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Executive Summary 
 

In this research, an agent-based Conflict/Error Detection Protocol (CEDP) is 

developed to continuously detect conflict and error problems in a distributed 

collaborative task-planning environment. By applying Active Middleware architecture, the 

detection protocol can help detection agents and support their evaluation of the 

detection process, and exchange detection information among collaborative participants. 

A measure called “conflict-severity” is developed to evaluate propagated conflict 

situations and assess the seriousness of the conflict; and if justified, a possible detection. 

Experiments with CEDP have been run on three basic Co-net forms, linear, tree, and 

parallel. The experimental results show that the CEDP is able to detect conflict and error 

propagation in different task dependency networks.  A well-design CEDP is important, 

because an effective communication mechanism to improve the quality of CE detection 

in a collaborative, distributed network will determine the benefit to the company. 

Therefore, based on this research, recommended design guidelines for CEDP are 

developed. 
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1. Introduction 
 Distributed collaboration among organizations is common in business and 
manufacturing nowadays, because it enhances the effectiveness of operations. 
Combining the expertise and attributes of different participants, and synthesizing their 
achievements provide enterprises with more flexibility and the ability to overcome 
challenges in the complex business world. For example, in a supply network, enterprises 
distribute the tasks by selecting specialized skills from different enterprises. In a 
distributed design project, for instance, team members contribute their expertise to 
achieve the common design objective cooperatively. No matter how the collaboration is 
formed or organized, the goal of each participant involved in the collaboration is to finish 
the assigned tasks as accurately and efficiently as possible.  

 However, conflicts and errors (CE) are unavoidable in a distributed collaborative 
environment. Since every participant in the collaboration might have their own expertise, 
local resource management, and project-based schedule, conflicts between different 
participants’ expertise, schedule, or operation seem inevitable. In other words, conflict 
management is necessary in collaboration networks and teamwork projects. Many 
researchers have provided successful solutions for conflict resolution in a problem-
solving environment. Examples include design objective problem-solving for concurrent 
engineering [Tan et al. 1996, Khanna et al. 1998, Li et al. 2002, Lara and Nof 2003], and 
exception handling in workflow systems [Hagen and Alonso 2000, Klein 2000, Klein and 
Dellarocas 2000, Luo et al. 2000, 2003].  

Most of the previous work has focused on how to solve CE problems. The 
findings suggest that the information exchange among Co-Us1 is crucial. However, few 
researchers define the type of information that should be shared or exchanged to 
facilitate conflict detection and how Co-Us communicate with each other from a 
detection perspective. Finally, once a conflict occurs, a means to measure a conflict has 
not yet been addressed. 

 Once a CE happens in a collaborative environment, this unexpected event might 
also affect other participating members. In our research, we define this situation as CE 
propagation. For example, if a schedule conflict occurs in a member’s operation, it might 
change its operations after rearranging the schedule and solving the local conflict. Yet 
this updated schedule might also cause other collaborating members to experience 
schedule conflicts. If we can recognize the “infection area”, that is a set of members 
affected by a detected CE, a better CE resolution/recovery method can be applied to 
moderate over-all CE problems. Thus, this kind of CE propagation must be detected 
once an error or conflict occurs and the “infection area” of the CE needs to be located. 

To investigate CE problems in a collaborative environment and develop 
applicable information mechanisms and measures, three related research problems are 
defined: 

a. Once a conflict or error occurs in a certain autonomous entity, how can this event 
affect other entities within the coordination network? 

Once a CE event occurs, if it is not detected and resolved, it might also affect 
other participants due to the error, or the task dependency between participants. 
When a CE occurs, it is important to know how to inform or report about it to 

                                                 
1 A Co-U is a collaborating unit, any member of the Co-net, which is the collaborative network model of 
the environment as defined below. 
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responsible members or supervisors. Furthermore, how to locate the 
conflict/error “infection” area is also important for the resolution/recovery stage. 
Only after identifying who the problem initiators are and those that will suffer from 
it, can the negotiation process among CE insiders for resolving the problem be 
performed effectively. 

b. How can a CE detection protocol (CEDP) be developed and specified? 

In a distributed environment, an individual entity makes independent decisions 
based on its limited information. For example, once a CE problem occurs, the 
announcement information about the CE problem should be circulated among 
Co-Us in order to caution dependent participants and enhance the overall 
performance. A Co-U can request other Co-Us to provide CE detection or 
evaluation results. A detection protocol that applies active middleware 
components to share detection information is our focus in designing a 
communication method in Co-net. 

c. How can CE measurement be defined to represent the relative seriousness of a 
given CE event? 

When conflicts and errors happen, the methods to measure the severity of a 
problem are a relevant question. If the CE seriousness measure can be defined 
properly, this measure can provide the Co-U with the CE resolution priority when 
performing the next-stage resolution process. Besides, determining that a Co-U 
has high frequencies of CE and can cause potentially serious damage implies 
that this Co-U’s tasks have to be redesigned to prevent damages; its tasks can 
be quarantined until its performance is improved. 

 The paper is organized as follows: Section 2 addresses the research 
background and literature review. In Section 3, conflicts and errors in a collaborative 
environment are defined. Based on this definition, we model CE propagation. Section 4 
describes a proposed conflict/error detection protocol (CEDP) and conflict/error 
detection agent (CEDA) that focuses on task specification conflicts and CE propagation. 
In Section 5, an experiment that applies the developed CEDP in three basic dependency 
networks is conducted. Finally, Section 6 includes observations, conclusions and 
recommendations. 

 

2. Research Definitions and Literature Review 
 
Cooperation unit (Co-U): the cooperation unit (Co-U) is an autonomous working unit 
that performs tasks to achieve its goals and coordinates with other Co-Us to accomplish 
the common goal of a set of Co-Us. They can be humans, machines, workstations, 
enterprises, etc., depending on the scope of the collaborative environment. A Co-U can 
be represented by five tuple: G, T, A, R, and S (Eq. 1): 
 

},,,,{ SRATGUCo =−       (1) 
 
Where G: Co-U’s Goal, e.g., profit and/or survival; 
 T: Set of Tasks that a Co-U must perform to achieve its goal (G); 
 A: Set of Activities that a Co-U runs in order to accomplish the tasks (T); 
 R: Set of Resources that a Co-U consumes while running the activities (A); 
 S: Set of States that represents a Co-U’s current situation of G, T, A, and R. 
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Each Co-U performs the tasks (T) by executing the activities (A) and using the 
limited resources (R) to achieve the goal (G). The state (S) is used to describe the 
current situation of goals (G), tasks (T), activities (A), and resources (R).  The goal of a 
Co-U can be defined by it or assigned by its supervisor. A Co-U might receive tasks from 
other Co-Us, assign tasks to other Co-Us, or define its tasks for fulfilling its local goals. 
The activities are practical actions or procedures that are needed to complete tasks. In 
order to execute activities, each Co-U must consume its own resources or share 
resources. 

