Sustainability and Resiliency in Supply Networks

PRISM Lab/Purdue

PRISM Center Production, Robotics, and Integration Software for Manufacturing and Management

"Knowledge through information; Wisdom through collaboration"

PRISM Global Research Network

Shimon Y. Nof

PRISM Center, and School of Industrial Engineering, Purdue University

Cebu City, Philippines, Dec. 3-6, 2013

Asia Pacific Industrial Engineering and Management Society

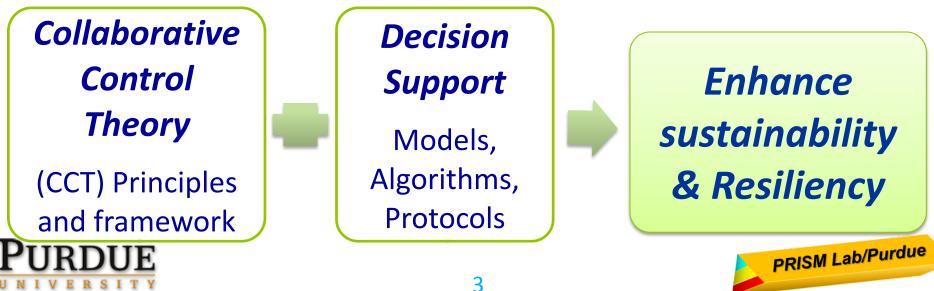
What is sustainability?

U.N. General
Assembly,
(2005)The reconciliation of environmental, social and
economic demands - the "three pillars" of
sustainability

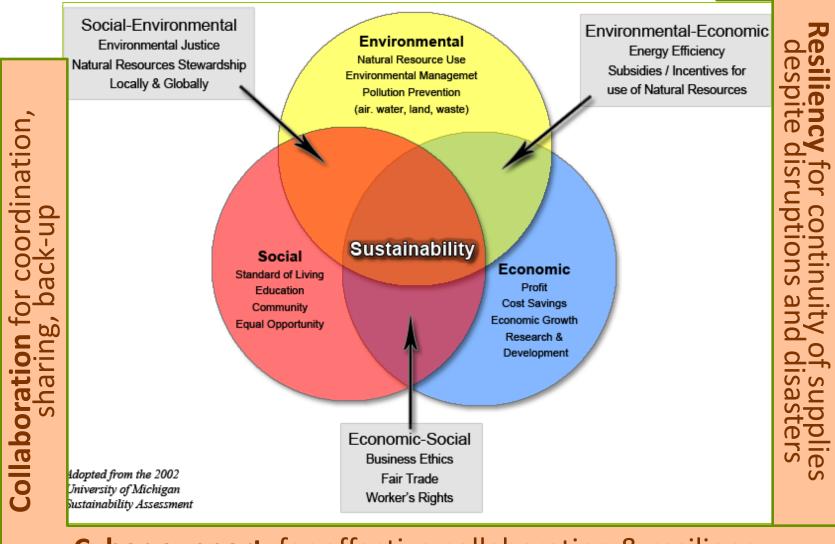
Villeneuve, Four dimensions define sustainable development:(2006) Ecological, economic, social, and <u>ethical.</u>

What is supply network resiliency?

Christopher	The ability of a system to <u>return to its original state</u>
and Peck	or move to a new, more desirable state after being
(2004)	disturbed


Pettit et al. (2010) The balance between a supply network's vulnerability and its capacity to overcome disruptions <u>through management</u> <u>controls.</u>

