

1

Comments are invited and should be directed to the author at the address listed below.
Please do not reproduce in any way without the permission of the authors. A complete
listing of reports may be obtained by contacting the PRISM Center, School of Industrial
Engineering, Purdue University, Grissom Hall, 315 N. Grant St., West Lafayette, IN,
47907-2023.

ANALYSIS, DETECTION POLICY,
AND PERFORMANCE MEASURES
OF DETECTING TASK PLANNING

ERRORS AND CONFLICTS
Chao-Lung Yang, Shimon Y. Nof

PRISM Research Memorandum No. 2004-P2

August, 2004

This research is supported in part by GM R&D Center.

Juan D. Velasquez
Research Series Coordinator

PRISM Center
School of Industrial Engineering

Grissom Hall
315 N. Grant Street
Purdue University

West Lafayette, IN 47907-2023
jvelasqu@exchangepurdue.edu

2

Analysis, Detection Policy, and Performance Measures of Detecting Task Planning
Errors and Conflicts

Chao-Lung Yang, Shimon Y. Nof

Executive Summary

In this research, we analyze the impact and severity of conflicts and errors that occur

during task planning through collaboration. Taxonomy of conflict and error problems and

alternative detection methods are categorized to review the different types of conflict and

error situations. Three techniques are developed and applied for the impact analysis.

First, a performance measure, “detect-ability”, is defined to evaluate the detection

potential of given detection methods. This measure and its analysis can provide the

necessary decision-making information for the design of conflict/error detection. In

addition, a cost-damage analysis based on available conflict/error knowledge is also

applied to help decide on the optimum detection policy. Third, a viability measure is

adapted for detection protocols and agents, and is applied as a measure of impact on

the company to examine the detection policy and detection performance for collaborative

task planners. The paper describes these three techniques, and experimental results in

using them. The experiments indicate clearly that a detection policy associated with the

cost-damage analysis method can maintain significantly higher viability of the

collaborating planners, hence, positive total impact. This result is important, because it

points to specific design guidelines for CEDM (Conflict and Error Detection Management)

systems.

Acknowledgement

This research has been developed with the PRISM Center support, and support from

GM R&D Center Project on "Design of Active Middleware for Error and Conflict

Detection (2004)". The paper is based in part on C-L. Yang’s M.S.I.E. thesis completed

in August 2004.

3

1. Introduction

 Conflicts and errors (CE) are unavoidable in distributed task planning which is
performed in collaborative environments. The reason is that even if procedures for
collaborative planning are well defined and well understood, each collaboration
participant has his/her own expertise, local resource management, and project-based
schedule. Any error caused by human lack of knowledge, or miscommunication between
co-workers cannot be ignored. In order to detect the CE problems and decide whether
we can afford to neglect them or must resolve them, understanding and analyzing the
impact of CE problems are necessary.

The different participants in a distributed collaborative environment might have
inconsistent viewpoints on the same task plan. For example, the contractor and
subcontractor may have different understanding of the same task contract. These
inconsistent interpretations can be treated as errors. It might be a misunderstanding of
task specification by team members, or mis-estimation of task requirements, e.g., task
pricing, by the task proposer. If such errors occur, or are not recognized before the task
execution, the resulting error can lead to further severe consequences; e.g., integration
difficulty, wrong direction of design, and unnecessary conflicts and subsequent errors.
Because the cost (damage) of different or mismatched perceptions for the same task
can be relatively large, detection of these errors must be achieved before executing the
planned tasks.

Certain events are similar to errors and are not caused by misunderstanding, yet
they may be inevitable, and may lead to errors. For example, a system may suddenly
shut down because of power failure or facility breakdown. Wrong procedures followed by
workers in response to such events can cause further failures, or mistakes. Usually,
these types of errors are difficult to prevent, although corresponding emergency
procedures can be pre-planned and trained. Detection by monitoring and inspection
techniques, including sensors and validation tests, can be applied for these unexpected
errors. The estimated costs of detection methods and anticipated avoidable damages,
however, must be well understood before investing and applying detection techniques.