 
Coordination Network (Co-net): Co-net is a network that enables a collaborating 
process among a group of Co-Us such as agents, enterprises, and operators to achieve 
a common goal. Each Co-U within the Co-net exchanges information to achieve its 
individual tasks (T) and fulfill the common goal of all members. We extend 
Anussornnitisarn’s (2003) definition of Co-net by adding a common-goal and resource 
component: 
 

Co-net = {π, υ, τ, α, λ, σ} (2) 
 

where  π: Set of autonomous Co-Us in a Co-net ( π∈−UCo ); 
 υ: Set of common goals that should be achieved; G is a subset of υ. ( υ∈G ); 
 τ: Set of tasks that can be processed in a Co-net; T is a subset of τ. ( τ∈T ); 
 α: Set of activities for each participant (π); A is a subset of α. ( α∈A ); 
 λ: Set of resources that can be used in Co-net; R is a subset of α. ( λ∈R ); 
 σ: Set of coordination mechanisms that are used by each Co-U (π). 

The Co-net is a complete view of an operation working space. It might be an 
assembly line, workflow system, supply system, design teamwork or any kind of 
collaborative environment. Many elements comprise a Co-net, for instance, people, 
devices, resources, capital, social negotiation, information systems, etc. All elements of 
a Co-U such as goals, tasks, activities, and resources are subsets of a Co-net’s 
components, respectively.  

The Co-U and Co-net define the scope of a collaborative environment. A Co-U 
represents a participant of collaborative activities. A Co-net is a combination of many 
Co-Us. Each Co-net has its own goal (common goal) that should be achieved by 
involving Co-Us. Every Co-U communicates with others by certain coordination 
mechanisms. The tasks, activities, resources of a Co-net are preformed, executed, and 
shared among Co-Us, respectively. 

Task Dependency 
 In a distributed collaborative environment, the coordination between autonomous 
participants is about managing task dependencies [Anussornnitisarn and Nof, 2001, 
2003]. Based on Malone et al. and Khanna et al.’s work, three essential task 
dependencies that are flow, merging, and sharing represent the base of any type of 
complete task dependencies. Combining basic types of task dependencies, a complete 
task flow or Co-net can be formed and the relationships of Co-Us belonging to the Co-
net can be described by these task dependencies. 
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 Since each collaborative member has only local information about the task 
dependencies, if conflicts or errors occur in a Co-net, the lack of CE information might 
cause wrong or inadequate decisions in the resolution processes. In either case, the 
conflict or error propagates within the Co-net. In this research, we study the conflict or 
error propagation in three structures of Co-nets: linear, tree, and parallel, which 
represent the most common types of task dependencies.  

a. Linear Co-net 

 Linear Co-net is a relatively simple Co-net (see Figure 1 a). In this Co-net, each 
Co-U receives tasks from only one Co-U and offers tasks to only one Co-U; it can 
represent a sequential supply system or an assembly line. Because a linear Co-net has 
a relatively simple, predefined linear relation between Co-Us, the analysis evaluation of 
conflicts and error detection is relatively simple.  

b. Tree Co-net 

 Tree Co-net can be treated as a combination of several linear Co-nets. In a tree 
Co-net, each Co-U offers tasks to more than one Co-U, therefore, tasks are diffused out 
(see Figure 1 b). In the distribution or delivery industry, this kind of Co-net is common. 
For example, a supplier delivers finished products to its costumers.  

c. Parallel Co-net 

 Parallel Co-net is a relatively complicated Co-net. Each Co-U not only offers 
tasks to more than one Co-U, but can also receive tasks from more than one Co-U, thus, 
tasks are diffused out and merged (see Figure 1 c). This kind of Co-net represents more 
complex collaboration environments, for example, a supply-network, an assembly line, 
design project teamwork, and so on. 

 
Figure 1. Linear (a), tree (b), and parallel (c) task dependencies 

Protocols and Agents in Active Middleware 
Based on Bakken’s (2003) definition in the Encyclopedia of Distributed 

Computing, Middleware is a class of software technologies designed to help manage the 
complexity and heterogeneity inherent in distributed systems. It is an enabling layer of 
software that resides between the business application, and the networked layer of 
heterogeneous platforms and protocols [Anussornnitisarn, 2003]. According to 
Anussornnitisarn and Nof [2001, 2003], the major components of active middleware are: 
Multi-Agent Based Systems (MAS), Workflow Management Systems (WFMS), 
coordination protocols, Decision Support Systems (DSS), modeling language/tools, task/ 
activity databases (or knowledge base). Their conceptual model is shown in Figure 2. 
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Figure 2. Active middleware architecture [Anussornnitisarn et al., 2001] 

 These six components can be classified in two categories: active components 
and support components. Active components include Multi-Agent Based Systems (MAS), 
WorkFlow Management Systems (WFMS), and the coordination protocols.  Each 
protocol comprises a set of mechanisms acting or reacting according to a changing 
environment. Support components include Decision Support Systems (DSS), modeling 
tools, and task/activity databases, which respond to requests from the active 
components.  

 In a distributed, collaborative environment, each participant has its own goals, 
tasks, and resources. The management system of each participant, e.g., information 
system, project planning system, database system, Enterprise Resource Planning (ERP) 
system, or manufacturing execution system plays an important role in managing the 
project, manipulating the operation of tasks and monitoring the resources. Because of 
the heterogeneity of those distributed participants’ systems, smooth collaboration 
between these systems is difficult to achieve. Active middleware serves as a bridge 
between distributed systems and provides an integrated platform to communicate and 
cooperate. In this research, the conflict/error detection model will be defined and 
evaluated upon these active middleware components. 

Exception Handling 
 Workflow Management Systems (WFMSs) are increasingly being deployed to 
deliver e-business transactions across organizational boundaries. To ensure high 
service quality in transactions, exception-handling schemes are needed. Klein and 
Dellarocas (2000) define exception as “any deviation from an ideal collaborative process 
that used the available resources to achieve the task requirement in an optimal way”. An 
exception can thus include errors in performing a task or communicating results between 
agents, deficient response to changes in tasks or resources, missed opportunities, and 
so on. Because of anticipated or unanticipated situations, the deviations (exceptions) of 
those workflow processes from their specifications are unavoidable. In our work, we treat 
an exception as a combination of error and conflict.  

 Klein and Dellarocas proposed a hierarchy taxonomy business process 
repository to identify the exception in a workflow system [Klein 2000, Klein and 
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Dellarocas 2000]. It involved the development and evaluation of workflow for handling 
the multi-agent exception that can occur in a workflow environment. For each exception 
type, the workflow designer can then decide how to extend the workflow models to 
prepare for anticipating or detecting the exception. This concept can improve the 
exception handling quality. In this research, a knowledge-based CE repository can be 
applied to store information of CE and be accessed by participants. 

In summary, several concepts and contributions delivered by researchers in 
various areas provide inspiration in designing our detection model. Active middleware 
conceptual models, agent technology applied in distributed collaboration, knowledge-
based repository for improving CE detection and further resolution process are useful 
developments from reviewing these research activities. 

