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1. Objective 

 

The purpose of this report is to study fundamental workflow logic for cyber collaborative 

future work and factories (C2F) as part of our NSF Grant 1839971: Collaborative 

Research: Pre-Skilling Workers, Understanding Labor Force Implications and Designing 

Future Factory Human-Robot Workflows Using Physical Simulation Platform. 

2. The Flow Junction as a fundamental 

manufacturing, production, and service workflow 

logic [This Section 2 is taken from [25] Sreeram and Nof, 2020, revised as 

PRISM Research Memo 2022-P2 in July 2022.] 

With consumers demanding from suppliers a wider range of products, and quicker and 

more accurate delivery capabilities, many manufacturing, production, and service 

systems often employ as part of their material flow process- “flow junctions,” or “flow 

control stations.” 

 

Flow Junction definition: In a Flow Junction, different parts or components arrive from 

multiple sources and are grouped and sorted based on common attributes: type of 

product, storage requirements, priority of order, destination in process, shipping or 

distribution plan, etc. 

 

The goal of utilizing a Flow Junction is to improve flexibility and cost/time effectiveness. 

Examples of such junctions include sorting and merging stations in: 

● Transportation (e.g., airports [1], shipping and distribution hubs, cross docking 

depots); 

● Food and beverage industry [2]; 

● Manufacturing and logistics [3]; 

● Construction parts and materials; 

● Automated storage and retrieval systems; 

● Healthcare and medical supply chains; 

● Test, maintenance and repair; and more. 

 

The general flow logic of a Flow Junction is shown in Figure 1. 
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Figure 1. Four Typical flows. Flow junction -- Source-- Destination --  

[From Sreeram and Nof, 2020] 

 

The current scope of this research considers the modeling, improvement and 

optimization of kitting stations for the electrical harness industry (KRS Case Study, as 

an example) [4, 5, 6]. 

 

Parts kitting (Figure 2) is a frequently used method to deliver pre-organized and often 

pre-inspected parts to assembly lines/workstations. Kitting policies usually involve 1) 

grouping all parts required to assemble one complete unit of end product or sub-

assembly; and 2) placing these grouped parts into one or more containers. 

 

The main advantages of kitting: Material flow downstream is simplified, errors are 

prevented or eliminated early; inventories, space requirements and holding costs are 

reduced. These advantages, however, come at the additional expense of supporting the 

additional workforce and automation required to perform the kitting operations, and 

additional cost involved with errors induced from this additional workforce [6]. 
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Figure 2: Kitting system scheme ([6]) 

 

Kitting tasks, taxonomy and future work advances 

 

Tasks involved in the kitting stations need to be performed in a procedural, pre-

determined and logical manner [7] , to ensure the process and involved tasks are simple 

and can be performed quickly. Small to medium enterprises depend on manual labor for 

kitting operations, and given the repetitiveness of these tasks, human error can be a 

prominent cause of errors and conflicts in material handling [8]. Any error arising from 

the kitting station can be a potential conflict for further steps downstream; additional 

correction costs, economic losses can be incurred if it is necessary to either correct the 

steps within the scope of the kitting policy or reduce the overall probability of these 

errors from arising [8]. Human operators perform a series of physical (picking, placing, 

traversing, storing, and scanning) and cognitive (decision-making, part-checking, and 

scan verification) – thus it becomes imperative to create a taxonomy that can address 

the following requirements: 

 

1. Determine different types of errors that can arise and their classification 

(cognitive, physical, prior error, etc.); 
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2. Map these errors to different logical steps of the kitting workflow based activities; 

3. Quantify the cost impact of these errors taking into consideration probability of 

these errors being detected, and cascading impact downstream. 

 

The taxonomy should enable material planners to identify the current gaps (of skill, 

operation, workflow) and initiate corrective measures to reduce the occurrence of errors 

and conflicts [8, 9]. Some examples of corrective measures include: 

1. Streamlined and simplified operations: By standardizing the involved process and 

ensuring minimal levels of specialization, human-induced errors can be 

minimized by reducing the cognitive load [10]. 

