

1

Comments are invited and should be directed to the author at the address listed below.
Please do not reproduce in any way without the permission of the authors. A complete
listing of reports may be obtained by contacting the PRISM Center, School of Industrial
Engineering, Purdue University, Grissom Hall, 315 N. Grant St., West Lafayette, IN,
47907-2023.

DESIGN OF A TASK PLANNING CONFLICT
AND ERROR DETECTION SYSTEM

WITH ACTIVE PROTOCOLS AND AGENTS
Chao-Lung Yang, Shimon Y. Nof

PRISM Research Memorandum No. 2004-P1

August, 2004

This research is supported in part by GM R&D Center.

Juan D. Velasquez
Research Series Coordinator

PRISM Center
School of Industrial Engineering

Grissom Hall
315 N. Grant Street
Purdue University

West Lafayette, IN 47907-2023
jvelasqu@exchangepurdue.edu

2

Design of a Task Planning Conflict and Error Detection System with Active
Protocols and Agents

Chao-Lung Yang, Shimon Y. Nof

August 2004

Executive Summary

In this research, an agent-based Conflict/Error Detection Protocol (CEDP) is

developed to continuously detect conflict and error problems in a distributed

collaborative task-planning environment. By applying Active Middleware architecture, the

detection protocol can help detection agents and support their evaluation of the

detection process, and exchange detection information among collaborative participants.

A measure called “conflict-severity” is developed to evaluate propagated conflict

situations and assess the seriousness of the conflict; and if justified, a possible detection.

Experiments with CEDP have been run on three basic Co-net forms, linear, tree, and

parallel. The experimental results show that the CEDP is able to detect conflict and error

propagation in different task dependency networks. A well-design CEDP is important,

because an effective communication mechanism to improve the quality of CE detection

in a collaborative, distributed network will determine the benefit to the company.

Therefore, based on this research, recommended design guidelines for CEDP are

developed.

Acknowledgement
This research has been developed with the PRISM Center support, and support from

GM R&D Center Project on "Design of Active Middleware for Error and Conflict

Detection (2004)". This paper is based in part on C-L. Yang’s M.S.I.E. thesis which was

completed in August 2004.

3

1. Introduction
 Distributed collaboration among organizations is common in business and
manufacturing nowadays, because it enhances the effectiveness of operations.
Combining the expertise and attributes of different participants, and synthesizing their
achievements provide enterprises with more flexibility and the ability to overcome
challenges in the complex business world. For example, in a supply network, enterprises
distribute the tasks by selecting specialized skills from different enterprises. In a
distributed design project, for instance, team members contribute their expertise to
achieve the common design objective cooperatively. No matter how the collaboration is
formed or organized, the goal of each participant involved in the collaboration is to finish
the assigned tasks as accurately and efficiently as possible.

 However, conflicts and errors (CE) are unavoidable in a distributed collaborative
environment. Since every participant in the collaboration might have their own expertise,
local resource management, and project-based schedule, conflicts between different
participants’ expertise, schedule, or operation seem inevitable. In other words, conflict
management is necessary in collaboration networks and teamwork projects. Many
researchers have provided successful solutions for conflict resolution in a problem-
solving environment. Examples include design objective problem-solving for concurrent
engineering [Tan et al. 1996, Khanna et al. 1998, Li et al. 2002, Lara and Nof 2003], and
exception handling in workflow systems [Hagen and Alonso 2000, Klein 2000, Klein and
Dellarocas 2000, Luo et al. 2000, 2003].

Most of the previous work has focused on how to solve CE problems. The
findings suggest that the information exchange among Co-Us1 is crucial. However, few
researchers define the type of information that should be shared or exchanged to
facilitate conflict detection and how Co-Us communicate with each other from a
detection perspective. Finally, once a conflict occurs, a means to measure a conflict has
not yet been addressed.

 Once a CE happens in a collaborative environment, this unexpected event might
also affect other participating members. In our research, we define this situation as CE
propagation. For example, if a schedule conflict occurs in a member’s operation, it might
change its operations after rearranging the schedule and solving the local conflict. Yet
this updated schedule might also cause other collaborating members to experience
schedule conflicts. If we can recognize the “infection area”, that is a set of members
affected by a detected CE, a better CE resolution/recovery method can be applied to
moderate over-all CE problems. Thus, this kind of CE propagation must be detected
once an error or conflict occurs and the “infection area” of the CE needs to be located.

To investigate CE problems in a collaborative environment and develop
applicable information mechanisms and measures, three related research problems are
defined:

a. Once a conflict or error occurs in a certain autonomous entity, how can this event
affect other entities within the coordination network?

Once a CE event occurs, if it is not detected and resolved, it might also affect
other participants due to the error, or the task dependency between participants.
When a CE occurs, it is important to know how to inform or report about it to

1 A Co-U is a collaborating unit, any member of the Co-net, which is the collaborative network model of
the environment as defined below.

4

responsible members or supervisors. Furthermore, how to locate the
conflict/error “infection” area is also important for the resolution/recovery stage.
Only after identifying who the problem initiators are and those that will suffer from
it, can the negotiation process among CE insiders for resolving the problem be
performed effectively.

b. How can a CE detection protocol (CEDP) be developed and specified?

In a distributed environment, an individual entity makes independent decisions
based on its limited information. For example, once a CE problem occurs, the
announcement information about the CE problem should be circulated among
Co-Us in order to caution dependent participants and enhance the overall
performance. A Co-U can request other Co-Us to provide CE detection or
evaluation results. A detection protocol that applies active middleware
components to share detection information is our focus in designing a
communication method in Co-net.

c. How can CE measurement be defined to represent the relative seriousness of a
given CE event?

When conflicts and errors happen, the methods to measure the severity of a
problem are a relevant question. If the CE seriousness measure can be defined
properly, this measure can provide the Co-U with the CE resolution priority when
performing the next-stage resolution process. Besides, determining that a Co-U
has high frequencies of CE and can cause potentially serious damage implies
that this Co-U’s tasks have to be redesigned to prevent damages; its tasks can
be quarantined until its performance is improved.

 The paper is organized as follows: Section 2 addresses the research
background and literature review. In Section 3, conflicts and errors in a collaborative
environment are defined. Based on this definition, we model CE propagation. Section 4
describes a proposed conflict/error detection protocol (CEDP) and conflict/error
detection agent (CEDA) that focuses on task specification conflicts and CE propagation.
In Section 5, an experiment that applies the developed CEDP in three basic dependency
networks is conducted. Finally, Section 6 includes observations, conclusions and
recommendations.

2. Research Definitions and Literature Review

Cooperation unit (Co-U): the cooperation unit (Co-U) is an autonomous working unit
that performs tasks to achieve its goals and coordinates with other Co-Us to accomplish
the common goal of a set of Co-Us. They can be humans, machines, workstations,
enterprises, etc., depending on the scope of the collaborative environment. A Co-U can
be represented by five tuple: G, T, A, R, and S (Eq. 1):

},,,,{ SRATGUCo =− (1)

Where G: Co-U’s Goal, e.g., profit and/or survival;
 T: Set of Tasks that a Co-U must perform to achieve its goal (G);
 A: Set of Activities that a Co-U runs in order to accomplish the tasks (T);
 R: Set of Resources that a Co-U consumes while running the activities (A);
 S: Set of States that represents a Co-U’s current situation of G, T, A, and R.