Vision

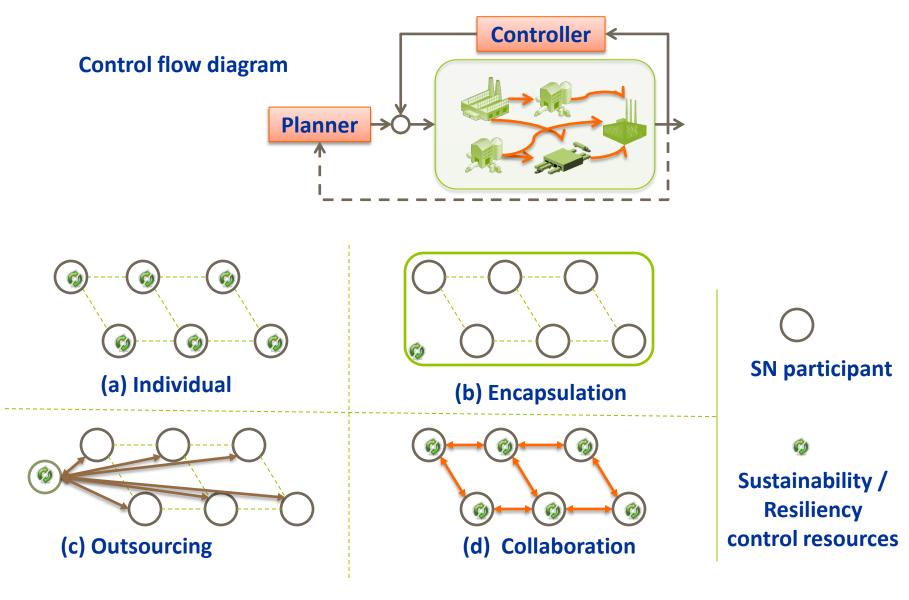

• Sustainability is like a seat-belt ... it may not improve driving,

but it can save our lives

- Sustainability strategic challenges:
 - Reduce waste, energy, hazards;
 - Overcome cultural / political differences;
 - Sustain profitability and viable communities
- **Resiliency challenge: Enable sustainability despite disruptions**
- Sust. & Resil. decisions: Complex, interdependent, need advanced modeling and control techniques + effective collaboration

Sustainability, Resiliency and Collaboration

Cyber-support for effective collaboration & resiliency


PRISM Lab/Purdue

S

Sustainability Solutions in Supply Networks

	Social	
	• Decision making in supply and	 Corporate social
	service network with cultural impacts	responsibility applied to
	(Proctor et al, 2011)	supply network (Hutchins
		& Sutherland, 2008)
	• Sustainable inventory models	
Environmental	(Bouchery et al., 2011)	 Analysis of the operations
	• Supplier collaboration model for	in a supply network from a
	sustainability (Seok & Nof, 2012)	sustainability perspective
	• Integration of life cycle assessment	(MacCarthy & Jayarathne,
	with sustainable development (Matos	2012)
	& Hall, 2007)	
• Assessment of	• Intersection of sustainability and	 Demand and capacity
environmental sustainability	global IT outsourcing (Babin &	sharing over a collaborative
in outsourced logistics	Nicholson, 2011) • Lean production	network to optimize
(Facanha & Horvath, 2005)	complementary to waste reduction	sustainable demand
• Integrated intelligent	and pollution reduction (King &	fulfillment and total profit
methods and decision	Lenox, 2001) • RFID impacts on	in supply (Yoon & Nof,
analysis for green supplier	recycled material supply network	2011)
selection (Kuo et al., 2010)	(Nativi & Lee, 2012)	Economic

General Architectures of Planning & Control (P&C) Models of Sust. & Resil. in Supply Networks

P&C Models (examples)

Architecture	Model	Example Reference	New Methodology	Data Analyzed	Results
(a) Individual	Multi-criteria decision analysis (MCDA)	Lahdelma et al. (2005)	MCDA framework k for collecting, storing, and processing all relevant information	Real-life problems	Making the decision process traceable and transparent
	Sustainable Economic Order Quantity (EOQ)	Bouchery et al. (2012)	Multi-echelon extension of SEOQ	Empirical data	Different regulatory policies to control carbon emissions, interactive procedure to identify the best option
(b) Encapsul-	Supply network design model	Nagurney & Nagurney (2010)	Sustainable supply chain network design model	Empirical data	A network optimization modeling framework for supply network examples
ation	Supply net resiliency framework	Petit et al. (2010)	Resource parallelism; net agility, robustness	Empirical	Anticipating & overcoming disruptions

P&C Models (examples, cont.)