 In order to investigate the CE problems in collaborative planning environments,
and develop applicable detection information mechanisms and measures, two research
problems have been defined:

a. How can the performance ability of a detection system be defined and
evaluated?
The ability to detect a possible CE problem is important for a Co-U (Collaborating
Unit participating in a Co-net, a Coordination Network) to process e-Work
effectively [Nof, 2003]. Since only the CE problem can be detected, a CE
resolution procedure can be launched to prevent/resolve the potential problem
and damages. Detection methods with higher CE detect-ability can provide a Co-
U with relatively more competence to prevent damages caused by CE events.
Furthermore, a Co-U has to consider the cost issue when it performs CE
detection. Applying detection methods must cost a Co-U both resources and time.
It is necessary to be able to evaluate a detection method’s ability by considering
cost and time issues. When a Co-U can apply high detect-ability methods, it
implies that this Co-U has a qualification to avoid damages caused by CE, and
the detection performance can be better assured.

4

b. How can the viability measure of an independent entity be used to improve
the decision-making of a detection policy?
Once a collaborating entity decides to accept (and execute) a task request, how
to perform the detection process effectively and determine the detection policy
are important issues for this entity. The detection policy is a set of decisions that
determine which kind of CE problems the entity wants to detect and which
detection method should be applied to detect the particular CE problem. An entity
can detect all CE problems by applying appropriate detection methods
regardless of the detection cost, or detect selective CE problems by considering
the detection cost-effectiveness. In a distributed environment, an individual entity
will make independent decisions based on CE detection policy to reduce the
damage of CE by paying the detection cost. Using the proper detection policy,
the viability of an independent entity should be improved. Following Huang and
Nof (2000), a generalized viability function can be defined to evaluate the
performance of a detection policy.

 The report is organized as follows: In Section 2, we briefly review some research
background. In Section 3, we define the conflict and error in task planning collaborative
environments. Based on that definition, we categorize the CE problems and analyze the
detection methods. Section 4 describes the Detection Policy Evaluation Mechanism
(DPEM) that is to evaluate detection methods by considering cost-effectiveness. Detect-
ability and detection method applicability factor (κ) of a detection method are also
defined. In Section 5, an experiment that applies the previously developed DPEM to
compare two detection policies is addressed. Finally, Section 6 presents conclusions
and recommendations.

2. Brief Research Background

2.1 The Collaborative Environment

Cooperation Unit (Co-U) -- An autonomous working unit that performs tasks to achieve
its goals and coordinates with other Co-Us to accomplish the common goal of a set of
Co-Us. They can be human, machine, workstation, enterprise, etc., depending on the
scope of collaborative environment. A Co-U can be represented by five-tuple: G, T, A, R,
and S:

},,,,{ SRATGUCo =− (1)

where G: Co-U’s goal, e.g., profit or survival;
 T: Set of tasks that Co-U must perform to achieve its goal (G);
 A: Set of activities that Co-U runs in order to accomplish tasks (T);
 R: Set of resources a Co-U consumes while running the activities (A);
 S: Set of states presenting Co-U’s current situation of G, T, A, and R.

 Each Co-U performs the tasks (T) by executing the activities (A) and using
limited resources (R) to achieve the goal (G). The goal of a Co-U can be defined by itself
or assigned by its supervisor. A Co-U may receive tasks from other Co-Us, assign tasks
to other Co-Us, or define its tasks for fulfilling its local goals. The activities are practical

5

actions or procedures that are needed to complete tasks. In order to execute activities,
each Co-U must consume its own or shared resources.

When a Co-U performs its tasks, the state (S) of the Co-U’s current situation is
changing; e.g., operation result, semi-finished good, semi-design, resource utilization,
budget, viability, performance, and so on. The state (S) is used to describe the current
situation of goal (G), tasks (T), activities (A), and resources (R).

Coordination Network (Co-net) -- was defined by Anussornnitisarn (2003). Co-net is a
network that enables a collaborating process among a group of Co-Us such as agents,
enterprises, and operators to achieve a common goal. Each Co-U within the Co-net
exchanges information to achieve its individual tasks (T) and fulfill the common goal of
all members. Based on Anussornnitisarn’s definition, we extend the definition of Co-net
by adding common-goal and resource components.