 

3. CE Definition and CE Propagation 
Many words or terms are used to describe problems in a collaborative environment 

such as error, failure, mistake, defeat, exception, conflict, misunderstanding and so on. 
Since they can be unclear and ambiguous, we define error and conflict from a 
“boundary” point of view, and consider an important phenomenon, CE propagation. 

 
 
3.1 Definition of Error 

An error is an unintentional or unexpected event that prevents a task performer 
from achieving the goal of a process (Table 1). In this research, we define an error as 
follows: 

 
Error: The difference between the current state and the expected state, with the 
difference being greater than the tolerance, after operations by a Co-U.  
 
 Based on this description, a mathematical representation of an error can be 
defined as: 

Error = |S(t)* – S(t)’| > Tolerance                      (3) 
 

Where S(t)*: Current state at time t;  
S(t)’: Expected state at time t; 
–: An applicable difference operator; 
Tolerance: The tolerance of allowing a state difference. 
 

The current state indicates the practical output or current condition of a Co-U. 
The expected state is a planned output or objective that should be obtained by a Co-U’s 
operation. If the difference between the current state and expected state exists in time t, 
and that difference is greater than the tolerance, there must be an error in the operation. 
In this equation, we focus on the state that can be quantified. Based on the previous 
definition, we can make some assumptions regarding errors: 

a. An error can happen unexpectedly and suddenly. 
b. It is not a normal situation. 
c. There are different error levels from serious to slight. 
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3.2 Definition of Conflict 
When people or organizations work autonomously and have to merge or exchange 

their results together, a conflict might emerge. Also, the different resource management 
of different organizations might lead to a resource conflict if organizations share a 
common resource (Table 1). In this research, we define conflict as: 

An inconsistency between Co-Us’ goals, dependent tasks, associated activities, or plans 
of sharing resources, after coordinated by cooperative Co-Us. 

 Based on this description, a mathematical representation can be defined as 

]}[][][]{[ jijijiji RRAATTGGConflict →←∨→←∨→←∨→←=          (4) 
 

where→← : Operator denotes “in conflict with”  
 i and j: Indexes of different Co-Us 
 Gi, Gj : Goals of Co-U i and Co-U j 
 Ti, Tj :  Dependent tasks of Co-U i and Co-U j 
 Ai, Aj : Associated activities of Co-U i and Co-U j 
 Ri, Rj : Sharing resources of Co-U i and Co-U j 

 
Some assumptions regarding conflict that we hold in this research: 

a. A conflict occurs among more than one subsystem or cooperative members. 
b. A conflict can be detected or solved by coordination or negotiation between 

involved members. 
c. Inconsistence is a major reason of conflict. 

 

Table 1. Examples of error and conflict 

Causes of error Causes of conflict 
1. Task misunderstanding 
2. Facility crash, machine fatigue 
3. Unaccepted quality 
4. Abnormal event, human mistake 
5. Exceed resource capability 
6. Insufficient ability  
7. Error in specification 
8. Lack of material, technologies 
9. No matched manufacturing process 
10. Network break down, bugs 

1. Time (schedule) mismatch 
2. Unexpected cost, profit 
3. Different design concept 
4. Different process or operations 
5. Various task specification 
6. Resource overuse 
7. Violation of common goal 
8. Collision (path conflict) 
9. Different format 
10. Different units of measure 

 
3.3 Comparison of Conflict and Error 
 In this section, we define a Co-U’s system boundary and graphically locate the 
occurrence of a conflict or an error. The position of a CE event differentiates between a 
conflict and an error and addresses CE propagation in a collaborative environment. 

A boundary of a Co-U’s system identifies a Co-U in a Co-net. Inside the 
boundary of a Co-U, major elements of a Co-U such as goals, activities, tasks and 
resources can be located. When elements are located inside a Co-U’s boundary, it 
means that they belong to this Co-U (Figure 3). 
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Figure 3. Boundaries of a Co-U and a Co-net 

Based on the definition above, the scopes of an error and a conflict can be 
defined. The scope of an error is within a Co-U’s boundary but not inside any overlap 
area of other Co-Us. For instance, a mistake or failure might occur when a Co-U 
executes its activities. If these Co-U activities are not correlated with other Co-Us, the 
cause of the mistake or failure should be directly related to that Co-U and other Co-Us 
will not share responsibility. In this scenario, we define a mistake or failure as an error. In 
Figure 4, a “star” illustrates an error event. 

Error

Conflict

Elements

 
Figure 4. Scope of conflict and error 

On the other hand, if an unexpected event is associated with other Co-Us’ 
interventions, e.g., performing activities together or occupying shared resources; we 
define this kind of mistake or failure as a conflict. Since a conflict must occur because of 
an interaction between Co-Us, the scope of the conflict is in the overlap area of different 
Co-Us. We use a “triangle” in Figure 4 to illustrate a conflict event. Table 2 shows a 
comparison between a conflict and an error based on the boundary definition. 

Table 2. Comparison of scope between a conflict and an error  

Error Conflict 
1. Occurs inside a Co-U’s boundary but not 

in any overlap area with other Co-Us 
2. Caused by the Co-U’s mistakes or 

misunderstandings 

1. Happens within an overlap area of a 
group of Co-Us 

2. Caused by the interaction between Co-
Us 

 
3.4 Conflict / Error Propagation 

Once an error occurs inside a Co-U’s boundary, it might cause an error chain-
effect in this Co-U, meaning that errors might also lead to other errors (derivative errors). 
For example, in a workstation of an assembly line, the wrong geometric dimension of 
one component caused by negligence might also affect operations in other workstations. 
This kind of situation is common not only in manufacturing but also in business and other 
collaboration environments. We define this kind of situation as error propagation.  
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In addition, an error inside a Co-U’s boundary might cause a conflict because of 
task interdependency or common resources shared by several Co-Us. The task 
dependency can be treated as the interaction between Co-Us when they cooperate to 
achieve a common goal. Combining several task dependencies or sharing common 
resources can establish a Co-net. If the task dependency becomes complicated, CE 
propagation might occur in a Co-net because of the complex correlation between Co-Us. 
For example, if one product supplier cannot fulfill the task request on time because of an 
internal operation error, this error event will also affect its customers’ purchasing plan, 
and cause a conflict situation. In this case, the delivery schedule conflict propagates out 
and affects more members if this CE problem is not resolved immediately. This kind of 
situation is defined as conflict propagation (Figure 5). 

Original Error
happens

Conflict happens

Derivative Error
happens

Error

Conflict

 
Figure 5. Conflict / error propagation 

The conflict propagation in this research focuses on the CE problems broadcast 
by circumstances. If a CE handler cannot solve a CE problem correctly or consider 
correlated Co-Us’ situations, the conflict problem propagates.  