Architecture	Model	Example Reference	New Methodology	Data Analyzed	Results
	Life-cycle assessment of each party's sustainability	Facanha & Horvath (2005)	The impacts of logistics outsourcing on environments	Real data from automobile industry	Comprehensive analysis of environment impact by the life-cycle of automobile logistics
(c) Outsourcing	Economic energy management model	Babin & Nicholson (2011)	Analysis of sustainability in global IT outsourcing provider	Public data	Global IT outsourcing is growing maturity for environmental and social responsibility standards
	Design of resilient supply nets	Klibi & Martel (2012)	MIP solution of backup depots and multiple sourcing	Montecarlo scenario generation	Coverage by backup supply depots based on proximity

P&C Models (examples, cont.)

Category	Model	Example	New Methodology	Data	Results
		Reference		Analyzed	
(d) Collaboration	Collaborative network for enterprises to share their demands and capacities	Yoon & Nof (2011)	Affiliation/ dissociation decision models	Experim- ental data	Single enterprise and collaborative network use coordinated to achieve mutual benefits
	Collaborative solution for product supply and delivery	Seok et al. 2012	Sustainability decision support protocol	Experim- ental data	Collaborative solutions for supply network achieve maximum sustainability

Collaboration (e-Collaboration) is Key

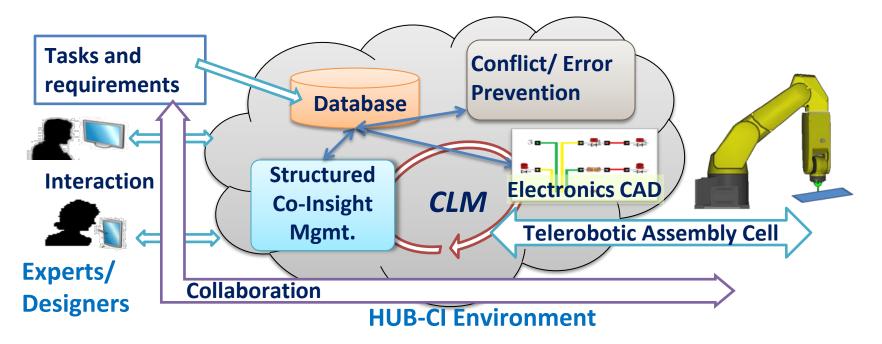
Value of collaboration by CCT, Collaborative Control Theory

- Effective collaboration can overcome sustainability and resiliency challenges:
 - Resolve conflicts, negotiate agreements, prevent errors
 - Fault tolerance by teaming and back-up
 - Optimize sharing (of transportation, resources), reuse, etc.
- CCT comprises six design principles plus a common analytic framework to enable different systems to achieve better sustainability through collaboration.
- HUBs ("Internet on steroids") enable CI, Collaborative Intelligence focused on improving human ability to collaborate effectively
- Cyber-supported collaboration → emerging Industrial Internet
- Webinar: Collaborative Systems for Education, Innovation, and Supply Networks, <u>IIE.org</u>, 2012

