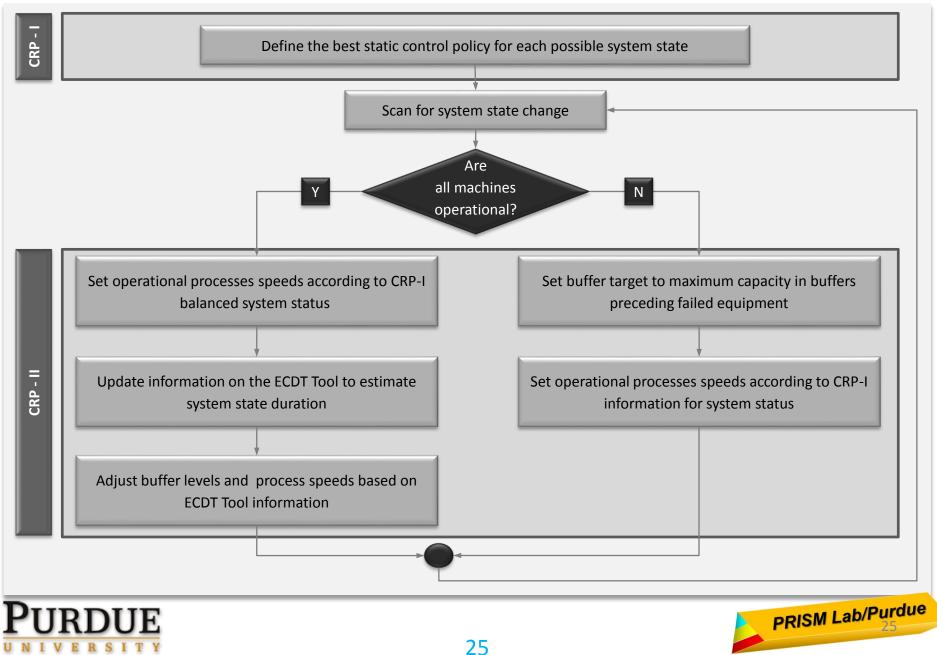
Seok et al., ARC, 2012


Case: Impacts of employing S-DSP and CCT

Collaborative Production Line Control Protocol - CPLCP

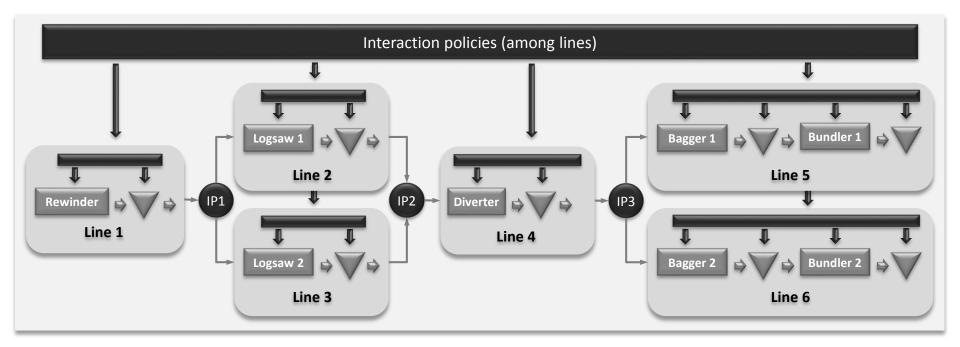
(Levalle et al., 2012)

- Streamlining sustainable raw materials procurement processes
- Rethinking distribution footprints, strategies, and alliances
- Increasing manufacturing performance and efficiency for economic sustainability