2. IoT/RFID based solutions: IoT/IoS based design has been shown to provide 

preventive maintenance of industrial systems in real-time [11]–[13]. While SMEs 

often rely on barcodes and hand-held scanners for material handling, the usage 

of RFID has gathered momentum within various supply chains [12], [14], [15]. We 

propose an IoT based kitting system that can reduce errors which originate due 

to cognitive actions (e.g., decisions such as acknowledging when the kit tray is 

complete and should be sent to temporary storage, when a part is placed in the 

wrong tray, or vice versa). 

3. Advanced AR/MR dynamic and responsive training of human operators: Adaptive 

intelligent tutoring systems [16]–[18] can be used to improve cognitive knowledge 

and skill sharing, retention, error and conflict reduction, improve and minimize 

costs and delays for cognitive and physical task training. We can envision the 

use of (Adaptutor) to improve the task performance for physical tasks (and later, 

also cognitive tasks) within the kitting workflow, since they also involve local, 

body-coordinated and spatial tasks as well. 

 

HUB-CI for workflow optimization and harmonization: To evaluate the usefulness of 

these improvements, we consider the development of a discrete-event simulator based 

on HUB-CI [19], [20] logic and services. This simulator takes a modular approach to 

integrate these improvements, and different levels of collaboration can be evaluated to 

determine the optimal operating parameters for such a system. HUB-CI is required to 

ensure that the proposed improvements are integrated into the workflow in a 

harmonized manner. We capture relevant simulated performance metrics such as 

operator error rate, average operation cost, time, and penalty costs to validate the 

different levels of HUB-CI. HUB-CI simulator is envisioned as part of our planned PRSP. 



7 
 

3. Learning Curve Models for task times and error 

rates  

Evaluation of improved processing time 

The learning curve model (JGLCM; Jaber et al., 2013) assumes that the operator learns 

with repetitive actions, which shortens the processing time. Therefore, we can assume 

that workers can learn from the avatar because it educates workers by demonstration 

and workers learn by following the avatar's demonstration. 

Thus, we can use JGLCM (Jaber et al., 2013) to calculate workers' improved processing 

time by using their initial processing time and learning rates. 

                            (1) 

 

Where  is the time to produce n th unit,  is the time to produce the first unit, n is the 

cumulative number of repetitions, and b is the learning exponent. The learning exponent 

is calculated as  , where   is the learning rate, x is a percentage 

of splitting  into two components, cognitive and motor. 

  

Evaluation of improved error rate 

Humans are forced to generate errors, which can only be suppressed by learning (Duffey 

et al., 2008). Therefore, we can calculate the workers' error rates by using their learning 

rates and experiences (working hours). 

                                                                  (2)  

 Where   is error (or failure) rate, k is the learning rate constant of proportionality, 

positive for learning and negative for forgetting,  is an experience,  is initial 

experience, for a novice or a new technology there is commonly no initial experience, so 

,  is initial error rate, and  is the final or irreducible minimum error rate. 
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As a result, we can evaluate the improvement of workers' skill proficiency due to avatar 

and IoT learning using the learning curve model and human error model mentioned 

above. The evaluation metrics will be processing time and error rate, and the 

effectiveness of avatar learning can be verified through analysis of changes in 

evaluation metrics before and after avatar learning.  

4. Simulation Description  

 

The simulation of the Flow Juncture is developed using Python programming language 

and object-oriented programming. It uses a discrete-event based approach towards 

workflow simulation. Illustrated in Figure 3, the workflow of the simulation consists of 

four consecutive sections. It starts with parts of products arriving from wire-cutting in 

section “Scan and Verify”, where the worker scans the parts and verifies their health. A 

healthy part will continue to “Deposit” section in which it is deposited to its 

corresponding tray with other parts of the product. In section “Move to storage”, the 

worker moves full trays to storage. A tray with all of the parts required for a product is 

considered full. The worker selects a location for the full trays in the final section. What 

follows are the two elements of the workflow logic. 

Worker 

The worker at the Flow Junction performs five actions, which are represented by 

five functions, scan, verify, deposit in tray, move to storage and put in location. 