 

4. Methodology 
In this section, the conflict/error detection protocol (CEDP) is proposed to perform 

CE detection in distributed Co-nets. The CEDP is used to detect CE events after a task 
has been assigned in a collaborative environment. Each Co-U in a Co-net is equipped 
with a software agent called conflict/error detection agent (CEDA) to perform CE 
detection and collect information. CEDAs’ functions are to monitor and evaluate a Co-
U’s task processing activity. Collected detection information is shared and transmitted by 
CEDP. Active middleware components such as a task database, a CE knowledge base, 
and a DSS, can help support a CEDA and the CEDP with decision making and 
knowledge gathering. The main components of CEDP are illustrated in Figure 6. 
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Figure 6. Components of Conflict / Error Detection Protocol (CEDP) 

 
4.1 Conflict / Error Detection Agent (CEDA) 
 The Conflict/Error Detection Agent (CEDA) is a software agent that is used to 
perform the CE detection process in a Co-U. There are three components in the CEDA: 
1. Detection Policy Evaluation Mechanism (DPEM), 2. Error Monitoring Mechanism 
(EMM), and 3. Conflict Evaluation Mechanism (CEM). The three of them coordinate 
together to detect possible errors and conflicts and notify the correlated (potentially 
infected) Co-Us by CEDP. Figure 7 shows the components of CEDA with their input and 
output.  

 
Figure 7. Input, output and components of CEDA 

Detection Policy Evaluation Mechanism (DPEM) 
 The Detection Policy Evaluation Mechanism (DPEM) is responsible for 
evaluating each detection method (dM) regarding each possible CE problem and 
generating the detection policy (dP)T for performing a task T. The detection policy is a 
guideline of how to detect a particular CE problem. Based on the information stored in 
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the CE knowledge base, DPEM can evaluate all applicable dMs for a specific CE and 
select the best one if only one dM is required. Then, DPEM will evaluate the cost-
effectiveness of the selected dM and decide whether it should be applied based on cost. 
After evaluation, DPEM implements the effective detection policy (dP)T in executing the 
CE detection when the Co-U intends to perform task T. 

Error Monitoring Mechanism (EMM) 
The error monitoring mechanism (EMM) of the CEDA is in charge of continually 

monitoring the Co-U’s activities. CEDA obtains the run-time current state (Θ) from the 
input of different monitoring devices. Based on the Co-U’s plan of resource policy, task 
specification, and current state, an error can be detected and recognized. Until the error 
situation is recovered, EMM will continue to trace this error. 

Conflict Evaluation Mechanism (CEM) 
 The conflict evaluation mechanism (CEM) is a kernel of the CEDA with two 
functions, calculation and comparison, to detect possible conflicts when a Co-U performs 
a task. Through these two functions, CEDA can standardize all current states (Θ), tasks 
constrains (Ω), and compare them to find a conflict when unsatisfied task constraints (Ω’) 
exist. Figure 8 shows a complete perspective of a CEM. 

 
Figure 8. Conflict Evaluation Mechanism (CEM) 

Conflict-severity (Δ) 
A conflict-severity (Δ) is used to measure the degree of conflict. If unsatisfied 

task constraints (Ω’) exist, CEDA applies this Δ measurement by summing all weights of 
unsatisfied task constraints (Ω’).  If Δ is high, it means that more task constraints cannot 
be satisfied and the conflict of task processing is at a higher level of severity.  

Conflict-severity (Δ) = ∑
Ω

=

'||

1

'

i
iw             (5) 

 
where | Ω’| is the total number of unsatisfied task constraints; 
 '

iw  is the weight of ith unsatisfied task constraint of a Co-U. 

Once a CEDA agent receives a CE announcement or CE evaluation request 
from its cooperative Co-Us, it will calculate Δ. If all task constraints of this agent can be 
satisfied, Δ equals 0, meaning no conflict occurred based on that updated task proposal. 

Conflict / Error Knowledge Base 
The CE knowledge base is a repository of CE detection information that can be 

accessed by the CEDA of the Co-Us. A CE table is defined and maintained to store all 
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information about the CE problems in the knowledge base. The CE table stores 
information such as the CE index (x), CE description, CE occurrence frequency (Fx), CE 
detection method (dMxy), detection accuracy (dAxy), average detection cost (dCxy), 
detection cycle time (dTxy), possible damage (Dx), and potential CE resolution. The 
structure of a CE table and an example are presented in Table 3. 

The information of detection methods stored in a CE table provides the CEDA 
with sufficient data to analyze or examine possible detection procedures faced with an 
analogous CE problem. 

 

Table 3. The CE table of a task T 

Index of Co-U 
CE index (x) The unique index of a CE problem 
CE description The description of this CE 
CE occurrence frequency 
(Fx) 

Fx is the occurrence frequency of a CE event. It is the 
number of occurred CE problems per time unit. For 
example, Fx might be 0.01/second. Higher frequency 
means this CE will happen more often 

Damage (Dx) The estimate or possible damage of a CE problem 
Detection methods (dMx) 
Detection method (dMxy) 

xxyxy dMdMdM ∈∀ :  
 

dMx is a set of applicable detection methods for CE x 
xydM  is a detection method y to detect CE x 

This element stores a set of applicable detection methods 
that can be used to detect CE x. There could be more 
than one detection method that can be used to detect a 
CE problem.  
y is the index of the detection method (y >= 1). 

Detection accuracy (dAxy) The accuracy of a specific detection method y, e.g., 
detection rate of sensor 

Average detection cost 
(dCxy) 

dCxy is the average detection cost per time unit of the 
specific detection method y to detect CE problem x. For 
instance, dCxy might be $10/second or $600/minute. Each 
detection method might have a different detection cost 

Detection cycle time (dTxy) dTxy is the time that is spent on finishing a detection cycle 
of the specific detection method y. For example, in 
manufacturing, a visual sensor might need 2 seconds to 
finish inspection. In this case, the dT is 2 seconds. Each 
detection method might have a different detection time 

Potential CE resolution This element describes the possible CE resolutions 
 

4.2 Conflict / Error Detection Protocol (CEDP) 
 The proposed conflict/error detection protocol (CEDP) is an agent-based protocol 
that facilitates the exchange of detection information between Co-Us in a Co-net. CEDP 
enables CEDA to send or receive CE announcements, CE evaluation requests, and CE 
evaluation results. Through this protocol, not only CE events can be transmitted within a 
Co-net, but also the CE evaluation information can be shared when it is needed for the 
detection process.  
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Message Definition 
CEDP handles the detection information exchange process among Co-Us. Three 

kinds of messages are transmitted by this protocol: a CE announcement, a CE 
evaluation request, and a CE evaluation result.  We define π* to represent a set of Co-
Us which send out CE announcements or evaluation requests, and π# to represent a set 
of Co-Us which receive them. 

a. CE announcement: Once a Co-U detects a CE inside its boundary, CEDA will 
broadcast the CE announcement to other correlated Co-Us. Since Co-Us collaborate 
to achieve a common goal, each cooperative Co-U is responsible to warn other Co-
Us of the CE. When a CE announcement is received, the CEDA of a Co-U will 
retrieve the CE table for the CE announcement and evaluate this CE event. 

b. CE evaluation request: A CE evaluation request is a message to ask a Co-U to 
evaluate its activity and return its evaluation result. A CEDA can request evaluations 
from cooperative Co-Us and acquire CE evaluation information for understanding the 
influence of a task specification change. The evaluation request contains task 
specification of a modified task.  The request receiver can examine its task processes 
and evaluate their potential influence. 

c. CE evaluation result: After a CEDA receives a CE announcement or CE evaluation 
request, the CEM of the CEDA begins to evaluate its task activities and return 
evaluation results to the requesters. If a CE is detected in the evaluation process, the 
information regarding the detected CE (index of CE and CE table) and non-zero 
conflict-severity value will be included in the evaluation result. Otherwise, a zero 
conflict-severity value is returned with the evaluation result. 