5

Each Co-U performs the tasks (T) by executing the activities (A) and using the
limited resources (R) to achieve the goal (G). The state (S) is used to describe the
current situation of goals (G), tasks (T), activities (A), and resources (R). The goal of a
Co-U can be defined by it or assigned by its supervisor. A Co-U might receive tasks from
other Co-Us, assign tasks to other Co-Us, or define its tasks for fulfilling its local goals.
The activities are practical actions or procedures that are needed to complete tasks. In
order to execute activities, each Co-U must consume its own resources or share
resources.

Coordination Network (Co-net): Co-net is a network that enables a collaborating
process among a group of Co-Us such as agents, enterprises, and operators to achieve
a common goal. Each Co-U within the Co-net exchanges information to achieve its
individual tasks (T) and fulfill the common goal of all members. We extend
Anussornnitisarn’s (2003) definition of Co-net by adding a common-goal and resource
component:

Co-net = {π, υ, τ, α, λ, σ} (2)

where π: Set of autonomous Co-Us in a Co-net (π∈−UCo);
 υ: Set of common goals that should be achieved; G is a subset of υ. (υ∈G);
 τ: Set of tasks that can be processed in a Co-net; T is a subset of τ. (τ∈T);
 α: Set of activities for each participant (π); A is a subset of α. (α∈A);
 λ: Set of resources that can be used in Co-net; R is a subset of α. (λ∈R);
 σ: Set of coordination mechanisms that are used by each Co-U (π).

The Co-net is a complete view of an operation working space. It might be an
assembly line, workflow system, supply system, design teamwork or any kind of
collaborative environment. Many elements comprise a Co-net, for instance, people,
devices, resources, capital, social negotiation, information systems, etc. All elements of
a Co-U such as goals, tasks, activities, and resources are subsets of a Co-net’s
components, respectively.

The Co-U and Co-net define the scope of a collaborative environment. A Co-U
represents a participant of collaborative activities. A Co-net is a combination of many
Co-Us. Each Co-net has its own goal (common goal) that should be achieved by
involving Co-Us. Every Co-U communicates with others by certain coordination
mechanisms. The tasks, activities, resources of a Co-net are preformed, executed, and
shared among Co-Us, respectively.

Task Dependency
 In a distributed collaborative environment, the coordination between autonomous
participants is about managing task dependencies [Anussornnitisarn and Nof, 2001,
2003]. Based on Malone et al. and Khanna et al.’s work, three essential task
dependencies that are flow, merging, and sharing represent the base of any type of
complete task dependencies. Combining basic types of task dependencies, a complete
task flow or Co-net can be formed and the relationships of Co-Us belonging to the Co-
net can be described by these task dependencies.

6

 Since each collaborative member has only local information about the task
dependencies, if conflicts or errors occur in a Co-net, the lack of CE information might
cause wrong or inadequate decisions in the resolution processes. In either case, the
conflict or error propagates within the Co-net. In this research, we study the conflict or
error propagation in three structures of Co-nets: linear, tree, and parallel, which
represent the most common types of task dependencies.

a. Linear Co-net

 Linear Co-net is a relatively simple Co-net (see Figure 1 a). In this Co-net, each
Co-U receives tasks from only one Co-U and offers tasks to only one Co-U; it can
represent a sequential supply system or an assembly line. Because a linear Co-net has
a relatively simple, predefined linear relation between Co-Us, the analysis evaluation of
conflicts and error detection is relatively simple.

b. Tree Co-net

 Tree Co-net can be treated as a combination of several linear Co-nets. In a tree
Co-net, each Co-U offers tasks to more than one Co-U, therefore, tasks are diffused out
(see Figure 1 b). In the distribution or delivery industry, this kind of Co-net is common.
For example, a supplier delivers finished products to its costumers.

c. Parallel Co-net

 Parallel Co-net is a relatively complicated Co-net. Each Co-U not only offers
tasks to more than one Co-U, but can also receive tasks from more than one Co-U, thus,
tasks are diffused out and merged (see Figure 1 c). This kind of Co-net represents more
complex collaboration environments, for example, a supply-network, an assembly line,
design project teamwork, and so on.

Figure 1. Linear (a), tree (b), and parallel (c) task dependencies

Protocols and Agents in Active Middleware
Based on Bakken’s (2003) definition in the Encyclopedia of Distributed

Computing, Middleware is a class of software technologies designed to help manage the
complexity and heterogeneity inherent in distributed systems. It is an enabling layer of
software that resides between the business application, and the networked layer of
heterogeneous platforms and protocols [Anussornnitisarn, 2003]. According to
Anussornnitisarn and Nof [2001, 2003], the major components of active middleware are:
Multi-Agent Based Systems (MAS), Workflow Management Systems (WFMS),
coordination protocols, Decision Support Systems (DSS), modeling language/tools, task/
activity databases (or knowledge base). Their conceptual model is shown in Figure 2.

7

Figure 2. Active middleware architecture [Anussornnitisarn et al., 2001]

 These six components can be classified in two categories: active components
and support components. Active components include Multi-Agent Based Systems (MAS),
WorkFlow Management Systems (WFMS), and the coordination protocols. Each
protocol comprises a set of mechanisms acting or reacting according to a changing
environment. Support components include Decision Support Systems (DSS), modeling
tools, and task/activity databases, which respond to requests from the active
components.

 In a distributed, collaborative environment, each participant has its own goals,
tasks, and resources. The management system of each participant, e.g., information
system, project planning system, database system, Enterprise Resource Planning (ERP)
system, or manufacturing execution system plays an important role in managing the
project, manipulating the operation of tasks and monitoring the resources. Because of
the heterogeneity of those distributed participants’ systems, smooth collaboration
between these systems is difficult to achieve. Active middleware serves as a bridge
between distributed systems and provides an integrated platform to communicate and
cooperate. In this research, the conflict/error detection model will be defined and
evaluated upon these active middleware components.

Exception Handling
 Workflow Management Systems (WFMSs) are increasingly being deployed to
deliver e-business transactions across organizational boundaries. To ensure high
service quality in transactions, exception-handling schemes are needed. Klein and
Dellarocas (2000) define exception as “any deviation from an ideal collaborative process
that used the available resources to achieve the task requirement in an optimal way”. An
exception can thus include errors in performing a task or communicating results between
agents, deficient response to changes in tasks or resources, missed opportunities, and
so on. Because of anticipated or unanticipated situations, the deviations (exceptions) of
those workflow processes from their specifications are unavoidable. In our work, we treat
an exception as a combination of error and conflict.

 Klein and Dellarocas proposed a hierarchy taxonomy business process
repository to identify the exception in a workflow system [Klein 2000, Klein and

8

Dellarocas 2000]. It involved the development and evaluation of workflow for handling
the multi-agent exception that can occur in a workflow environment. For each exception
type, the workflow designer can then decide how to extend the workflow models to
prepare for anticipating or detecting the exception. This concept can improve the
exception handling quality. In this research, a knowledge-based CE repository can be
applied to store information of CE and be accessed by participants.

In summary, several concepts and contributions delivered by researchers in
various areas provide inspiration in designing our detection model. Active middleware
conceptual models, agent technology applied in distributed collaboration, knowledge-
based repository for improving CE detection and further resolution process are useful
developments from reviewing these research activities.