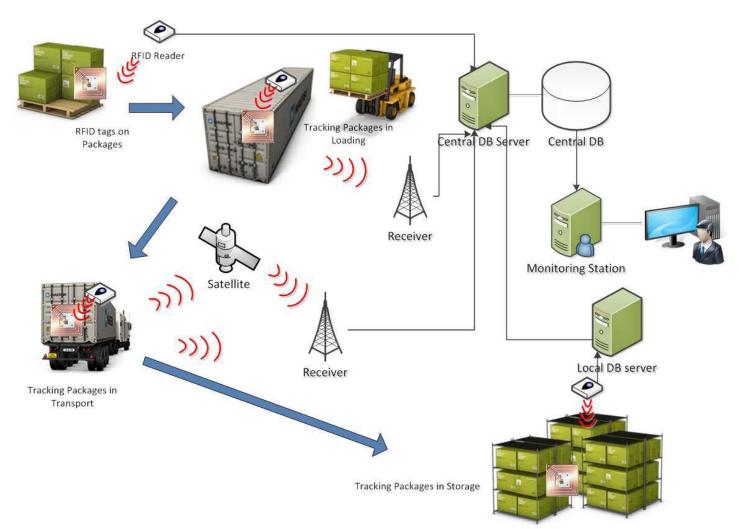
PRISM Lab/Purdue

- Velasquez & Nof: Ch. 88, Springer HB of Automation, 2009
- Nof: CCT for e-Work, e-Production, and e-Service, Ann, Rev. in Control, 2007

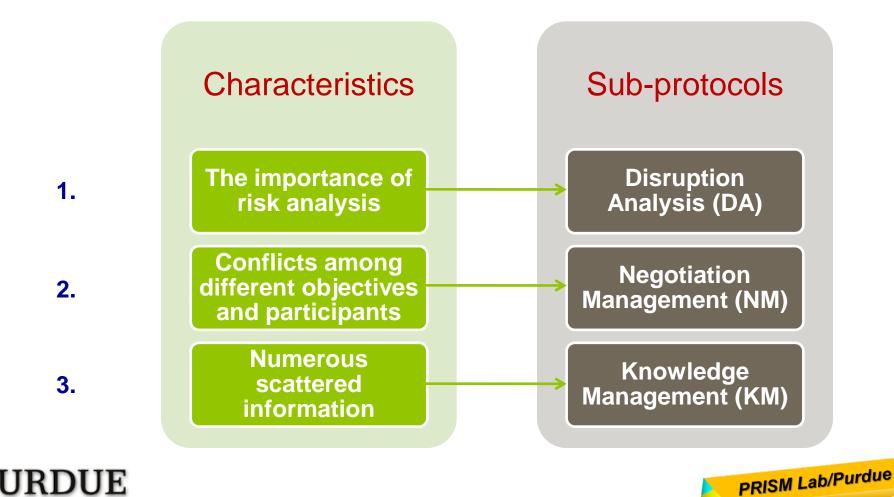
P&C models, algorithms and protocols* based on CCT for sustainability enhancement in real cases


- 1. Sustainability decision support protocol (S-DSP)
 - a. Sustainable supplier selection problem -- S/W works, India; NanoHUB, global
 - b. Sustainable delivery scheduling problem Automotive, USA; Reverse logistics, Costa Rica
- 2. Collaborative production line control protocol (CPLCP) Paper products, El Salvador
- 3. Collaborative demand and capacity sharing protocol (CDCSP) Airline companies, global; electronic assembly, USA

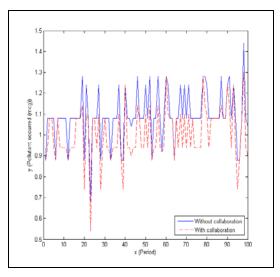
* Protocol: Distributed algorithm/procedure of algorithms for workflow optimization (vs. Protocol agreements)


Collaborative remote design & control of telerobotic production (Zhong and Nof, 2013) Prototyping, USA

- **HUB-Cl environment** -- hosted on a cloud, allowing accesses to the system through the Internet.
- Experts join the network to control telerobots in assembly cells, applying CI tools to support their collaborations.

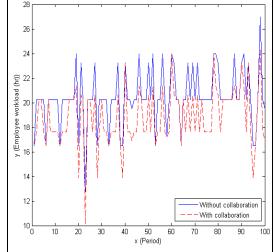

Collaboration: human-automation; human-human; cyber-physical devices, etc.