CEDP Operation 
Two kinds of CEDP operations are executed between Co-Us. One occurs when 

a CE is detected; another when a task specification is changed. 

a. A CE is detected 
Once a Co-U detects a CE problem that occurs within its boundary, this Co-U is 

responsible to inform other correlated Co-Us. Every Co-U that receives a CE 
announcement evaluates the potential influence of this CE and sends back the 
evaluation result. Then, any Co-U that detects a CE, can also estimate the potential 
influence on other Co-Us. 
 Illustration: In Figure 9, a CE occurs and is detected by Co-U3. Co-U3 then 
sends out CE announcements to its correlated partners: Co-U1, Co-U2, Co-U4, and Co-
U5. Each CE announcement receiver evaluates the detected CE event and returns the 
CE evaluation result to Co-U3. The detailed operation is listed in Table 4. 

 

 
Figure 9. CEDP operation when a CE is detected inside a Co-U’s boundary 
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Table 4. Conflict / error detection protocol when a CE occurs 
Conflict / Error Detection Protocol 

Co-U (π*) Co-U(π#)  (|π#|>= 1) 
Variables: 
CE announcement (a) 

1. Index of sender Co-U (π*) 
2. Index of receiver Co-U (π#) 
3. Time 
4. Conflict-severity (Δ) 
5. Index of CE (x) 
6. The CE table 

Task constraints (Ω) 
 

Variables: 
Evaluation result (e) 

1. Index of sender Co-U (π#) 
2. Index of receiver Co-U (π*) 
3. Time 
4. Received CE announcement (a) 
5. Conflict-severity (Δ) 
6. Index of CE (if CE is detected) 
7. The CE table (if CE is detected) 

Task constraints (Ω) 
Statements: 
A CE happens 
Update CE table(x) in CE knowledge base 
Initiator() 
While{ 
  (1) Evaluating current task constraints (Ω) 
  (2) Calculating the conflict-severity (Δ) 
  (3) π* -> π#: Sending (CE announcement) 
  (4) Wait() 
 
 
 
 
 
 
 
 
 
 
 
  (9) Receiving (evaluation result) 
  (10) Updating received conflict-severity 
}All cooperative CEDA finish communication 
 

Statements: 
 
 
Responder() 
{ 
 
 
 
 
(5) Receiving (CE announcement) 
(6) Evaluating task constraints (Ω) with 

received CE announcement (a) 
(7) Calculating conflict-severity (Δ) 
      If (CE) then { 
          Calculating conflict-severity (Δ > 0)  } 
      Else{ 
            Conflict-severity = 0 } 
(8) π -> π* : Sending (evaluation result) 
 
Recursive CE detection 
If (Δ > 0) { 
     Intitiator() 
     While{ 
         π' -> π : Sending (CE announcement) 
     } All cooperative CEDAs finish 

communication 

b. A task specification is changed 
If a Co-U wants to change the task specification, this change might affect other 

partners and cause conflicts (Figure 10). Figure 10 (A) shows a task dependency of a 
Co-net that includes four members. Figure 10 (B) indicates a task specification change 
in Co-U3. The Co-U3 will send an evaluation request with its changed task specification 
to cooperative partners: Co-U1, Co-U2, and Co-U4. After evaluating the task activities 
with the new task specification, all receivers (Co-U1, Co-U2, and Co-U4) will send back 
the evaluation result. Table 5 describes the details of CEDP operation when a task 
specification is changed. 
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Figure 10. CEDP operation when a task specification is changed 

 

Table 5. Conflict / error detection protocol (CEDP) when a task specification is changed 
Conflict / Error Detection Protocol 

Co-U (π*) Co-U (π#) (|π#|>= 1) 
Variables: 
CE evaluation request 

4. index of sender Co-U (π*) 
5. index of receiver Co-U (π#π) 
6. time 
7. modified task specification 

 

Variables: 
Evaluation result (e) 

1. index of sender Co-U (π#) 
2. index of receiver Co-U (π*) 
3. time 
4. received CE announcement (a) 
5. conflict-severity (Δ) 
6. index of CE (if CE is detected) 
7. CE table (if CE is detected) 

Task constraints (Ω) 
Statements: 
 
A task specification is changed 
Initiator() 
While{ 

(1) π* -> π#: Sending (CE evaluation 
request) 

(2) wait 
 
 
 
 
 
 
 
 
 
 
 

(7) Receiving the evaluation result (e) 
(8) Updating received conflict-severity 

} 
}All cooperative CEDAs finish communication 

Statements: 
 
 
Responder() 
{ 
 
 
(3) Receiving (evaluation request) 
(4) Evaluating task constraints (Ω) with 

updated task specification 
(5) Calculating conflict-severity (Δ) 
      If (CE) then { 
        Calculating conflict-severity (Δ > 0) } 
      Else{ 
            Conflict-severity = 0 } 
(6) π -> π* : Send(evaluation result) 
 
Recursive CE detection 
If (Δ > 0) { 
     Intitiator() 
     While{ 
         π' -> π : Sending (CE announcement) 
         …… 
     } All cooperative CEDAs finish 

communication 
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4.3 CEDP with Active Middleware Components 
 In this research, CEDA and CEDP can be treated as an agent middleware based 
on the taxonomy of middleware [Bishop and Karne, 2003]. CEDA is a software entity 
located in each Co-U and it is in charge of monitoring and evaluating the current 
activities. CEDP provides a communication platform for all Co-Us in a Co-net. CEDA can 
notify other Co-Us of detected CE events and share detection information with others 
through CEDP.  

 Active middleware components defined in Anussornnitisarn’s work can be 
supportive elements for CEDP (Figure 11). Decision support systems (DSS) provide a 
CE detection reasoning when each CEDA receives detection information from its 
monitoring mechanism and other cooperative Co-Us. A DSS can support the evaluation 
and examination processes of a CEDA to identify CE problems.  