3. CE Definition and CE Propagation
Many words or terms are used to describe problems in a collaborative environment

such as error, failure, mistake, defeat, exception, conflict, misunderstanding and so on.
Since they can be unclear and ambiguous, we define error and conflict from a
“boundary” point of view, and consider an important phenomenon, CE propagation.

3.1 Definition of Error

An error is an unintentional or unexpected event that prevents a task performer
from achieving the goal of a process (Table 1). In this research, we define an error as
follows:

Error: The difference between the current state and the expected state, with the
difference being greater than the tolerance, after operations by a Co-U.

 Based on this description, a mathematical representation of an error can be
defined as:

Error = |S(t)* – S(t)’| > Tolerance (3)

Where S(t)*: Current state at time t;
S(t)’: Expected state at time t;
–: An applicable difference operator;
Tolerance: The tolerance of allowing a state difference.

The current state indicates the practical output or current condition of a Co-U.
The expected state is a planned output or objective that should be obtained by a Co-U’s
operation. If the difference between the current state and expected state exists in time t,
and that difference is greater than the tolerance, there must be an error in the operation.
In this equation, we focus on the state that can be quantified. Based on the previous
definition, we can make some assumptions regarding errors:

a. An error can happen unexpectedly and suddenly.
b. It is not a normal situation.
c. There are different error levels from serious to slight.

9

3.2 Definition of Conflict
When people or organizations work autonomously and have to merge or exchange

their results together, a conflict might emerge. Also, the different resource management
of different organizations might lead to a resource conflict if organizations share a
common resource (Table 1). In this research, we define conflict as:

An inconsistency between Co-Us’ goals, dependent tasks, associated activities, or plans
of sharing resources, after coordinated by cooperative Co-Us.

 Based on this description, a mathematical representation can be defined as

]}[][][]{[jijijiji RRAATTGGConflict →←∨→←∨→←∨→←= (4)

where→← : Operator denotes “in conflict with”
 i and j: Indexes of different Co-Us
 Gi, Gj : Goals of Co-U i and Co-U j
 Ti, Tj : Dependent tasks of Co-U i and Co-U j
 Ai, Aj : Associated activities of Co-U i and Co-U j
 Ri, Rj : Sharing resources of Co-U i and Co-U j

Some assumptions regarding conflict that we hold in this research:

a. A conflict occurs among more than one subsystem or cooperative members.
b. A conflict can be detected or solved by coordination or negotiation between

involved members.
c. Inconsistence is a major reason of conflict.

Table 1. Examples of error and conflict

Causes of error Causes of conflict
1. Task misunderstanding
2. Facility crash, machine fatigue
3. Unaccepted quality
4. Abnormal event, human mistake
5. Exceed resource capability
6. Insufficient ability
7. Error in specification
8. Lack of material, technologies
9. No matched manufacturing process
10. Network break down, bugs

1. Time (schedule) mismatch
2. Unexpected cost, profit
3. Different design concept
4. Different process or operations
5. Various task specification
6. Resource overuse
7. Violation of common goal
8. Collision (path conflict)
9. Different format
10. Different units of measure

3.3 Comparison of Conflict and Error
 In this section, we define a Co-U’s system boundary and graphically locate the
occurrence of a conflict or an error. The position of a CE event differentiates between a
conflict and an error and addresses CE propagation in a collaborative environment.

A boundary of a Co-U’s system identifies a Co-U in a Co-net. Inside the
boundary of a Co-U, major elements of a Co-U such as goals, activities, tasks and
resources can be located. When elements are located inside a Co-U’s boundary, it
means that they belong to this Co-U (Figure 3).

10

Figure 3. Boundaries of a Co-U and a Co-net

Based on the definition above, the scopes of an error and a conflict can be
defined. The scope of an error is within a Co-U’s boundary but not inside any overlap
area of other Co-Us. For instance, a mistake or failure might occur when a Co-U
executes its activities. If these Co-U activities are not correlated with other Co-Us, the
cause of the mistake or failure should be directly related to that Co-U and other Co-Us
will not share responsibility. In this scenario, we define a mistake or failure as an error. In
Figure 4, a “star” illustrates an error event.

Error

Conflict

Elements

Figure 4. Scope of conflict and error

On the other hand, if an unexpected event is associated with other Co-Us’
interventions, e.g., performing activities together or occupying shared resources; we
define this kind of mistake or failure as a conflict. Since a conflict must occur because of
an interaction between Co-Us, the scope of the conflict is in the overlap area of different
Co-Us. We use a “triangle” in Figure 4 to illustrate a conflict event. Table 2 shows a
comparison between a conflict and an error based on the boundary definition.

Table 2. Comparison of scope between a conflict and an error

Error Conflict
1. Occurs inside a Co-U’s boundary but not

in any overlap area with other Co-Us
2. Caused by the Co-U’s mistakes or

misunderstandings

1. Happens within an overlap area of a
group of Co-Us

2. Caused by the interaction between Co-
Us

3.4 Conflict / Error Propagation

Once an error occurs inside a Co-U’s boundary, it might cause an error chain-
effect in this Co-U, meaning that errors might also lead to other errors (derivative errors).
For example, in a workstation of an assembly line, the wrong geometric dimension of
one component caused by negligence might also affect operations in other workstations.
This kind of situation is common not only in manufacturing but also in business and other
collaboration environments. We define this kind of situation as error propagation.

11

In addition, an error inside a Co-U’s boundary might cause a conflict because of
task interdependency or common resources shared by several Co-Us. The task
dependency can be treated as the interaction between Co-Us when they cooperate to
achieve a common goal. Combining several task dependencies or sharing common
resources can establish a Co-net. If the task dependency becomes complicated, CE
propagation might occur in a Co-net because of the complex correlation between Co-Us.
For example, if one product supplier cannot fulfill the task request on time because of an
internal operation error, this error event will also affect its customers’ purchasing plan,
and cause a conflict situation. In this case, the delivery schedule conflict propagates out
and affects more members if this CE problem is not resolved immediately. This kind of
situation is defined as conflict propagation (Figure 5).

Original Error
happens

Conflict happens

Derivative Error
happens

Error

Conflict

Figure 5. Conflict / error propagation

The conflict propagation in this research focuses on the CE problems broadcast
by circumstances. If a CE handler cannot solve a CE problem correctly or consider
correlated Co-Us’ situations, the conflict problem propagates.

4. Methodology
In this section, the conflict/error detection protocol (CEDP) is proposed to perform

CE detection in distributed Co-nets. The CEDP is used to detect CE events after a task
has been assigned in a collaborative environment. Each Co-U in a Co-net is equipped
with a software agent called conflict/error detection agent (CEDA) to perform CE
detection and collect information. CEDAs’ functions are to monitor and evaluate a Co-
U’s task processing activity. Collected detection information is shared and transmitted by
CEDP. Active middleware components such as a task database, a CE knowledge base,
and a DSS, can help support a CEDA and the CEDP with decision making and
knowledge gathering. The main components of CEDP are illustrated in Figure 6.

12

Figure 6. Components of Conflict / Error Detection Protocol (CEDP)

4.1 Conflict / Error Detection Agent (CEDA)
 The Conflict/Error Detection Agent (CEDA) is a software agent that is used to
perform the CE detection process in a Co-U. There are three components in the CEDA:
1. Detection Policy Evaluation Mechanism (DPEM), 2. Error Monitoring Mechanism
(EMM), and 3. Conflict Evaluation Mechanism (CEM). The three of them coordinate
together to detect possible errors and conflicts and notify the correlated (potentially
infected) Co-Us by CEDP. Figure 7 shows the components of CEDA with their input and
output.