Co-net = {π, υ, τ, α, λ, σ} (2)

where π: Set of autonomous Co-Us in Co-net (π∈−UCo);
 υ: Set of common goals that should be achieved in Co-net; G is a subset of τ.
 (υ∈G);
 τ: Set of tasks that can be processed in Co-net; T is a subset of τ. (τ∈T);
 α: Set of activities for each participant (π); A is a subset of α. (α∈A);
 λ: Set of resources that can be used in Co-net; R is a subset of α. (λ∈R);
 σ: Set of coordination mechanisms that are used by each Co-U (π).

The Co-net is a whole view of operation working space. It might be an assembly
line, workflow system, supply-chain system, design teamwork, or any kind of
collaborative environment. Many elements comprise a Co-net, for instance, people,
devices, resource, capital, social negotiation, information system, etc. All elements of a
Co-U such as goals, tasks, activities, resources, are subsets of a Co-net’s components,
respectively.

The Co-U and Co-net define the scope of a collaborative environment. A Co-U
models a participant in collaborative activities. It can be a worker, team, or company and
is a basic unit that interacts with other Co-Us. A Co-net is a combination of many Co-Us.
Each Co-net has its own goal (common goal) that should be achieved by involved Co-Us.
Each Co-U communicates with others by certain coordination mechanisms (protocols).
The tasks, activities, resources of a Co-net are preformed, executed, and shared among
Co-Us, respectively.

2.2 Exception Handling
 Workflow management systems (WfMSs) are increasingly being deployed to
deliver e-business transactions across organizational boundaries. Developing
mechanisms that allow the workflow system continue processing even if failures occur is
crucial [Hagen and Alonso, 2000]. To ensure high service quality in such transactions,
exception-handling schemes are needed. Klein and Dellarocas (2000) define exception
as “any deviation from an ideal collaborative process that used the available resources
to achieve the task requirement in an optimal way”. An exception can thus include errors
in performing a task or communicating results between agents, deficient response to
changes in tasks or resources, missed opportunities, and so on. The exception can also

6

include conflict that arises due to inconsistency between the sub-goal or sub-task that is
performed by different participants in workflow execution. Similar definition of exception
in Luo et al.’s work is that “an exception is the deviation such as system malfunctions
due to failure of physical components or change in business environment” [Luo el at.
2000]. Because of anticipated or unanticipated situations, the deviations (exceptions) of
those workflow processes from their specifications are unavoidable. Based on the
discussion above, in our work, we treat the exception as a combination of error and
conflict.

 Klein and Dellarocas proposed a hierarchy taxonomy business process
repository to identify the exception in a workflow system [Klein 2000, Klein and
Dellarocas 2000]. It involved development and evaluation of workflow for handling the
multi-agent exception that happens in a workflow environment. This centralized
knowledge base can provide information to a workflow designer and human handler to
recognize the possible exception problem and further resolve it for a specific business
process. Accumulating exception handling experience for future exception handling is a
major idea of their work.

 Every exception type in the taxonomy defined by Klein and Dellarocas has an
associated knowledge base entry that gives its definition. For each exception type, the
workflow designer can then decide how to extend the workflow models to prepare for
anticipating or detecting the exception. Pointers to the “exception detection” process
templates in the repository that specify how to detect the symptoms manifested by that
exception type are included in each exception type. Templates perform as “sentinels”
that check for symptoms of actual or imminent exception. In our work, we apply this
taxonomy concept to develop CE knowledge base that can store any information about
the CE problems and possible detection methods.

 Luo et al. (2000, 2003) identify exception-handling techniques that support
conflict resolution in cross-organizational settings. In particular, the authors classify four
abnormal situations in cross-organization processes: 1. a contract cannot be fulfilled; 2.
a contract may be compromised; 3. a contract needs to be modified; 4. a contract must
be terminated before it expired. All these situations can be treated as conflict problems
because they violate predefined goals among collaborative participants. In their work, a
three-dimensional analysis of exception in a workflow system is addressed. Three
characteristics: known, detectable, resolvable are used to describe or analyze each
exception. Especially in detectable characteristics, the authors mention that detection of
an exception depends on the system’s ability. If a system can recognize or detect the
exception, it may be possible to derive capable exception handlers to solve the problem.
Consequently, the detect-ability of a system will determine the performance of the
detection process. In our research, we define the detect-ability measure to represent the
detection competence of a Co-U.