CCT Principles in CPLCP

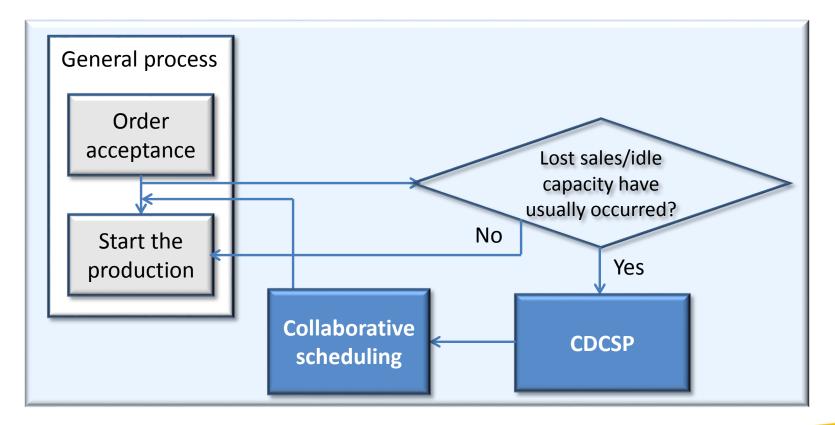
CRP I	 Machines and buffers are collaborative resources Collaborative resources' goal is to keep low WIP inventory while maximizing throughput, regardless of the system status The best static control policy is defined for every possible combination of process states, assuming that this condition is the steady state
CRP II	 Production rates and buffer levels adjustment based on the system's evolution (actual or forecasted by the <i>Early Conflict Detection Tool</i>)
CEDP	 Early Conflict Detection Tool (ECDT) predicts which machine is most likely to be the next to fail (based on historical information of time between failures) Conflict forecasting along with a prevention methodology enables the collaborating agents to take actions to minimize the impact of such conflict on the lines' performance
FTT	• ECDT coupled with a conflict prevention methodology provide the rules for machines to "help each other" overcome failures, thus making the production line more stable.



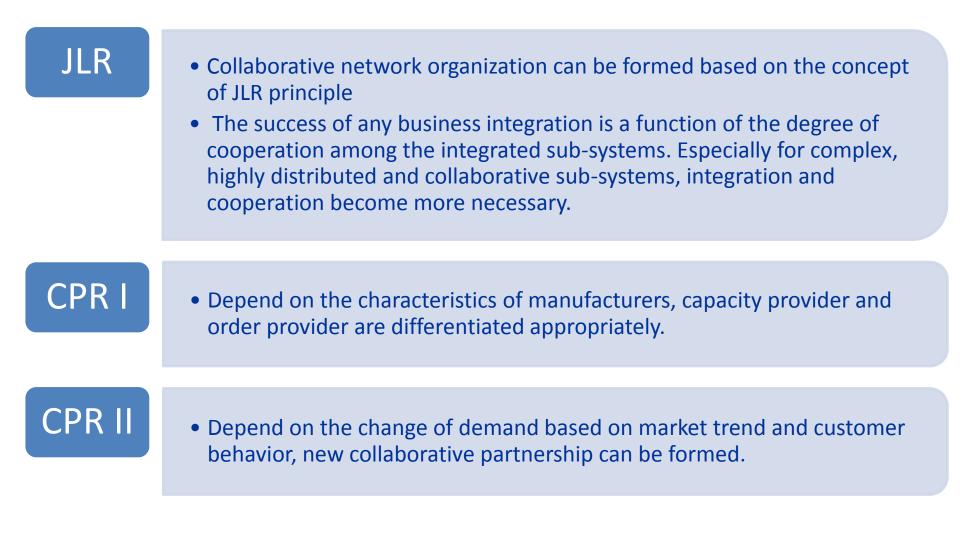
Workflow Simulation with CPLCP

Tissue Converting Line Control with CPLCP

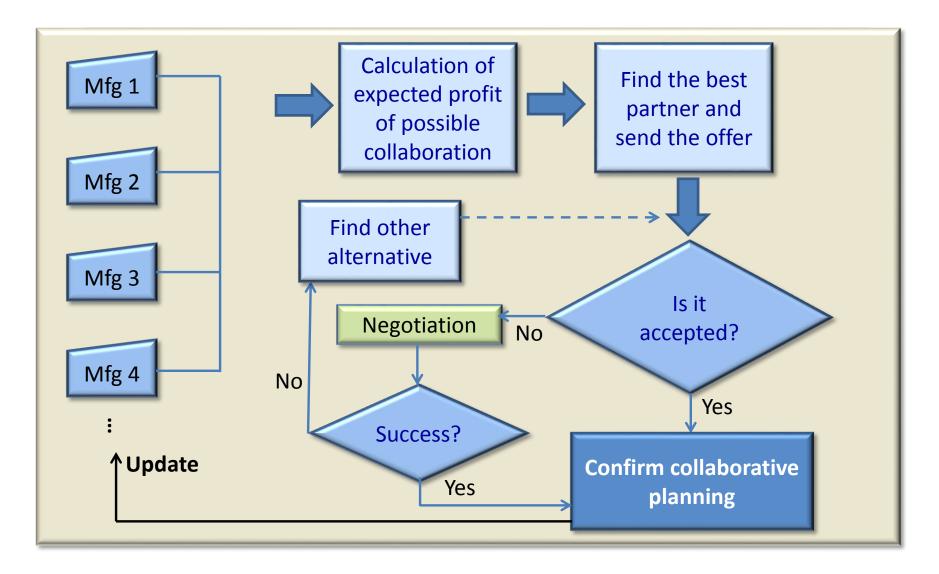
- Production line control under uncertainty conditions
- Highly adaptive and anticipatory methodology that enables collaboration between the different components of the lines to overcome failures and maintain sustainable throughput while keeping WIP low.