Figure 7. Input, output and components of CEDA

Detection Policy Evaluation Mechanism (DPEM)
 The Detection Policy Evaluation Mechanism (DPEM) is responsible for
evaluating each detection method (dM) regarding each possible CE problem and
generating the detection policy (dP)T for performing a task T. The detection policy is a
guideline of how to detect a particular CE problem. Based on the information stored in

13

the CE knowledge base, DPEM can evaluate all applicable dMs for a specific CE and
select the best one if only one dM is required. Then, DPEM will evaluate the cost-
effectiveness of the selected dM and decide whether it should be applied based on cost.
After evaluation, DPEM implements the effective detection policy (dP)T in executing the
CE detection when the Co-U intends to perform task T.

Error Monitoring Mechanism (EMM)
The error monitoring mechanism (EMM) of the CEDA is in charge of continually

monitoring the Co-U’s activities. CEDA obtains the run-time current state (Θ) from the
input of different monitoring devices. Based on the Co-U’s plan of resource policy, task
specification, and current state, an error can be detected and recognized. Until the error
situation is recovered, EMM will continue to trace this error.

Conflict Evaluation Mechanism (CEM)
 The conflict evaluation mechanism (CEM) is a kernel of the CEDA with two
functions, calculation and comparison, to detect possible conflicts when a Co-U performs
a task. Through these two functions, CEDA can standardize all current states (Θ), tasks
constrains (Ω), and compare them to find a conflict when unsatisfied task constraints (Ω’)
exist. Figure 8 shows a complete perspective of a CEM.

Figure 8. Conflict Evaluation Mechanism (CEM)

Conflict-severity (Δ)
A conflict-severity (Δ) is used to measure the degree of conflict. If unsatisfied

task constraints (Ω’) exist, CEDA applies this Δ measurement by summing all weights of
unsatisfied task constraints (Ω’). If Δ is high, it means that more task constraints cannot
be satisfied and the conflict of task processing is at a higher level of severity.

Conflict-severity (Δ) = ∑
Ω

=

'||

1

'

i
iw (5)

where | Ω’| is the total number of unsatisfied task constraints;
 '

iw is the weight of ith unsatisfied task constraint of a Co-U.

Once a CEDA agent receives a CE announcement or CE evaluation request
from its cooperative Co-Us, it will calculate Δ. If all task constraints of this agent can be
satisfied, Δ equals 0, meaning no conflict occurred based on that updated task proposal.

Conflict / Error Knowledge Base
The CE knowledge base is a repository of CE detection information that can be

accessed by the CEDA of the Co-Us. A CE table is defined and maintained to store all

14

information about the CE problems in the knowledge base. The CE table stores
information such as the CE index (x), CE description, CE occurrence frequency (Fx), CE
detection method (dMxy), detection accuracy (dAxy), average detection cost (dCxy),
detection cycle time (dTxy), possible damage (Dx), and potential CE resolution. The
structure of a CE table and an example are presented in Table 3.

The information of detection methods stored in a CE table provides the CEDA
with sufficient data to analyze or examine possible detection procedures faced with an
analogous CE problem.

Table 3. The CE table of a task T

Index of Co-U
CE index (x) The unique index of a CE problem
CE description The description of this CE
CE occurrence frequency
(Fx)

Fx is the occurrence frequency of a CE event. It is the
number of occurred CE problems per time unit. For
example, Fx might be 0.01/second. Higher frequency
means this CE will happen more often

Damage (Dx) The estimate or possible damage of a CE problem
Detection methods (dMx)
Detection method (dMxy)

xxyxy dMdMdM ∈∀ :

dMx is a set of applicable detection methods for CE x
xydM is a detection method y to detect CE x

This element stores a set of applicable detection methods
that can be used to detect CE x. There could be more
than one detection method that can be used to detect a
CE problem.
y is the index of the detection method (y >= 1).

Detection accuracy (dAxy) The accuracy of a specific detection method y, e.g.,
detection rate of sensor

Average detection cost
(dCxy)

dCxy is the average detection cost per time unit of the
specific detection method y to detect CE problem x. For
instance, dCxy might be $10/second or $600/minute. Each
detection method might have a different detection cost

Detection cycle time (dTxy) dTxy is the time that is spent on finishing a detection cycle
of the specific detection method y. For example, in
manufacturing, a visual sensor might need 2 seconds to
finish inspection. In this case, the dT is 2 seconds. Each
detection method might have a different detection time

Potential CE resolution This element describes the possible CE resolutions

4.2 Conflict / Error Detection Protocol (CEDP)
 The proposed conflict/error detection protocol (CEDP) is an agent-based protocol
that facilitates the exchange of detection information between Co-Us in a Co-net. CEDP
enables CEDA to send or receive CE announcements, CE evaluation requests, and CE
evaluation results. Through this protocol, not only CE events can be transmitted within a
Co-net, but also the CE evaluation information can be shared when it is needed for the
detection process.

15

Message Definition
CEDP handles the detection information exchange process among Co-Us. Three

kinds of messages are transmitted by this protocol: a CE announcement, a CE
evaluation request, and a CE evaluation result. We define π* to represent a set of Co-
Us which send out CE announcements or evaluation requests, and π# to represent a set
of Co-Us which receive them.

a. CE announcement: Once a Co-U detects a CE inside its boundary, CEDA will
broadcast the CE announcement to other correlated Co-Us. Since Co-Us collaborate
to achieve a common goal, each cooperative Co-U is responsible to warn other Co-
Us of the CE. When a CE announcement is received, the CEDA of a Co-U will
retrieve the CE table for the CE announcement and evaluate this CE event.

b. CE evaluation request: A CE evaluation request is a message to ask a Co-U to
evaluate its activity and return its evaluation result. A CEDA can request evaluations
from cooperative Co-Us and acquire CE evaluation information for understanding the
influence of a task specification change. The evaluation request contains task
specification of a modified task. The request receiver can examine its task processes
and evaluate their potential influence.

c. CE evaluation result: After a CEDA receives a CE announcement or CE evaluation
request, the CEM of the CEDA begins to evaluate its task activities and return
evaluation results to the requesters. If a CE is detected in the evaluation process, the
information regarding the detected CE (index of CE and CE table) and non-zero
conflict-severity value will be included in the evaluation result. Otherwise, a zero
conflict-severity value is returned with the evaluation result.

CEDP Operation
Two kinds of CEDP operations are executed between Co-Us. One occurs when

a CE is detected; another when a task specification is changed.

a. A CE is detected
Once a Co-U detects a CE problem that occurs within its boundary, this Co-U is

responsible to inform other correlated Co-Us. Every Co-U that receives a CE
announcement evaluates the potential influence of this CE and sends back the
evaluation result. Then, any Co-U that detects a CE, can also estimate the potential
influence on other Co-Us.
 Illustration: In Figure 9, a CE occurs and is detected by Co-U3. Co-U3 then
sends out CE announcements to its correlated partners: Co-U1, Co-U2, Co-U4, and Co-
U5. Each CE announcement receiver evaluates the detected CE event and returns the
CE evaluation result to Co-U3. The detailed operation is listed in Table 4.