The actions of the worker are enumerated below as in Figure 3: 

1. Scan:  the worker scans the part that arrives at the Flow Junction. 

2. Verify:  the worker verifies the health of the product. 

3. Deposit in tray:  the worker selects a tray and deposits the part in that tray. 

4. Move to storage:  the selected tray is moved to the storage if it is full. 

5. Put in location:  the worker selects a location for the tray. 

 

Simulation Logic 

The yellow symbols in Figure 3 show those validity checks in the simulation.  If 

a decision is correct the simulation moves on, otherwise the cost of the error is 

calculated and the loop starts over.  These validity checks can be identified by 

their numbers in each logical section of Figure 3.  They are defined as follows: 
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1. [2.1/2.2] Verification check:  if the part is faulty and the worker correctly identifies 

it, the error is from the Wire-cutting.  A rework will be requested to fix the faulty 

part.  If the part is not faulty and the worker identifies it correctly, the simulation 

continues.  If the worker’s decision is the opposite of the part’s health, the worker 

has made an E1 error. 

 

 
Figure 3: Workflow of the simulation 

 

2. [3.1] Deposition check:   if the tray that the worker selects is correct, the 

simulation continues.  Otherwise, the worker has put the part in the wrong tray.  

In that case he/she has made an E2 error.  The selected tray and part will 

eventually be sent to assembly or wire-set, where they will be sent back to the 

Flow Junction. 

3. [4.1/4.2] Moving to storage check: the correct decision is to keep the incomplete 

tray at the Flow Junction, or take the complete tray to storage.  If the worker 
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sends an incomplete tray to storage, error E4 has been made and the tray will be 

returned back to the Flow Junction.  If he/she keeps a complete tray at the Flow 

Junction, an unnecessary delay has been added. This is error E5, which is 

caused by the worker. 

4. [5.1] Location selection check:  the location that the worker selects is either 

empty or occupied.  In case of the former, the tray will be placed at the selected 

location, but the latter means E6 has occurred. When the location is not empty, it 

means either the worker wants to put the current tray in the wrong location or 

he/she has done it for a previous tray.   In either case, a delay will be added to 

put both trays in their correct locations. 

IoT and Avatar  

IoT has been suggested as an improvement for the Flow Junction process. Sensors and 

miniature LED light bulbs can visually help workers in depositing parts, moving full trays 

to storage and selecting the correct storage location. This will significantly reduce the 

error rate and time of operation. The effects of IoT on workers has been simulated using 

Equation 2, through a function that can be applied to a worker object (referring to the 

object-oriented programming method). This will reduce the initial error rates of the 

worker in different tasks. 

 

Avatar (or Adaptutor), is an AR based tutoring system for physical tasks in machine-

based environments. As a proposed improvement for the Flow Junction process, we 

assume that workers are initiated to the AR tutoring for a fixed number of iterations, and 

then reintroduced into the workflow. The objective of avatar is to improve the task 

performance of operators in an adaptive manner, responding to individual learning 

styles and skill levels. Hence, the effect of avatar on task performance is simulated 

using Equation 1, which uses the worker skill level, their cognitive and physical task 

learning abilities and the number of iterations of avatar they require. Avatar is assumed 

to be applicable for each of the tasks (scanning, verification, deposit and location 

storage). We do not consider the cost of tutoring, worker time-outs due to the tutoring in 

this simulation.   

 

Assumptions 

 

In the simulation of the workflow, once an error occurs, its costs are calculated and 

added while the parts involved in that error will be sent back to the initial step of the 

simulation. The probability of two or more consecutive errors for the same part or the 

same tray will be so small that we can assume that it will not occur. Therefore, the tray 

containing an erroneous part (faulty or incorrect part) will be sent to the assembly, 

where it would get sent back to the Flow Juncture. 
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The other assumptions in the simulation are regarding the initial attributes of the worker, 

products and parts. However, these values can be easily modified based on the 

requirements. Also, it was assumed that there are a fixed number of parts and products 

in each run of the simulation, which will end once all the parts have been sent to the 

assembly in the correct trays.  

Performance Metrics 

The goal of the simulation is to quantify and measure the performance of workers in the 

Flow Junction and the effects of Avatar and IoT on their performance. To that end, the 

workers and Flow Junction have been simulated based on real-world attributes, some of 

which are designed as inputs while the rest are derived from them. The inputs include 

skill level of the worker, cognitive and motor learning ability coefficients, and initial 

experience for the worker, and irreducible error rate, base error rate, and base task time 

for the Flow Junction. Note that the worker inputs can change in multiple runs of the 

simulation as we create different workers, while the Flow Junction inputs will remain the 

same.  