 

 
Figure 11. CEDA with Active middleware components 

  A task/activity database (or knowledge base) contains detailed information about 
tasks and activities related or derived from a Co-U’s goal. The descriptions of each Co-
U’s goal, tasks, activities, and resources are stored in this knowledge base. 
Accumulating these descriptions and CE problem descriptions, knowledge or 
experiences about CE detections can provide Co-Us with sufficient information for a 
further resolution stage.  

 Workflow Management Systems (WFMS) provides a workflow structure for a Co-
net. Each CEDA follows this structure to identify its communicating predecessors and 
successors among Co-Us. No matter what kind of task dependency among Co-Us exists, 
each CEDA of a Co-U can exchange detection information with a connected Co-U. 

 In terms of function, a CEDP with a CEDA is a two-way software middleware 
among Co-Us and between active middleware with each Co-U’s applications. On the 
one hand, through a CEDP operation, a CEDA communicates with other CEDAs to 
share detection information. On the other hand, a CEDA acquires detection information 
from Co-U’s activities and stores it in an active middleware knowledge base. Next, active 
middleware components such as DSS help support a CEDA to make a decision on 
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detection policy. Therefore, a CEDP constitutes a two-way middleware CE detection 
model (Figure 12). 

 
Figure 12. CEDP is a two-way middleware in CE detection 

 
 
5. Experiments and Results 

A set of experiments has been designed and conducted with a prototype CEDP. 
The objective of these experiments is to implement a CEDP, apply the conflict-severity 
(Δ) to measure the potential implications and seriousness of a CE problem, recognize 
the CE-infected Co-U (π’) by using CEDP, and understand how to design a better CEDP. 
We utilize the conflict-severity (Δ) and the CEDP to evaluate the CE problems in three 
basic forms of task dependence Co-nets: linear, tree, and parallel. 

5.1 Experimental background  
 Before describing the experiments, we first address some assumptions and 
background information. 

a. No conflict or error is evident in the Co-net network establishing stage: During the 
Co-net network establishing stage, we assume for simplicity that no conflict or 
error happens. When a Co-net is established by assigning tasks, every Co-U 
must agree with the initial task dependencies. In this experiment, this stage is 
called “initial stage of a Co-net”. In an ideal situation, each Co-U coordinates with 
other Co-Us to achieve its own goal and a common goal from its initial stage. 
However, that “ideal” situation is rare because errors and conflicts are 
unavoidable in a Co-net and can happen at any time. 

b. Conflicts can propagate to other cooperative members: Contrary to the initial 
stage of a Co-net, the CE propagation stage of a Co-net means that an 
unexpected event occurs and can propagate to other Co-Us after the initial stage. 
Since CE propagation is an important phenomenon in any collaboration 
environment, this experiment is designed to search CE-infected Co-Us (π’) in a 
Co-net by monitoring and evaluating the conflict-severity (Δ). 

 In the experiments, the Co-net environment has to be formed before the CE 
detection. Experiments #1, #2 and #3 establish Co-nets based on linear, tree, and 
parallel dependency networks, respectively. Each Co-U in a network can use a CEDP to 
communicate with other Co-Us and share information about CE problems.  
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5.2 Measures of Conflict / Error Detection Protocol (CEDP) 
Three measures, which are the number of CE-infected Co-Us (π’), conflict-severity 

(Δ), and total communication time (Tc) are used to measure the performance of a CEDP 
in the three forms of Co-nets.  

a. Total communication time )( cT  represents the accumulating time for each Co-
U to communicate with others. Once a CE happens in a Co-U, a CEDA will 
communicate with collaborative partners and exchange the conflict information 
until all CEDAs finish their evaluations. 

 

∑=
||

_
COM

j
jc timeCT               (6) 

where cT is the total communication time; 
 j is the index of communication activity; 
 |COM| is the total number of communication activities; 
 jtimeC _ is time spent on communication activity j performed by a CEDA. 
 

b. The number of CE-infected Co-Us (|π’|) represents the total number of Co-Us 
that detect a CE after evaluating their current task constraints (Ω) and CE 
announcements. 

c. Conflict-severity (Δ) defined as Equation (6) represents the seriousness of 
conflict events. It accumulates the weights (w) of the unsatisfied task constraints 
(Ω’). 
 

5.3 Experimental Procedures 
 Based on the design of the CEDP, each CEDA monitors the Co-U’s activities by 
examining its current states (Θ) and task constraints (Ω) to detect a CE. The experiment 
procedures are divided into two stages: the initial stage and the CE propagation 
detection stage (Figures 13 and 14). 

Initial stage 
a. By using Excel with VBA, Visual Basic language initially constructs three task 

activity dependence Co-nets (linear, tree and parallel) with the same number of 
Co-Us. 

b. Randomly assign an error event for a Co-U. Then, this Co-U is the initial CE-
infected Co-U (π’). 

c. The initial CE-infected Co-U (π’) evaluates the CE problem and calculates the 
conflict-severity (Δ). 

d. The initial CE-infected Co-U (π’) checks for possible task specification 
modification to locally solve the CE problem. 

e. The initial CE-infected Co-U (π’) sends out the CE announcement with that task 
specification modification to the connected Co-Us once a CE is detected. 

 

 
Figure 13. Experimental procedure – initial stage 
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CE propagation detection stage 
a. Once a Co-U, (π#), receives CE announcements, it will check whether the 

detected CE in the initial CE-infected Co-U (π’) and task specification 
modifications affect its task activities. 

b. Next, π# calculates the conflict-severity (Δ). If no conflict, Δ is equal to 0. If this π# 

is affected by more than one Co-U, its Δ will sum all weights of unsatisfied task 
constraints. In this case, Δ could be greater than 1. 

c. Finally, π# sends back the evaluation result. 
d. If a new CE is detected, recursively detect a possible CE problem in a Co-net 

a) First, π# checks the possible task specification modifications that can 
solve the detected CE problem locally. 

b) Next, π# sends out the CE announcement with that task specification 
modification to connected Co-Us. 

 

 
Figure 14. Experimental procedure – CE propagation detection stage 

 

By changing current states (Θ’), the experiment can attribute a CE problem to a 
particular Co-U. This Co-U compares task constraints (Ω) and changed current states 
(Θ’). If Ω > Θ’, a CE has occurred at this Co-U and has been detected. However, how to 
change the current states (Θ’) remains open. To address this situation in this experiment, 
we define a CE control factor (ε) to control the relative changing range of current states 
(Θ’). The CE control factor (ε) is a fraction between 0 and 1. When ε is larger (range of 
Θ’ is also large), the relative change in current states (Θ’) will be smaller. It also means 
that the conflict event is more likely to occur in this experiment (Ω > Θ’). The range of Θ’ 
is defined below as: 

Range of Θ’ = [Θ - ε, Θ]             (6) 
 
where Θ’ is the changing current states; 
 Θ is the original current states; 
 ε is the CE control factor. 

 In this experiment, the parameter ε is applied to control the emergence of conflict 
situation; if ε is high, the conflict most likely happened in a given Co-net (Ω > Θ’). 