Figure 9. CEDP operation when a CE is detected inside a Co-U’s boundary

16

Table 4. Conflict / error detection protocol when a CE occurs
Conflict / Error Detection Protocol

Co-U (π*) Co-U(π#) (|π#|>= 1)
Variables:
CE announcement (a)

1. Index of sender Co-U (π*)
2. Index of receiver Co-U (π#)
3. Time
4. Conflict-severity (Δ)
5. Index of CE (x)
6. The CE table

Task constraints (Ω)

Variables:
Evaluation result (e)

1. Index of sender Co-U (π#)
2. Index of receiver Co-U (π*)
3. Time
4. Received CE announcement (a)
5. Conflict-severity (Δ)
6. Index of CE (if CE is detected)
7. The CE table (if CE is detected)

Task constraints (Ω)
Statements:
A CE happens
Update CE table(x) in CE knowledge base
Initiator()
While{
 (1) Evaluating current task constraints (Ω)
 (2) Calculating the conflict-severity (Δ)
 (3) π* -> π#: Sending (CE announcement)
 (4) Wait()

 (9) Receiving (evaluation result)
 (10) Updating received conflict-severity
}All cooperative CEDA finish communication

Statements:

Responder()
{

(5) Receiving (CE announcement)
(6) Evaluating task constraints (Ω) with

received CE announcement (a)
(7) Calculating conflict-severity (Δ)
 If (CE) then {
 Calculating conflict-severity (Δ > 0) }
 Else{
 Conflict-severity = 0 }
(8) π -> π* : Sending (evaluation result)

Recursive CE detection
If (Δ > 0) {
 Intitiator()
 While{
 π' -> π : Sending (CE announcement)
 } All cooperative CEDAs finish

communication

b. A task specification is changed
If a Co-U wants to change the task specification, this change might affect other

partners and cause conflicts (Figure 10). Figure 10 (A) shows a task dependency of a
Co-net that includes four members. Figure 10 (B) indicates a task specification change
in Co-U3. The Co-U3 will send an evaluation request with its changed task specification
to cooperative partners: Co-U1, Co-U2, and Co-U4. After evaluating the task activities
with the new task specification, all receivers (Co-U1, Co-U2, and Co-U4) will send back
the evaluation result. Table 5 describes the details of CEDP operation when a task
specification is changed.

17

Figure 10. CEDP operation when a task specification is changed

Table 5. Conflict / error detection protocol (CEDP) when a task specification is changed
Conflict / Error Detection Protocol

Co-U (π*) Co-U (π#) (|π#|>= 1)
Variables:
CE evaluation request

4. index of sender Co-U (π*)
5. index of receiver Co-U (π#π)
6. time
7. modified task specification

Variables:
Evaluation result (e)

1. index of sender Co-U (π#)
2. index of receiver Co-U (π*)
3. time
4. received CE announcement (a)
5. conflict-severity (Δ)
6. index of CE (if CE is detected)
7. CE table (if CE is detected)

Task constraints (Ω)
Statements:

A task specification is changed
Initiator()
While{

(1) π* -> π#: Sending (CE evaluation
request)

(2) wait

(7) Receiving the evaluation result (e)
(8) Updating received conflict-severity

}
}All cooperative CEDAs finish communication

Statements:

Responder()
{

(3) Receiving (evaluation request)
(4) Evaluating task constraints (Ω) with

updated task specification
(5) Calculating conflict-severity (Δ)
 If (CE) then {
 Calculating conflict-severity (Δ > 0) }
 Else{
 Conflict-severity = 0 }
(6) π -> π* : Send(evaluation result)

Recursive CE detection
If (Δ > 0) {
 Intitiator()
 While{
 π' -> π : Sending (CE announcement)
 ……
 } All cooperative CEDAs finish

communication

18

4.3 CEDP with Active Middleware Components
 In this research, CEDA and CEDP can be treated as an agent middleware based
on the taxonomy of middleware [Bishop and Karne, 2003]. CEDA is a software entity
located in each Co-U and it is in charge of monitoring and evaluating the current
activities. CEDP provides a communication platform for all Co-Us in a Co-net. CEDA can
notify other Co-Us of detected CE events and share detection information with others
through CEDP.

 Active middleware components defined in Anussornnitisarn’s work can be
supportive elements for CEDP (Figure 11). Decision support systems (DSS) provide a
CE detection reasoning when each CEDA receives detection information from its
monitoring mechanism and other cooperative Co-Us. A DSS can support the evaluation
and examination processes of a CEDA to identify CE problems.

Figure 11. CEDA with Active middleware components

 A task/activity database (or knowledge base) contains detailed information about
tasks and activities related or derived from a Co-U’s goal. The descriptions of each Co-
U’s goal, tasks, activities, and resources are stored in this knowledge base.
Accumulating these descriptions and CE problem descriptions, knowledge or
experiences about CE detections can provide Co-Us with sufficient information for a
further resolution stage.

 Workflow Management Systems (WFMS) provides a workflow structure for a Co-
net. Each CEDA follows this structure to identify its communicating predecessors and
successors among Co-Us. No matter what kind of task dependency among Co-Us exists,
each CEDA of a Co-U can exchange detection information with a connected Co-U.

 In terms of function, a CEDP with a CEDA is a two-way software middleware
among Co-Us and between active middleware with each Co-U’s applications. On the
one hand, through a CEDP operation, a CEDA communicates with other CEDAs to
share detection information. On the other hand, a CEDA acquires detection information
from Co-U’s activities and stores it in an active middleware knowledge base. Next, active
middleware components such as DSS help support a CEDA to make a decision on

19

detection policy. Therefore, a CEDP constitutes a two-way middleware CE detection
model (Figure 12).

Figure 12. CEDP is a two-way middleware in CE detection

5. Experiments and Results

A set of experiments has been designed and conducted with a prototype CEDP.
The objective of these experiments is to implement a CEDP, apply the conflict-severity
(Δ) to measure the potential implications and seriousness of a CE problem, recognize
the CE-infected Co-U (π’) by using CEDP, and understand how to design a better CEDP.
We utilize the conflict-severity (Δ) and the CEDP to evaluate the CE problems in three
basic forms of task dependence Co-nets: linear, tree, and parallel.

5.1 Experimental background
 Before describing the experiments, we first address some assumptions and
background information.

a. No conflict or error is evident in the Co-net network establishing stage: During the
Co-net network establishing stage, we assume for simplicity that no conflict or
error happens. When a Co-net is established by assigning tasks, every Co-U
must agree with the initial task dependencies. In this experiment, this stage is
called “initial stage of a Co-net”. In an ideal situation, each Co-U coordinates with
other Co-Us to achieve its own goal and a common goal from its initial stage.
However, that “ideal” situation is rare because errors and conflicts are
unavoidable in a Co-net and can happen at any time.

b. Conflicts can propagate to other cooperative members: Contrary to the initial
stage of a Co-net, the CE propagation stage of a Co-net means that an
unexpected event occurs and can propagate to other Co-Us after the initial stage.
Since CE propagation is an important phenomenon in any collaboration
environment, this experiment is designed to search CE-infected Co-Us (π’) in a
Co-net by monitoring and evaluating the conflict-severity (Δ).