 

To achieve the goals of the simulation, i.e., four types of performance metrics have 

been designed as outputs. (i) The first performance metric is the cumulative time of 

operation (scan, verification, deposit, storage location) per run. (ii) The second is the 

number of errors per task and their cumulation. (iii) Using the second type and the total 

number of decisions the worker makes, the total error rate per run is calculated as the 

third performance metric. (iv) The final type of performance metric is the costs per run 

which is calculated according to the previous three.  

 

The costs are threefold: cost of error, cost of conflict and cost of operation. Each error 

has its own cost, depending on the number of products it affects and the stage in which 

it occurs. Some of the errors will also cause conflicts in later stages. For instance, if the 

worker sends a faulty part to assembly, a conflict will occur, but if he sends a healthy 

part back to wire-cutting, only the cost of error, which is unnecessary rework will be 

added. The cost of operation is largely influenced by the time the worker takes to finish 

a task. It is important to note that every error that the worker makes will result in rework, 

which in turn will increase the total time spent on tasks and as a consequence, cost of 

operation.   

 

Generated Data-frame  

 

In the beginning of the simulation a data-frame is generated with the initial attributes of 

the worker and his performance on one simulation run as its columns. The attributes 
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include learning abilities, error rates, required time and initial experience. The columns 

related performance include the time spent on each task and the number of errors. After 

each run the settings and results of the simulation will be recorded in the data-frame. 

Figure 4 shows a snippet of the generated data-frame.  

 

 
Figure 4: A snippet of the generated data-frame 

5. Experiment Design 

In this experiment, multiple simulation protocols are considered. Based on the traditional 

workflow, each proposed improvement (protocol) is introduced into the workflow using 

HUB-CI logic, to ensure that it is integrated and can communicate smoothly with the 

workflow. The protocols are described below: 

 

Level 0: Traditional protocol (regular workflow) 

HUB-CI Level 1A: Traditional Workflow + avatar training  

HUB-CI Level 1B: Traditional workflow + IoT/MHS 

HUB-CI Level 2: Traditional workflow + avatar + IoT/MHS 

 

Based on the proposed simulation protocols, the following experiments are devised: 

1. Experiment 1:  Comparing effect of Avatar, IoT/MHS improvements on the same 

worker 

2. Experiment 2: Comparing Avatar, IoT/MHS improvements across workers of 

different skill levels 

 

In each of these experiments, we monitor the performance metrics across a fixed 

number of runs for each simulation protocol, which are then averaged out. Relevant 

tables and graphs are then populated. 
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6. Simulation Results 

Experiment 1:  

Experiment 1 monitors the overall costs (broken into error, operation and total) across 

multiple runs of the simulation. In the first case, we consider the working of a worker 

with lower skill ability (even though a range of values for low skill level can be 

considered, we assume singular values for this simulation).  

 

a. Novice Worker 

 
Figure 5: L-R - Cost Comparison across protocol levels. a) Error Costs, b) Operation 

Costs, c) Total Costs 

Figure 1 plots each of the costs from top to bottom, while differentiating across HUB-CI 

protocol levels from left to right. It can be seen that HUB-CI Level 1A does not affect 

error costs significantly (actually showing a minimal increase in error costs, which is not 

significant enough to be deemed effective (Table 3), which is not the case for HUB-CI 
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Level 1B - which produces a significant effect on error costs. The reverse can be 

observed for Operation costs, where Level 1A seems to dominate while Level 1B has 

minimal effect. However, Level 2 shows the largest difference in costs when comparing 

to Level 0. Given our assumption that we do not consider avatar training costs or IoT 

operation costs, Level 2 provides the maximum benefits, as seen from Table 1 and 2 

(36% reduction in total costs). Table 3 provides the statistical tests to compare the 

mean costs across different protocols. It can be seen that while error costs are not 

significantly different between baseline and level 1A, there is a significant difference in 

operation costs and total costs for level 1A.  