 Visual Basic for Applications (VBA), Excel’s programming language, is used to 

develop the CEDP’s logic [Albright, 2001]. In the initial stage, the VBA program creates a 

Co-net with 20 Co-Us and assigns the initial values to each Co-U’s data table. After 

finishing the data initialization, a CE problem is attributed randomly for a Co-U. Then, the 

CE propagation detection begins to search all CE-infected Co-Us (π’). The experimental 

parameters, input and output of this simulation environment are shown in  
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Table 6. Regardless of the form of task dependency (linear, tree, parallel) of a Co-net, 
each experiment follows the same settings.  

 

 

 

Table 6. Parameters of the experiments  

Parameter Value 
The number of Co-Us in a Co-net 20 
The number of task constraints for each Co-U 3~5 
CE control factor ε Assigned from 0.1 to 0.9 
Total runs for each CE control factor ε 100 runs 

 
5.4 Experimental Results 

In the experiments, there are three values for the “type (form) of Co-net”, and 9 
for “CE control factor (ε)” ranging from 0.1 to 0.9. Therefore, there are 27 combinations 
for 2700 runs (each combination is run 100 times). According to the MANOVA analysis 
conducted (Table 7), the null hypotheses for each factor, CE control factor (ε) and type 
of Co-net, are rejected. Both ε and the type of Co-net are significant and affect the three 
output variables. In the following sections, we further discuss the experimental results 
based on the three output measures. 

Table 7: 2 way--3 variables MANOVA analysis 
Class Levels Values 

Type (form) of Co-net 3 1, 2, 3 
CE control factor (ε) 9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
3 Variables: number of CE-infected Co-U (|π’|), conflict-severity (Δ), and communication time (Tc) 
Number of observations    2700 

 
The ANOVA Procedure 
Multivariate Analysis of Variance 
Characteristic Roots and Vectors of: E Inverse * H, where 
H = ANOVA SSCP Matrix for Net 
E = Error SSCP Matrix 
Characteristic:               Characteristic Vector  V'EV=1 

Root Percent # of CE-infected Co-U (π’) CE control factor (ε) communication time (Tc) 
1.52318443 85.58 -0.01245487 0.09268204 0.00479709 
0.25675239 14.42 0.00673876 -0.06360035 -0.00050796 
0.00000000 0.00 0.00359140 0.16293635 -0.00362291 

   
MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall Co-net Effect 
H = ANOVA SSCP Matrix for Co-net 
E = Error SSCP Matrix 
S=2    M=0    N=1342.5 

Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.31535613 699.28 6 5374 <.0001 
Pillai's Trace 0.80797374 607.32 6 5376 <.0001 
Hotelling-Lawley Trace 1.77993682 796.97 6 3580.9 <.0001 
Roy's Greatest Root 1.52318443 1364.77 3 2688 <.0001 
NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
NOTE: F Statistic for Wilks' Lambda is exact. 

 
Characteristic Roots and Vectors of: E Inverse * H, where 
H = ANOVA SSCP Matrix for CFactor; E = Error SSCP Matrix; Characteristic: Characteristic Vector  V'EV=1 
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Root Percent # of CE-infected Co-U (π’) CE control factor (ε) communication time (Tc) 
1.66186817 92.95 0.00095426 0.15347089 -0.00161157 
0.12361014 6.91 -0.00680310 0.12269321 -0.00004582 
0.00234388 0.13 -0.01289341 0.02400579 0.00581346 

 
ANOVA Procedure 
Multivariate Analysis of Variance 
MANOVA Test Criteria and F Approximations for the Hypothesis of No Overall CE control factor (ε) Effect 
H = Anova SSCP Matrix for CFactor; E = Error SSCP Matrix; S=3    M=2    N=1342.5  
Statistic Value F Value Num DF Den DF Pr > F 
Wilks' Lambda 0.33356545 149.43 24 7793.7 <.0001 
Pillai's Trace 0.73667398 109.40 24 8067 <.0001 
Hotelling-Lawley Trace 1.78782219 200.08 24 5814.6 <.0001 
Roy's Greatest Root 1.66186817 558.60 8 2689 <.0001 
  NOTE: F Statistic for Roy's Greatest Root is an upper bound. 

 

Comparing the Average Communication Time (Tc) in the three Co-net forms 
 The MANOVA analysis indicates that both ε and the form of Co-net significantly 
affect the average communication time (Tc). Figure 15 shows the comparison of the 
average communication time (Tc) for the three forms of Co-nets. The results show that 
on average a higher ε leads to a rise of the Tc, and therefore, the higher ε makes the CE 
problems more likely to occur. Once a CE problem occurs, more Co-Us need to become 
involved and more communication time is needed for exchanging the CE 
announcements and requests for evaluation results. 
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Figure 15. Average communication time (Tc) in three Co-net forms 

  

 For the same level of ε, two observations are important:  

a. Parallel Co-net (Exp. #3) has on average the longest Tc because each Co-U 
must connect with more Co-Us in the parallel Co-net (diverging and merging). 
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Once a CE is detected by a Co-U, this Co-U has to exchange the current 
detection information with more than one Co-U both upstream and downstream. 
On the reverse, each Co-U in a linear Co-net needs to connect with only two Co-
Us and each Co-U in a tree Co-net connects with only one Co-U, upstream. 

b. Tree Co-net (Exp. #2) has the shortest Tc because the branch-structure of a tree 
Co-net leads to only one-way conflict propagation. More Co-Us will be located in 
the “leaves” of a tree Co-net, given the same total number of Co-Us. Hence, the 
Co-U in the “leaf” has a higher probability to be assigned to the initial CE problem. 
Most of the detection will be located in the regional area (branch of a tree) and 
the propagation is towards the root of the tree (Figure 16).  

 
Figure 16. CE propagation area in a tree Co-net 

Comparing the Average Number of CE-infected Co-Us (|π’|) in three Co-net forms 
 The MANOVA analysis indicates that both ε and the form of Co-net significantly 
affect the average number of CE-infected Co-Us (|π’|). A higher ε leads to a rise in the 
(π’). Furthermore, a higher ε increases the variance range of Θ’, and the CE will be more 
likely to occur. Figure 17 shows a comparison of the average of number of CE-infected 
Co-Us (|π’|).  
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Figure 17. Average number of CE-infected Co-U (|π’|) in three Co-net forms 

   
 Based on the same level of ε, the results provide important attributes for the 
three Co-nets: 

a. The linear and parallel Co-nets (Exp. #1 and #3) have on average a higher |π’|. 
More Co-Us in linear and parallel Co-nets are affected by conflict propagation 
than in tree Co-nets.  

b. Tree (Exp. #2) has relatively less |π’|, since more Co-Us are located in the 
“leaves” of the Co-net. A tree Co-net has a greater probability of assigning an 
initial CE to a leaf-Co-U, and the conflict propagation is likely to be limited to only 
one direction. Also, the conflict propagation is likely to occur in a regional area 
(branch) in a tree Co-net. This observation is consistent since the tree Co-net 
has less Tc, since a smaller |π’| means less communication time is needed 
between Co-Us. 