 In the experiments, the Co-net environment has to be formed before the CE
detection. Experiments #1, #2 and #3 establish Co-nets based on linear, tree, and
parallel dependency networks, respectively. Each Co-U in a network can use a CEDP to
communicate with other Co-Us and share information about CE problems.

20

5.2 Measures of Conflict / Error Detection Protocol (CEDP)
Three measures, which are the number of CE-infected Co-Us (π’), conflict-severity

(Δ), and total communication time (Tc) are used to measure the performance of a CEDP
in the three forms of Co-nets.

a. Total communication time)(cT represents the accumulating time for each Co-
U to communicate with others. Once a CE happens in a Co-U, a CEDA will
communicate with collaborative partners and exchange the conflict information
until all CEDAs finish their evaluations.

∑=
||

_
COM

j
jc timeCT (6)

where cT is the total communication time;
 j is the index of communication activity;
 |COM| is the total number of communication activities;
 jtimeC _ is time spent on communication activity j performed by a CEDA.

b. The number of CE-infected Co-Us (|π’|) represents the total number of Co-Us
that detect a CE after evaluating their current task constraints (Ω) and CE
announcements.

c. Conflict-severity (Δ) defined as Equation (6) represents the seriousness of
conflict events. It accumulates the weights (w) of the unsatisfied task constraints
(Ω’).

5.3 Experimental Procedures
 Based on the design of the CEDP, each CEDA monitors the Co-U’s activities by
examining its current states (Θ) and task constraints (Ω) to detect a CE. The experiment
procedures are divided into two stages: the initial stage and the CE propagation
detection stage (Figures 13 and 14).

Initial stage
a. By using Excel with VBA, Visual Basic language initially constructs three task

activity dependence Co-nets (linear, tree and parallel) with the same number of
Co-Us.

b. Randomly assign an error event for a Co-U. Then, this Co-U is the initial CE-
infected Co-U (π’).

c. The initial CE-infected Co-U (π’) evaluates the CE problem and calculates the
conflict-severity (Δ).

d. The initial CE-infected Co-U (π’) checks for possible task specification
modification to locally solve the CE problem.

e. The initial CE-infected Co-U (π’) sends out the CE announcement with that task
specification modification to the connected Co-Us once a CE is detected.

Figure 13. Experimental procedure – initial stage

21

CE propagation detection stage
a. Once a Co-U, (π#), receives CE announcements, it will check whether the

detected CE in the initial CE-infected Co-U (π’) and task specification
modifications affect its task activities.

b. Next, π# calculates the conflict-severity (Δ). If no conflict, Δ is equal to 0. If this π#

is affected by more than one Co-U, its Δ will sum all weights of unsatisfied task
constraints. In this case, Δ could be greater than 1.

c. Finally, π# sends back the evaluation result.
d. If a new CE is detected, recursively detect a possible CE problem in a Co-net

a) First, π# checks the possible task specification modifications that can
solve the detected CE problem locally.

b) Next, π# sends out the CE announcement with that task specification
modification to connected Co-Us.

Figure 14. Experimental procedure – CE propagation detection stage

By changing current states (Θ’), the experiment can attribute a CE problem to a
particular Co-U. This Co-U compares task constraints (Ω) and changed current states
(Θ’). If Ω > Θ’, a CE has occurred at this Co-U and has been detected. However, how to
change the current states (Θ’) remains open. To address this situation in this experiment,
we define a CE control factor (ε) to control the relative changing range of current states
(Θ’). The CE control factor (ε) is a fraction between 0 and 1. When ε is larger (range of
Θ’ is also large), the relative change in current states (Θ’) will be smaller. It also means
that the conflict event is more likely to occur in this experiment (Ω > Θ’). The range of Θ’
is defined below as:

Range of Θ’ = [Θ - ε, Θ] (6)

where Θ’ is the changing current states;
 Θ is the original current states;
 ε is the CE control factor.

 In this experiment, the parameter ε is applied to control the emergence of conflict
situation; if ε is high, the conflict most likely happened in a given Co-net (Ω > Θ’).

 Visual Basic for Applications (VBA), Excel’s programming language, is used to

develop the CEDP’s logic [Albright, 2001]. In the initial stage, the VBA program creates a

Co-net with 20 Co-Us and assigns the initial values to each Co-U’s data table. After

finishing the data initialization, a CE problem is attributed randomly for a Co-U. Then, the

CE propagation detection begins to search all CE-infected Co-Us (π’). The experimental

parameters, input and output of this simulation environment are shown in

22

Table 6. Regardless of the form of task dependency (linear, tree, parallel) of a Co-net,
each experiment follows the same settings.

Table 6. Parameters of the experiments

Parameter Value
The number of Co-Us in a Co-net 20
The number of task constraints for each Co-U 3~5
CE control factor ε Assigned from 0.1 to 0.9
Total runs for each CE control factor ε 100 runs

5.4 Experimental Results

In the experiments, there are three values for the “type (form) of Co-net”, and 9
for “CE control factor (ε)” ranging from 0.1 to 0.9. Therefore, there are 27 combinations
for 2700 runs (each combination is run 100 times). According to the MANOVA analysis
conducted (Table 7), the null hypotheses for each factor, CE control factor (ε) and type
of Co-net, are rejected. Both ε and the type of Co-net are significant and affect the three
output variables. In the following sections, we further discuss the experimental results
based on the three output measures.

Table 7: 2 way--3 variables MANOVA analysis
Class Levels Values

Type (form) of Co-net 3 1, 2, 3
CE control factor (ε) 9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
3 Variables: number of CE-infected Co-U (|π’|), conflict-severity (Δ), and communication time (Tc)
Number of observations 2700

The ANOVA Procedure
Multivariate Analysis of Variance
Characteristic Roots and Vectors of: E Inverse * H, where
H = ANOVA SSCP Matrix for Net
E = Error SSCP Matrix
Characteristic: Characteristic Vector V'EV=1

Root Percent # of CE-infected Co-U (π’) CE control factor (ε) communication time (Tc)
1.52318443 85.58 -0.01245487 0.09268204 0.00479709
0.25675239 14.42 0.00673876 -0.06360035 -0.00050796
0.00000000 0.00 0.00359140 0.16293635 -0.00362291

MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Co-net Effect
H = ANOVA SSCP Matrix for Co-net
E = Error SSCP Matrix
S=2 M=0 N=1342.5

Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.31535613 699.28 6 5374 <.0001
Pillai's Trace 0.80797374 607.32 6 5376 <.0001
Hotelling-Lawley Trace 1.77993682 796.97 6 3580.9 <.0001
Roy's Greatest Root 1.52318443 1364.77 3 2688 <.0001
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.

Characteristic Roots and Vectors of: E Inverse * H, where
H = ANOVA SSCP Matrix for CFactor; E = Error SSCP Matrix; Characteristic: Characteristic Vector V'EV=1

23

Root Percent # of CE-infected Co-U (π’) CE control factor (ε) communication time (Tc)
1.66186817 92.95 0.00095426 0.15347089 -0.00161157
0.12361014 6.91 -0.00680310 0.12269321 -0.00004582
0.00234388 0.13 -0.01289341 0.02400579 0.00581346

ANOVA Procedure
Multivariate Analysis of Variance
MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall CE control factor (ε) Effect
H = Anova SSCP Matrix for CFactor; E = Error SSCP Matrix; S=3 M=2 N=1342.5
Statistic Value F Value Num DF Den DF Pr > F
Wilks' Lambda 0.33356545 149.43 24 7793.7 <.0001
Pillai's Trace 0.73667398 109.40 24 8067 <.0001
Hotelling-Lawley Trace 1.78782219 200.08 24 5814.6 <.0001
Roy's Greatest Root 1.66186817 558.60 8 2689 <.0001
 NOTE: F Statistic for Roy's Greatest Root is an upper bound.