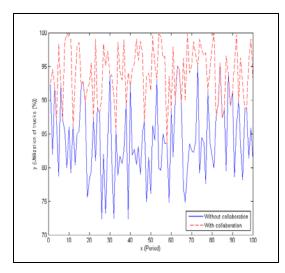
Supply network security with RFID tags: Prevent thievery, hijacking, tampering with fault-tolerant planning & control [Tkach et al., 2013] Personal Care products, Brazil



Decision Support Protocol - S-DSP (Seok & Nof, 2011)

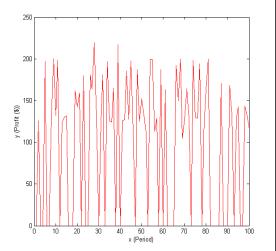
Model: Decisions for complicated sustainability conflicts; it consists of three sub-parts: (1) Disruption Analysis (DA), (2) Negotiation Management (NM), (3) Knowledge Management (KM)


Case: Collaborative delivery scheduling and sustainability Significant impacts of employing S-DSP with CCT - - -

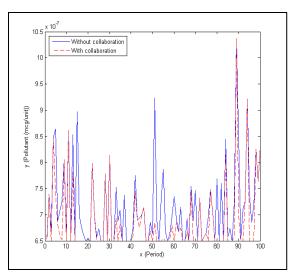


a. Air pollutant (by delivery process) decreased

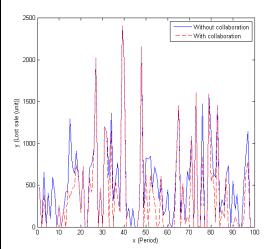
b. Employee workload decreased

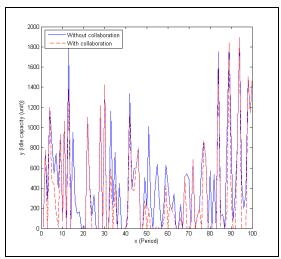

Both reduced by between 9.7% and 20.6% with 12.8% average improvement

c. Manufacturers' trucks utilization increased on average by 19.3%

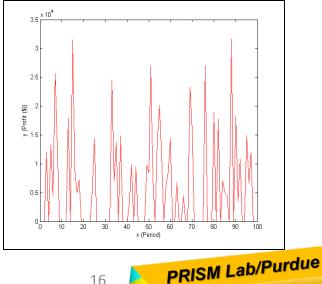

d. Manufacturers' additional profit -- always non-negative

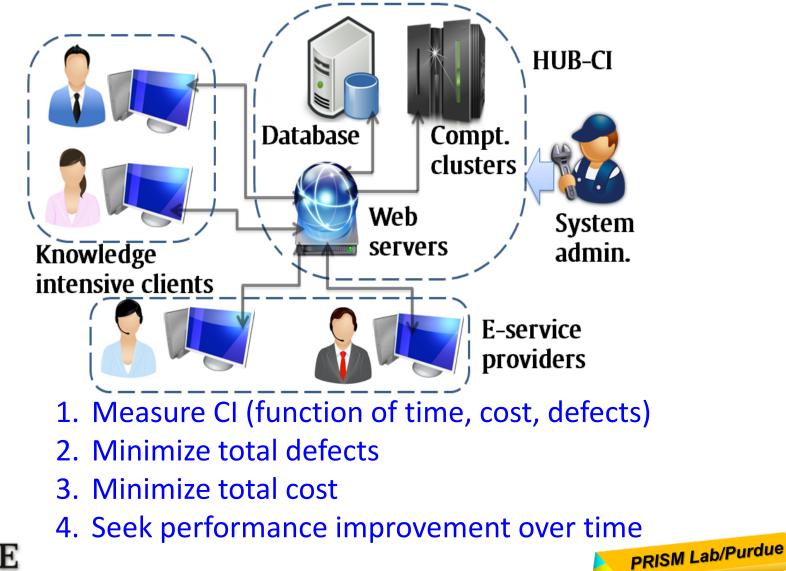
PRISM Lab/Purdue


Seok et al., ARC, 2012


Case: Collaborative production scheduling and sustainability Significant impacts of employing S-DSP with CCT - - -

a. Pollutant per product (occurred by production process) decreased by 0.5% to 27. 5%, with 6.8% average