2.3 Performance Evaluation
 Taxonomy of collaborative design that is relevant to our research was proposed
by Ostergaard and summers (2003). It considers human, organizational and procedural
aspects, and includes six attributes: Team composition; Communication; Distribution;
Design approach; Information; and Nature of the problem. Based on this taxonomy,
several parameters were defined to describe the collaborative design environment.

Collaborative performance evaluation is an important issue in a collaborative
planning environment. Robin et al. (2004) proposed the GRAI model (Graphs with

7

Results and Actions Inter-related) of the design environment, to evaluate the design
process performance. They focus on evaluating performance with a specific view on the
design actors. Based on the design environment, several performance indicators can be
defined to evaluate the performance of collaborative process, addressing the actor and
the design object; the actor interactions with another actor; the actor and the group; and
evolution of a group of actors (Table 1). Definition of the design environment and
collaborative design process provide a clear view of the interactions between
collaborative participants: human, design team, objectives, actions, and performance
indicators. In different interactions, various aspect of design teamwork can be
investigated. However, all these performance measures assume a conflict-and-error-free
environment. Once a CE problem occurs, how to measure the impacts on an enterprise
from having the ability of CE detection for prevention and resolution has not yet been
addressed. In this research, we address the CE problems and develop and adapt
several measures and methods to evaluate a Co-U’s detection performance.

Table 1: Interactions between objectives, action levers, and performance indicators --
evaluation focused on actors (Robin et al., 2004)

2.4 Viability
 According to Huang and Nof (2000), the viability Vi of an autonomous agent is
characterized by Eq. 3: si represents a static viability that is given and unchangeable
when an agent is designed; di(t) is a dynamic viability at time t. A static viability consists
of two trade-off variables: agent’s resource capability, and operating cost of agent.
Moreover, a dynamic viability is a performance (reward) of an individual agent over a
period of time. A general viability can be measured as a combination of these static and
dynamic viability measures. Huang et al. (2000) concluded that viability is not only a
measure of an autonomous system, such as an agent based manufacturing system
(ABMS), but also an important characteristic of any autonomous system. We can use
this viability to evaluate the functional health or performance of an autonomous system.
In this research, the static viability will not be considered because the conflict/error
situation is always triggered dynamically.

Vi = {si, di(t)} (3)

where si is the static viability of agent i;

 di(t) is the dynamic viability of agent i at time t.

Definition of dynamic viability of an agent

8

 The dynamic viability di(t) is defined below.

di(t) =)
)(

(
)(

1
j

jn

j
i

i

w
tW

Max
w

tW
=

 (4)

where Wi(t)is accumulated rewards of agent i at time t;

i

i

w
tW)(

 shows how long agent i could maintain its operation by using the

accumulated rewards;

)
)(

(
1

j

jn

j w
tW

Max
=

 is the largest
i

i

w
tW)(

 in an system.

Detailed background and specification of viability can be found in [Huang and Nof,
2000]. In this research, we use dynamic viability to evaluate the Co-U’s performance and
health. The received reward from performing a task can support the Co-U to continue its
operation. How to eliminate the damage on rewards by applying a detection process is a
core objective of the detection model.

3. Conflict and Error Problems in Collaborative Planning
Before addressing conflict and error problems in collaborative planning, we make

some assumptions to describe the research background:

1. In a collaborative environment, Co-Us are willing to detect and solve the
problem of planning errors and conflicts together. It means that Co-Us will want to share
their current information and knowledge on CE detection.

2. Collaborative members have a common goal to achieve. For example, design
teams with different expertise want to design a product together. Each organization of an
enterprise makes concerted efforts for achieving the maximum benefit for the enterprise.

Based on these assumptions, we can conclude that two types of general
collaborative conflicts, time-conflict and integration-conflict, may occur in a collaborative
planning environment.

Time Conflict (TC) -- Time-conflict is caused by the different schedules or plans of
autonomous organizations. There are two types of time-conflict: resource conflict and
schedule conflict. Resource conflict may occur if Co-Us share common resources but
have a different plan or schedule on using resources. The overlap of occupying these
resources can cause a resource conflict. The common resource might be a facility,
location, labor power, funds, service, network bandwidth, and so on.