 
Comparing the Average Conflict-severity in the three Co-net forms 
 The MANOVA analysis shows that both ε and the type of Co-net significantly 
affect the average conflict-severity (Δ). The results show that a higher ε increases the 
average conflict-severity (Δ), since the higher ε makes the variance range of Θ’ larger, 
and the CE problem will be more likely to take place. Once CE problems occur and more 
Co-Us get involved in this CE problem, more task constraints (Ω) cannot be satisfied by 
the Co-Us’ changing current situations (Θ’), this makes the Δ (the summation of weights 
of unsatisfied task constraints) larger. Figure 18 shows the average conflict-severity (Δ) 
for the three experiments. 
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Figure 18. Average conflict-severity (Δ) in three Co-nets 

 Based on the same level of ε, the results convey important behaviors in these 
Co-nets: 

a. Tree and parallel Co-nets (Exp. #2 and Exp. #3) have on average a higher Δ, as 
long as the ε increases. In a linear Co-net, each Co-U connects with only two 
neighboring Co-Us. In the more complex forms, each Co-U in a tree or parallel 
Co-net might have more than one neighboring Co-U in the downstream direction. 
Therefore, the average Δ in the tree or parallel Co-net is relatively higher and 
possibly higher than 1 when ε increases. 

b. The Δ value in a linear Co-net (Exp. #1) is always less than or equal to 1 ( 1≤Δ ) 
since each Co-U is affected at most by only one other Co-U, therefore there is no 
add-up in each Co-U’s Δ value.  

c. Although |π’| can represent how many Co-Us are affected by CE propagation, Δ 
measure is insufficient to show the seriousness of CE problems for each CE-
infected Co-U.  

 

6. Conclusions and Recommendations 
In this research, a conflict/error detection protocol (CEDP) is developed for a 

distributed collaborative network. CEDP is expected to provide a detection-information 
exchanging mechanism for all collaborating members in a Co-net. Through the 
collaborative detection process, practically all possible CE problems that occur in a Co-
net can be recognized. After analyzing and categorizing CE problems, we identify the 
CE table to serve as a basic data unit for storing CE information in a CE knowledge base. 
The CE knowledge base is a case-base repository that can be accessed by each Co-U 
in a Co-net to enhance the accuracy and quality of the detection process.  
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The answer for the research question “Once a conflict or error occurs in a certain 
autonomous entity, how this event can affect other entities within the coordination 
network?” is as follows. Conflicts and errors are unavoidable in a collaborative 
environment. In this research, we first review the definition of conflict and error, and 
distinguish them by illustrating the logical position within a Co-U boundary. Based on the 
definition, an important phenomenon, CE propagation, along with conflict and error are 
addressed in this report. CE propagation is a chain-effect of CE problems in a 
collaborative environment such as design teamwork or distributed manufacturing 
network. The occurred CE problem in a Co-U might propagate to other participants or 
partners and cause repeated cost for detecting and resolving it. Without sharing 
detection information among Co-Us, it is difficult to detect the CE propagation by an 
autonomous detector.  Therefore, in this research, we not only focus on detecting CE 
problems that occur at an individual Co-U, but also on CE propagation problems in a Co-
net.  

Another research question addressed is: How can a CE detection protocol 
(CEDP) be developed and specified? In the proposed CEDP model, a Conflict/Error 
Detection Agent (CEDA) is designed as a distributed agent that is equipped to perform 
CE detections in a Co-U individually. Through the CEDP, CEDAs can communicate with 
each other to share CE information and detect CE propagation together. Besides, all 
CEDAs access the CE knowledge base and update the detection information. The 
cumulative detection information can be exchanged within a Co-net and provide useful 
“experience” and learning for handling similar CE detection.  

The third research question posed is: How can CE measurement be defined to 
represent the relative seriousness of a given CE event? How to measure the detected 
CE problem is an important issue for CE detectors. In this research, a new conflict-
severity (Δ) measure is defined and used to measure the degree of seriousness of a 
detected CE. It is defined as the summed weights (importance) of unsatisfied task 
constraints. If task constraints from other Co-Us cannot be satisfied by current states of 
a Co-U, a conflict occurs. The higher the conflict-severity is, the more inconsistencies 
between Co-Us exist. This measure is applied in the experiments to evaluate the 
seriousness of detected CE problems. 

What is the purpose of the experiments and the value of the results? Because 
the performance of CE propagation detection process might be diverse in different forms 
of collaborative networks, in the experiments, we apply the CEDP model to evaluate and 
understand the detection operation in three basic forms of Co-nets. The conflict-severity 
measure is used to evaluate the detected CE problem. The experimental results show 
that in a relatively more complicated Co-net, such as parallel network, more Co-Us are 
involved in and affected by CE propagation, consequently more communication time is 
needed for detection. As a result, the conflict-severity (Δ) is also higher in more 
complicated Co-nets. It also means that the conflict-severity (Δ) can not only be used to 
measure the severity of each detected CE, but can also provide useful information to 
identify and analyze the degree of seriousness of CE propagation in a Co-net. 
 

Recommended CEDP Design Guidelines 
 CEDP provides an information exchange mechanism to aid in detecting CE 
propagation. In terms of implementation, the following design guidelines are 
recommended: 

a. Identify the functions of each detection agent (CEDA). 
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For each given CE problem, appropriate detection methods should be applied in 
the CEDA’s detection policy. A DPEM mechanism can assist to select the best 
policy in given situations, based on relevant information gleaned across the 
distributed Co-net. Functions for sending and receiving messages are also 
needed for each CEDA to communicate with other CEDAs under the protocol. 

b. Define the data structure for storing cumulative detection information. 

The description of the detected CE, occurrence time, CE infected member, and 
proper detection method are the main elements to be included and stored to 
support the detection process.  

c. Apply the conflict-severity measure to assess the degree of seriousness of a 
detected CE problem and its potential damaging impact on other C-Us via 
propagation.  

d. Define the message routing mechanism to transmit exchanged information 
between Co-Us. An efficient and reliable exchange across the Co-net will be 
necessary to assure timely processing and response during the detection 
process. 

 

Future Research 
 
 Conflict/error detection is an initial stage of conflict/error management 
[Balakrishnan et al., 1994]. Solving or recovering the detected CE problem in the 
collaboration environment is a following mission. Several undeveloped areas which need 
to be investigated are:  
 

a. A well-organized conflict/error knowledge base is necessary to improve the 
conflict/error detection and resolution process. Knowledge acquiring and query 
mechanisms that enable collaborative members to deposit and retrieve detection 
information are important issues. 

b. A sophisticated distributed conflict/error management that contains the 
conflict/error resolution protocol is needed for autonomous members to solve 
detected CE problems under coordination. An effective communication 
mechanism to improve the quality of CE resolution is a crucial issue. 

c. Evaluation and comparison of the proposed CEDP with other detection protocols 
will be the next step to appraise performance of CEDP. 
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