> b. Manufacturers' lost sales decreased on average by 72.5%



c. Manufacturers' idle capacity decreased on average by 79.7%

> d. Manufacturers' additional profit

Knowledge production and logistics [Devadasan et al., 2013] HUB-CI and Collaborative Network Optimization

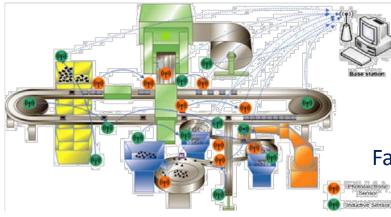
Innovation network HUB Models & challenges

- Emerging global networks

 (hubs/clouds) to
 trade/adapt/engage/learn
 diverse ideas through
 collaboration with sustainability
- ...challenges:
 - Cross-culture capabilities?
 - Multi-cultural interaction and infrastructures?
 - Challenged web-based applications?
 - Asynchronous multimedia?

Vision of HUB-CI EU-India Cross Innovation Network (examples) Cross Culture EU-India Cross Innovation Emergency Web Network Management application EU India Research centers Research centers Universities Universities Supply & Interactive Entre preneurs Entre preneurs Demand collaboration Network e-Learning and Training

Challenges of EU-India Cross Innovation Network targeted by HUB-CI

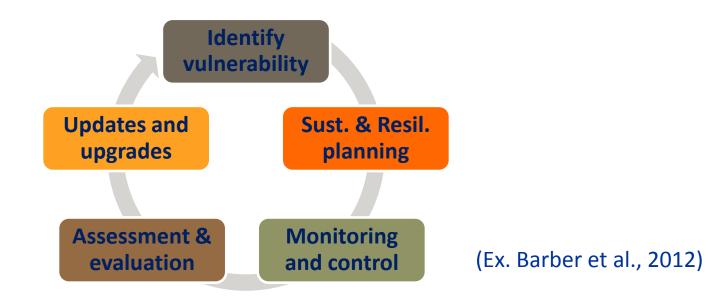

Summary: Emerging trends & examples

1. Trust management

The change in trust leads to the changes in collaboration structure (Ex. Becket and Jones, 2012)

2. Emerging Cyber-Physical Systems (CPS) / Industrial Internet

Facility sensor network (Ex. Jeong, et al., 2012)


Emerging trends & examples (Cont.)

3. Adaptive P&C to new sustainability demands

Sustainable planner and resilient controller that can be upgraded to meet new metrics (Ex. Seok et al., 2012)

4. Sustainability & resilience management lifecycle

Conclusions: Educational and Research Challenges & Opportunities

- Sustainability is essential and complex, but must be achievable
- Resiliency is essential and complex, but without it there is no chance for sustainability
- Progress is achieved in modeling, decision processes and algorithms, measurement, and collaborative control for better sustainability & resiliency
- Emerging: Trust; Cyber-Physical Systems; adaptive P&C, and Sustainability/Resiliency lifecycle.
- Collaborative intelligence over high-performance
 Internet is emerging. It may be our "seat-belt."

Acknowledgement

- Research reported here has been developed at the PRISM Center with NSF, Indiana 21st Century fund for Science and Technology, and industry support.
- Special thanks to my colleagues, visiting scholars, and students at the PRISM Lab and the PRISM Global Research Network, and in IFPR and IFAC Committee CC5 for Manufacturing and Logistics Systems, who have collaborated with me to develop CCT and collaborative control knowledge.