Even when Co-Us do not share common resources, schedule conflict may still
occur. In a collaborative environment, every Co-U has its own task schedule based on
its current situations and task requirements. The different processing times and finished
times of Co-Us may affect other Co-Us’ subsequent tasks. This interdependence can
cause schedule conflicts when merging all the schedules of collaborative Co-Us together.

These two types of conflicts may happen simultaneously and be correlated if
common resources are used. Since a task finish time may depend on its resource-
utilizing arrangement, a schedule conflict may be caused by a resource conflict.

9

Integration Conflict (IC) -- In a collaborative environment, tasks finished by different
Co-Us might need to be merged together. The integration conflict happens when results
of tasks interfere with each other, instead of being merge-able. This kind of conflict is
common in concurrent engineering, or design teamwork. When different design teams
with different expertise plan to co-design production tasks together, the varied design
considerations may cause an integration conflict.

Integration conflicts may also occur when different Co-Us wish to “assemble”
their tasks or services. When different Co-Us wish to integrate their task results to
become a single production or service unit, any inconsistency between their outcomes
and expected results may cause an integration conflict. For example, in an assembly line,
a work station is in charge of assembling the components produced by preceding work
stations. The integration conflict occurs if the dimensions of assembled components
supplied by different sources do not fit within specified assembly tolerances or assembly
standards.

Because of task interdependence among Co-Us, time and integration conflicts
may be widespread within a Co-net. All participants must detect or at least share
information about detected CE problems once one of them has detected unresolved or
ill-resolved CE problems. How to detect CE and inform other involved and influenced
Co-Us is an important issue in CE detection. In the next section, we discuss task
processing CE problems in a task planning environment that are the focus of this report.

3.1 Conflicts / Errors in Task Planning
 Categories of specific CE situations that may happen in a collaborative planning
environment are explained. In this research, detecting CE problems that occur after Co-
Us accept tasks is our main interest.

Taxonomy of CE in Task Planning

Applying coordination protocols for distributed environments, such as the
Resource Allocation Protocol (RAP) developed by Anussornnitisarn and Nof (2003), or
other task assignment protocols, such as Contract Net protocol [Smith, 1980] and
“citizen” contract net [Dellarocas and Klein, 2000], a task can be rationally assigned in a
Co-net to specific Co-Us. Then, a task plan can be established and each Co-U performs
its task to achieve its goal. No matter which kind of task allocation protocol the Co-net
uses, the major role of each Co-U will be either contractor or proposer. Figure 1 shows,
as an example, a simple version of the Contract Net protocol.

Figure 1: A simple version of a coordination protocol (e.g., Contract Net protocol)

(Modified from Dellarocas and Klein, 2000)

10

Conflicts and errors, however, may happen after each Co-U receives the task.
For example, a task proposer might find out mis-estimates of a task after its contractors
receive the task specification and begin to execute it. In this case, if the mis-estimates
are not detected, or a recovery process is not activated, the conflict between the
proposer’s expected task results (proposer’s original goal) and contractor’s finished
results (contractor’s goal) will eventually occur. Then, both of the proposer and
contractor cannot be comfortable with this conflict situation. This kind of CE is highly
common in practice. We strive to prevent this kind of CE. Other possible CE situations
will be discussed in the next section based on the roles of the task proposer and
contractor. Again, in this research, we focus on detecting these CE situations in a Co-net
after tasks have been created and assigned.

3.2 Conflicts / errors for Task Proposer and Contractor

Conflict type I: Wrong task specification sent by the task proposer (information conflict)

 This type of conflict happens when there is an oversight of task specification by
the task proposer, or the proposer provides wrong task information to the contractor. It
means that the wrong task specification is not realized during the task allocation
“contractual” stage. This conflict type is caused by a proposer’s task specification being
inconsistent with the contractor’s understanding. Three types of errors may lead to this
conflict type:

a. Improper goal of the proposer

 The proposer defines a wrong task specification based on an improper goal.

b. Task specification oversight

 Before the task allocation stage, the proposer defines the wrong task
 specification and makes a decision based on it.

c. Mistaken task specification sent out

 The task proposer sends, by mistake, wrong the task specification to the
contractor.