Comparing the Average Communication Time (Tc) in the three Co-net forms
 The MANOVA analysis indicates that both ε and the form of Co-net significantly
affect the average communication time (Tc). Figure 15 shows the comparison of the
average communication time (Tc) for the three forms of Co-nets. The results show that
on average a higher ε leads to a rise of the Tc, and therefore, the higher ε makes the CE
problems more likely to occur. Once a CE problem occurs, more Co-Us need to become
involved and more communication time is needed for exchanging the CE
announcements and requests for evaluation results.

Avg. Communication Time (Tc) Comparison

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ε Conflict Control Factor

C
om

m
un

ic
at

io
n

Ti
m

e
(T

c)
 (s

ec
on

d)

Exp. #2.1-Linear Exp. #2.2-Tree EXP. #2.3-Parallel

Figure 15. Average communication time (Tc) in three Co-net forms

 For the same level of ε, two observations are important:

a. Parallel Co-net (Exp. #3) has on average the longest Tc because each Co-U
must connect with more Co-Us in the parallel Co-net (diverging and merging).

24

Once a CE is detected by a Co-U, this Co-U has to exchange the current
detection information with more than one Co-U both upstream and downstream.
On the reverse, each Co-U in a linear Co-net needs to connect with only two Co-
Us and each Co-U in a tree Co-net connects with only one Co-U, upstream.

b. Tree Co-net (Exp. #2) has the shortest Tc because the branch-structure of a tree
Co-net leads to only one-way conflict propagation. More Co-Us will be located in
the “leaves” of a tree Co-net, given the same total number of Co-Us. Hence, the
Co-U in the “leaf” has a higher probability to be assigned to the initial CE problem.
Most of the detection will be located in the regional area (branch of a tree) and
the propagation is towards the root of the tree (Figure 16).

Figure 16. CE propagation area in a tree Co-net

Comparing the Average Number of CE-infected Co-Us (|π’|) in three Co-net forms
 The MANOVA analysis indicates that both ε and the form of Co-net significantly
affect the average number of CE-infected Co-Us (|π’|). A higher ε leads to a rise in the
(π’). Furthermore, a higher ε increases the variance range of Θ’, and the CE will be more
likely to occur. Figure 17 shows a comparison of the average of number of CE-infected
Co-Us (|π’|).

25

Avg. # of CE-infected Co-Us (|π’|) Comparison

0
2
4
6
8

10
12
14
16
18
20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ε Conflict Control Factor

of

 C
E-

in
fe

ct
ed

 C
o-

U
s (

|π
’|)

Exp. #2.1-Linear Exp. #2.2-Tree Exp. #2.3-Parallel

Figure 17. Average number of CE-infected Co-U (|π’|) in three Co-net forms

 Based on the same level of ε, the results provide important attributes for the
three Co-nets:

a. The linear and parallel Co-nets (Exp. #1 and #3) have on average a higher |π’|.
More Co-Us in linear and parallel Co-nets are affected by conflict propagation
than in tree Co-nets.

b. Tree (Exp. #2) has relatively less |π’|, since more Co-Us are located in the
“leaves” of the Co-net. A tree Co-net has a greater probability of assigning an
initial CE to a leaf-Co-U, and the conflict propagation is likely to be limited to only
one direction. Also, the conflict propagation is likely to occur in a regional area
(branch) in a tree Co-net. This observation is consistent since the tree Co-net
has less Tc, since a smaller |π’| means less communication time is needed
between Co-Us.

Comparing the Average Conflict-severity in the three Co-net forms
 The MANOVA analysis shows that both ε and the type of Co-net significantly
affect the average conflict-severity (Δ). The results show that a higher ε increases the
average conflict-severity (Δ), since the higher ε makes the variance range of Θ’ larger,
and the CE problem will be more likely to take place. Once CE problems occur and more
Co-Us get involved in this CE problem, more task constraints (Ω) cannot be satisfied by
the Co-Us’ changing current situations (Θ’), this makes the Δ (the summation of weights
of unsatisfied task constraints) larger. Figure 18 shows the average conflict-severity (Δ)
for the three experiments.

26

Avg. Conflict -Severity (Δ) Comparison

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε Conflict Control Factor

C
on

fli
ct

 S
ev

er
ity

 (Δ
)

Exp. #2.1-Linear Exp. #2.2-Tree Exp. #2.3-Parallel

Figure 18. Average conflict-severity (Δ) in three Co-nets

 Based on the same level of ε, the results convey important behaviors in these
Co-nets:

a. Tree and parallel Co-nets (Exp. #2 and Exp. #3) have on average a higher Δ, as
long as the ε increases. In a linear Co-net, each Co-U connects with only two
neighboring Co-Us. In the more complex forms, each Co-U in a tree or parallel
Co-net might have more than one neighboring Co-U in the downstream direction.
Therefore, the average Δ in the tree or parallel Co-net is relatively higher and
possibly higher than 1 when ε increases.

b. The Δ value in a linear Co-net (Exp. #1) is always less than or equal to 1 (1≤Δ)
since each Co-U is affected at most by only one other Co-U, therefore there is no
add-up in each Co-U’s Δ value.

c. Although |π’| can represent how many Co-Us are affected by CE propagation, Δ
measure is insufficient to show the seriousness of CE problems for each CE-
infected Co-U.

6. Conclusions and Recommendations
In this research, a conflict/error detection protocol (CEDP) is developed for a

distributed collaborative network. CEDP is expected to provide a detection-information
exchanging mechanism for all collaborating members in a Co-net. Through the
collaborative detection process, practically all possible CE problems that occur in a Co-
net can be recognized. After analyzing and categorizing CE problems, we identify the
CE table to serve as a basic data unit for storing CE information in a CE knowledge base.
The CE knowledge base is a case-base repository that can be accessed by each Co-U
in a Co-net to enhance the accuracy and quality of the detection process.

27

The answer for the research question “Once a conflict or error occurs in a certain
autonomous entity, how this event can affect other entities within the coordination
network?” is as follows. Conflicts and errors are unavoidable in a collaborative
environment. In this research, we first review the definition of conflict and error, and
distinguish them by illustrating the logical position within a Co-U boundary. Based on the
definition, an important phenomenon, CE propagation, along with conflict and error are
addressed in this report. CE propagation is a chain-effect of CE problems in a
collaborative environment such as design teamwork or distributed manufacturing
network. The occurred CE problem in a Co-U might propagate to other participants or
partners and cause repeated cost for detecting and resolving it. Without sharing
detection information among Co-Us, it is difficult to detect the CE propagation by an
autonomous detector. Therefore, in this research, we not only focus on detecting CE
problems that occur at an individual Co-U, but also on CE propagation problems in a Co-
net.