 
Table 1: Errors, Operation cost across Protocols 

 
Table 2: Percentage differences (compared to Level 0) 

 
Table 3: Statistical tests for a novice worker 

  



15 
 

b. Experienced Worker 

 
Figure 6: L-R - Cost Comparison across protocol levels. a) Error Costs, b) Operation 

Costs, c) Total Costs 

For an experienced worker, the relevant cost graphs are shown in Figure 6. In this case, 

the benefits of each HUB-CI protocol are lower but still significant, owing to the skilled 

nature of the worker (Table 6) in relation to the learning curve model (Equation 1). While 

the magnitude of the costs for the skilled worker are lower compared to a novice worker, 

it can be seen that the HUB-CI Level 2 protocol provides statistically significant cost 

reductions (18% reduction in costs when compared to baseline). The statistical tests 

shown in table 6 allude to results similar to table 3, but in comparison the evidence 

against null hypothesis is of lower magnitude (as that of a novice worker).  
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Table 4: Errors, Operation cost across Protocols 

 
Table 5: Percentage differences (compared to Level 0) 

 

 
Table 6: Statistical tests for Experienced worker 
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Experiment 2: Novice vs Experienced Worker 

 

Table 7: Cost comparisons across workers 

In this experiment, for each type of worker, the costs are compared before and after the 

improvements are introduced. Figure 7 shows the relevant performance metrics, and it 

can be seen that while both types of workers show positive improvements, the 

magnitude of these improvements are larger in the case of novice workers (Reduction in 

total cost: 28% for novice worker, 24% for experienced worker). This relates also to the 

fact that with increasing skill level, it is more difficult to reduce error rate and task 

performance. This suggests maturity of the avatar tutoring, and any improvements 

beyond the current level require exponentially more investment/time. 

 

Figure 7: L-R - Before, After improvements: Cost comparison 
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7. Conclusions 

1. This report discusses the design, modelling and evaluation of a multi-agent 

simulator for a flow junction workflow 

2. We design the simulation using HUB-CI logic, where humans, parts, trays/kits 

are considered as individual agents with specific attributes (qualities).  

a. Human agents are modelled with specific task performance and error 

rates related to their skill level  

b. Skill level is a relative term which depends on the set of tasks they 

perform. Hence, it can also be considered as a skill-gap 

3. We propose two improvements to the baseline workflow of the flow junction: 

a. Avatar/AR based tutoring of operators: From preliminary data analysis, 

lack of skilled operators showed significant correlation with error 

occurrences in the workflow. Thus, we envision the use of an AR-based 

tutor for machine/physical tasks which uses the operators cognitive and 

physical learning abilities to improve their own task times  

b. IoT based MHS design: In order to improve the awareness/reduce 

cognitive load of the operators, we consider an IoT based kit design where 

the relevant kits, locations employ IoT based LED’s/lighting to signify the 

relation between parts, kits and locations. This is aimed towards reducing 

error rates of operators working in manual scanning, placing and location 

tasks 

4. HUB-CI logic is used to integrate these two improvements as modular additions 

to the workflow, ensuring workflow continuity and optimized interactions between 

the workflow and improvements  

5. Based on the simulation results, the following can be observed: 

a. HUB-CI Level 1A (Avatar only) provides statistically significant 

improvements to operation costs. The degree of the improvements 

depends on the skill level of the worker - the maximum benefits are 

provided to lower skilled workers, reducing skill gap to maximum extent. 

Higher skilled workers showed improvements in performance but not to 

the same extent as lower skilled workers. 

b. HUB-CI Level 1B (IoT/MHS) shows statistically significant results in 

reducing error rates (and consequently, error costs). However, it does not 

produce significant results on the operation costs 

c. HUB-CI Level 2 protocol showed the higher overall reduction in total costs, 

showing a 36% reduction in costs for lower skilled workers, and 18% 

reduction in costs for higher skilled workers 

6. We can thus show quantifiable improvements to the workflow by our proposed 

improvements design and HUB-CI as a workflow integrator.  
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8. Limitations 

1. The assumptions made about the proposed learning curve models for avatar, IoT 

based improvements need to be validated through real-world experiments. 

2. Additional experiments with avatar need to be done to assess the relation of the 

tutoring and the cognitive and physical learning abilities - the real nature of their 

relation has not been researched/evaluated in real-world scenarios. 

3. The proposed IoT design, while hypothesized to improve the awareness of the 

operator, need to be validated by use of physical experiments - to also confirm 

the relation between awareness and error rates. 

4. We have not considered costs such as training cost of avatar, implementation 

and maintenance cost of IoT/MHS. These need to be considered in the future 

once clearer estimates of the costs can be provided. 
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