In this case, there are two possible detection situations: One is that a proposer
realizes the mistake on task specification after the task has been accepted, but not yet
finished. Another situation is that the proposer becomes aware of this problem only after
the contractor completes the task.

a. After a task is assigned and before this task is finished

This conflict is detected by a proposer when an error is found before a contractor
finishes the task.

b. After the task is finished

Before the task is finished, both the contractor and proposer do not detect this
task conflict. After the contractor finishes the task, the result is not consistent with
the proposer’s expectation.

11

If the proposer can detect this type of conflict in the very beginning, the damage
of Conflict type I may not be so high, relatively. If this conflict is detected after the task is
completed, the harm can be significant for both the proposer and contractor.

Conflict type II: The contractor cannot finish tasks

 This type of conflict occurs when a contractor cannot finish an assigned task. The
conflict, in this case, is that the contractor cannot finish the task to fit the proposer’s
expected result. This type of conflict/error might be caused by several possible errors.
They are:

a. Resource unavailable and unrecoverable before deadline

Unexpected events or nature mishaps, e.g., power blackout, earthquake, human
or facility fatigue, might cause this type of error.

b. Mis-estimated utilization

After a contractor receives a task offer, a mis-estimate on the resource appraisal
is realized because required resources are no longer available. For example, the
contractor neglects the price fluctuation of raw material and the budget is short to
prepare the adequate amount of material.

c. Contractor misunderstood ability or capacity

This error is similar to resource mis-estimate, but it is caused by the mis-estimate
on the ability or capacity appraisal. For example, the contractor overestimates its
ability for received tasks and finally cannot fulfill the task requirements.

 The damage from Conflict type II depends on when this type of conflict/error is
detected once it happens. If the mis-estimate situation is detected relatively very late, or
sudden shutdown event happens in the very beginning, the harm will be relatively large.
Usually, this type of conflict also causes a time conflict.

Conflict type III: Task has been finished but the result is faulty

This type of CE problem happens when a contractor finishes a task but the
contractor or proposer discovers that the results do not fit the requirements
(specifications) of the task. This conflict is detected when either the contractor or
proposer realizes the task result is not consistent with the proposer’s task specification.
Two possible errors may cause this conflict:

a. Contractor misunderstood task specification

This conflict type happens when a contractor misinterprets the task specification
(although the received task specification is correct) and continues to work until
the task is finished. It can occur frequently in a design project. For example, a
software designer misunderstands the functional requirements of the developing
automated device until delivery acceptance tests reveal the discrepancy.

b. Wrong or negligent task activities

If a contractor errs by executing a task inaccurately or negligently, this type of
conflict will happen. It is common in manufacturing processes. For example,
using a wrong tool (an error) can cause this type of conflict.

12

 Conflict type III is usually severe since the cost and time of performing the task
are already spent, yet a wrong task-result is available. Usually, this type of conflict also
causes an integration-conflict and is usually detected in the “check and accept” late
stage. For example, the assembled components with wrong geometric dimensions will
cause the assembly to fail. According to the discussion above, Table 2 summarizes the
conflict types, possible errors causing them, and resulting damage levels.

Table 2: Conflicts after tasks have been assigned in a Co-net

Conflict Type: Conflict Type I

Wrong task specification
sent by task proposer

Conflict Type II

The contractor cannot
finish Task

Conflict Type III

Task is finished but
result is faulty

Definition Task specification
inconsistency

A contractor cannot
achieve the task to fit
the proposer’s
expected result

A contractor’s task
result is not
consistent with the
proposer’s task
specification

Who errs Task proposer Task contractor Task contractor

Causal Error 1. Improper goal of
proposer

2. Task specification
oversight

3. Mistaken task
specification sent out

1. Resource unavailable
and unrecoverable
before the deadline

2. Mis-estimated
utilization

3. Contractor
misunderstood ability
or capacity

1. Contractor
misunderstood task
specification

2. Wrong or negligent
task activities

When errors
occurs

Before the task is
assigned

After the task is
assigned and before
the task is finished

After the task is
finished

Damage level 1. Depends on when this
conflict is detected

2. If the task is finished,
the damage is
relatively high

3. Before the task is
finished, the damage
is relatively low

Depends on when this
conflict is detected

Relatively high

3.3 Conflict and Error Damage Analysis

Based on the discussions regarding category of conflict/error types in the
previous sections, Figure 2 briefly shows the occurrences and damage levels of different
conflict types. In Figure 2, we assume for simplicity that the damage level is linear and
depends on the conflict occurrence time. We can notice that the damage caused by
these conflicts will be higher the later this conflict is detected.