Another research question addressed is: How can a CE detection protocol
(CEDP) be developed and specified? In the proposed CEDP model, a Conflict/Error
Detection Agent (CEDA) is designed as a distributed agent that is equipped to perform
CE detections in a Co-U individually. Through the CEDP, CEDAs can communicate with
each other to share CE information and detect CE propagation together. Besides, all
CEDAs access the CE knowledge base and update the detection information. The
cumulative detection information can be exchanged within a Co-net and provide useful
“experience” and learning for handling similar CE detection.

The third research question posed is: How can CE measurement be defined to
represent the relative seriousness of a given CE event? How to measure the detected
CE problem is an important issue for CE detectors. In this research, a new conflict-
severity (Δ) measure is defined and used to measure the degree of seriousness of a
detected CE. It is defined as the summed weights (importance) of unsatisfied task
constraints. If task constraints from other Co-Us cannot be satisfied by current states of
a Co-U, a conflict occurs. The higher the conflict-severity is, the more inconsistencies
between Co-Us exist. This measure is applied in the experiments to evaluate the
seriousness of detected CE problems.

What is the purpose of the experiments and the value of the results? Because
the performance of CE propagation detection process might be diverse in different forms
of collaborative networks, in the experiments, we apply the CEDP model to evaluate and
understand the detection operation in three basic forms of Co-nets. The conflict-severity
measure is used to evaluate the detected CE problem. The experimental results show
that in a relatively more complicated Co-net, such as parallel network, more Co-Us are
involved in and affected by CE propagation, consequently more communication time is
needed for detection. As a result, the conflict-severity (Δ) is also higher in more
complicated Co-nets. It also means that the conflict-severity (Δ) can not only be used to
measure the severity of each detected CE, but can also provide useful information to
identify and analyze the degree of seriousness of CE propagation in a Co-net.

Recommended CEDP Design Guidelines
 CEDP provides an information exchange mechanism to aid in detecting CE
propagation. In terms of implementation, the following design guidelines are
recommended:

a. Identify the functions of each detection agent (CEDA).

28

For each given CE problem, appropriate detection methods should be applied in
the CEDA’s detection policy. A DPEM mechanism can assist to select the best
policy in given situations, based on relevant information gleaned across the
distributed Co-net. Functions for sending and receiving messages are also
needed for each CEDA to communicate with other CEDAs under the protocol.

b. Define the data structure for storing cumulative detection information.

The description of the detected CE, occurrence time, CE infected member, and
proper detection method are the main elements to be included and stored to
support the detection process.

c. Apply the conflict-severity measure to assess the degree of seriousness of a
detected CE problem and its potential damaging impact on other C-Us via
propagation.

d. Define the message routing mechanism to transmit exchanged information
between Co-Us. An efficient and reliable exchange across the Co-net will be
necessary to assure timely processing and response during the detection
process.

Future Research

 Conflict/error detection is an initial stage of conflict/error management
[Balakrishnan et al., 1994]. Solving or recovering the detected CE problem in the
collaboration environment is a following mission. Several undeveloped areas which need
to be investigated are:

a. A well-organized conflict/error knowledge base is necessary to improve the
conflict/error detection and resolution process. Knowledge acquiring and query
mechanisms that enable collaborative members to deposit and retrieve detection
information are important issues.

b. A sophisticated distributed conflict/error management that contains the
conflict/error resolution protocol is needed for autonomous members to solve
detected CE problems under coordination. An effective communication
mechanism to improve the quality of CE resolution is a crucial issue.

c. Evaluation and comparison of the proposed CEDP with other detection protocols
will be the next step to appraise performance of CEDP.

29

References

Albright A. C., 2001, VBA for Modelers – Developing Decision Support Systems with Microsoft

Excel, Duxbury/Thomson Learning, Pacific Grove, CA, U.S.A.
Anussornnitisarn, P., 2003, Design of Active Middleware Protocols for Coordination of Distributed

Resources, Dissertation for Ph.D., Purdue University, West Lafayette, IN., U.S.A.
Anussornnitisarn, P., and Nof, S. Y., 2001, The Design of Active Middleware for e-Work

Interactions, Research Memorandum, School of Industrial Engineering, Purdue University,
West Lafayette, IN., U.S.A.

Anussornnitisarn,P., and Nof, S.Y., 2003, e-Work: The Challenge of the Next Generation ERP
Systems, Production Planning and Control, v. 14, n 8, pp. 753-765.

Anussornnitisarn, P., Nof, S. Y. and Etzion, O., 2001, Analysis of Cooperative Tasks for
Networked Enterprise’s Middleware, Research Memorandum, School of Industrial
Engineering, Purdue University, West Lafayette, IN., U.S.A.

Bakken, D. E., 2003, Middleware, Chapter in Encyclopedia of Distributed Computing, Urban J.
and Dasgupta P.(editors), Kluwer Academic Publishers.

Bishop, T. A., and Karne, R. K., 2003, A Survey of Middleware, 18th International Conference on
Computers and Their Applications, March 26-28, 2003, Honolulu, Hawaii, U.S.A.

Hagen, C., and Alonso, G., 2000, Exception Handling in Workflow Management Systems, IEEE
Transaction on Software Engineering, v 26, n 10, pp. 943-958.

Khanna, N., Fortes J. A. B., and Nof, S.Y., 1998, A Formalism to Structure and Parallelize the
Integration of Cooperative Engineering Design Tasks. IEE Transactions, v 30, n 1, pp. 1-
15.

Klein, M., 2000, Towards a Systematic Repository of Knowledge About Managing Collaborative
Design Conflicts, Proceedings of the Sixth International Conference on Artificial
Intelligence in Design, Worcester, MA, June 26-29, 2000.

Klein, M., and Dellarocas, C., 2000, A Knowledge-based Approach to Handling Exceptions in
Workflow Systems, Computer Supported Cooperative Work, v 9, pp. 399-412, Kluwer
Academic Publishers.

Lara, M. A., and Nof, S. Y., 2003, Computer-supported Conflict Resolution for Collaborative
Facility Designers, International Journal of Production Research, v 41, n 2, pp. 207-233.

Li, X., Zhou, X., and Ruan, X., 2002, Conflict Management in Closely Coupled Collaborative
Design System, Int. J. Computer Integrated Manufacturing, v 15, n 4, pp. 345-352.

Luo, Z., Sheth, A., Kochut, K., and Arpinar, B., 2000 ,Exception Handling in Workflow Systems,
Applied Intelligence, v 13, n 2, pp. 125-147, Sept.-Oct. 2000.

Luo, Z., Sheth, A., Kochut, K., and Arpinar B., 2003 ,Exception Handling for Conflict Resolution in
Cross-Organizational Workflows, Distributed and Parallel databases, v 13, n 2, pp. 271-
206, May 2003.

Malone, T. W., Crowston, K., Lee, J., Pentland, B., Dellarocas C., Wyner G., Quimby J., Osborn
C. S., Bernstein A., Herman G., Klein M., and O’Donnell E., 1999, Tools for Inventing
Organizations: Toward a Handbook of Organizational Processes. Management Science,
v 45, n 3, pp. 425-443.

Tan, G. W., Hayes, C. C., and Shaw, M., 1996, An Intelligent-Agent Framework for Concurrent
Product Design and Planning, IEEE Transactions on Engineering Management, v 43, n 3,
pp. 297-306.

Yang, C-L., Conflict and Error Detection Protocol with Active Middleware, M.S.I.E. Thesis, Purdue
University, August 2004.