Demand & Capacity Sharing Protocol - CDCSP


(Seok & Nof, 2012)

- Enhance companies' sustainability in the long term
 - Improve resource utilization by minimize idle capacity
 - Increase customer satisfaction by reducing lost sales


CCT Principles in CDCSP

Workflow Simulation with CDCSP

Conclusions

- Sustainability is essential and complex, but must be achievable
- Some progress achieved in modeling, decision processes and algorithms, measurement, control models and control theory
- Collaborative mechanisms and information sharing are needed for better sustainability communication, planning, and control
- Collaborative intelligence over high-performance computing is emerging.

Acknowledgement

- Research reported here has been developed at the PRISM Center with NSF, Indiana 21st Century fund for Science and Technology, and industry support.
- Special thanks to my colleagues, visiting scholars, and students at the PRISM Lab and the PRISM Global Research Network, and in IFAC Committee CC5 for Manufacturing and Logistics Systems, who have collaborated with me to develop CCT and collaborative control knowledge.

References

- Braithwaite, P. 2007. Improving company performance through sustainability assessment. Proceedings of the Institute of Civil Engineers: Engineering Sustainability, 160(2), pp. 95-103, June.
- EU Millennium Development Goals (MDG) 7 report, United Nations, 2005.
- Ilgin, M. A. Gupta, S. M., 2010. Environmentally conscious manufacturing and product recovery (ECMPRO): A Review of the State of the Art", Journal of Environmental Management, Vol. 91, No. 3, 563-591
- Jeon, C.M., and Amekudzi, A. 2005. Addressing sustainability in transportation systems. Journal of Infrastructure Systems, v 11, n 1, p 31-50.
- Kiker, G.A., Bridges, T.S., Varghese, A., Seager, T.P., and Linkovjj, I. 2005. Application of multicriteria decision analysis in environmental decision making, Integrated Environmental Assessment and Management, 1(2),pp. 95–108.
- Kowalski, K., Stagl, S., Madlener, R., and Omann, I. 2009. Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197, pp. 1063–1074.
- Levalle, R.R., Scavarda, M., Seok, H., Nof, S.Y. 2012. Collaborative production line control for collaborative supply networks, Proceedings of the MOSIM, June.
- Rosenbaum, M., Sustainable Design Strategies, Solar Today, 1993.

References

- Seok, H., Nof, S.Y., 2011. The HUB-CI initiative for cultural, education and training, and healthcare networks, Proceedings of 21st International Conference on Production Research, Stuttgart, Germany.
- Seok, H., Nof, S.Y., 2012. Collaborative Demand and Capacity Sharing among Manufacturers on the Same Supply Network Horizontal Layer, Proceedings of the 2012 Industrial and Systems Engineering Research Conference
- Seok, H.S., and Nof, S.Y., 2011. Decision Support Protocol for Sustainability Issues in Supply Networks, Proceedings of the 2011 Industrial Engineering Research Conference.
- Seok, H.S., Nof, S.Y., Filip, F.G., 2012. Sustainability Decision Support System based on Collaborative Control Theory, Annual Reviews in Control.
- Sustainable Development: A Brief Guide, Swiss Federal Statistical Office, 2005.
- The Oxford English Dictionary, Oxford University Press, 1989
- Valentin, A., Spangenberg, J.H., 2000, A guide to community sustainability indicators, Environmental Impact Assessment review, 20(3), pp.381-392.
- Vieria, A Checklist for Sustainable Developments in a resource guide for Building Connections: Livable, Sustainable Communities, American Institute of Architects, 1993.
- Villeneuve, S., Painchaud, J., Dugas, C., 2006. Targeted sustainable development: 15 years of government and community intervention on the St. Lawrence River. Environmental Monitoring and Assessment, 113(1), pp.285-301.
- Yoon, S.W., Nof, S.Y., 2010. Demand and capacity sharing decisions and protocols in a collaborative network of enterprises, Decision Support Systems, 49(4), 442-450.