13

Figure 2: Possible occurrence and damage level of three conflict types

 Having categorized and explained the conflicts / errors, a brief conclusion can be
drawn. If we can detect conflicts and errors as early as possible, the damage of the
conflict/error will be smaller, or completely prevented. Although this conclusion seems
obvious, a crucial question is how to design an effective detection protocol that enables
Co-Us to detect conflicts and errors. Following the CE categorization, we can next
analyze the errors causing each conflict (Table 3).

Through the taxonomy of conflict and error, an inductive conclusion on detection
or resolution method can be found [Klein 2000]. In this paper, after classifying the CE
problems, we recognize that applying an appropriate detection method for a specific CE
problem and exchanging detection information through an applicable protocol among
Co-Us are crucial in CE detection. For example, if we can perform appropriate detection
methods such as “double-confirm” before the contractor performs the task, the possibility
of misinterpretation of task description can be decreased great deal. By using an
applicable detection protocol, Co-Us can share error monitoring results with each other
or warn other correlated partners about that error in advance.

Based on the previous conclusions, a detection protocol has been developed in
this research to detect the task processing CE problems. Before a contractor executes a
task, exchanging the perception of task specification between the contractor and
proposer will be the first step in the detection protocol. In this step, the task proposer
reviews the task specification sent from the contractor to check whether there is any
difference on the perception of task specification. In the meantime, the contractor also
checks whether the task specification sent from proposer is identical with its perception
on the task. Both the proposer and contractor can also review whether the ability and
resources are sufficient for performing this task. Briefly, this step of detection process is
a “re-confirm” activity between the task proposer and contractor. Through this
information exchange, both the proposer and contractor can reduce the
misunderstanding in common goals or in offering and accepting task contracts.

14

Table 3: Analysis of CE causes and corresponding detection method

Error
Type

Description Error
Characteristic

Detection Method Detection
Type

Conflict Type I: Wrong task specification sent by the task proposer

Error 1 Improper goal
of the proposer

Mis-estimate Exchange task specification
to re-confirm with proposer

before executing task

Single time

Error 2 Task
specification

oversight

Mistake Exchange task specification
to re-confirm with proposer

before executing task

Single time

Error 3 Mistaken task
specification

sent out

Mistake Exchange task specification
to re-confirm with proposer

before executing task

Single time

Conflict Type II: The contractor cannot finish tasks

Error 1 Resource
unavailable and
unrecoverable
before deadline

Resource
allocation error

Constantly check resource
availability and utilization plan

Continuous

Error 2 Mis-estimated
utilization

Resource
allocation error

Constantly check and re-
evaluate resource utilization

Continuous

Error 3 Contractor
misunderstood
ability, capacity

Misunderstanding Contractor constantly re-
evaluate its ability, capacity

before executing task

Continuous

Conflict Type III: Task has been finished but the result is faulty

Error 1 Contractor
misunderstood

task
specification

Misunderstanding Proposer re-confirms
contractor’s task specification
perception before executing

task

Single time

Error 2 Wrong or
negligent task

activities

Process error Constantly monitor/verify task
progress

Continuous

 In terms of continuous detection, a detection agent can play the role of “sentinel”
[Klein, 2000] to constantly collect information from resources, facilities, human activities,
and so on. According to the collected data, the error symptom can be detected by
comparing the expected state with the current state based on the collected data. A
decision can be made to determine whether the error has happens (or about to happen),
and which Co-U is involved with the CE event.

Once the CE event is detected, the Co-U should launch the CE recovery or
resolution model (CERM) to handle the CE problem. Although CERM is beyond the
scope of this paper, all CE-involved Co-Us should provide complete detection
information to the CERM (or to a human operator/manager) and clearly describe the CE
situation. In addition, the detection process also requires certain functions, such as
decision support and learning ability, to consolidate and strengthen the CE detection.

15

In summary, this section studies CE problems in a task planning collaborative
environment. Through studying the CE problem after tasks are assigned, we conclude
that applying applicable detection methods by considering the cost of the detection
method and damage of CE problem to detect the CE problem is an important issue.

4. Detection and Evaluation Methodology
In this section, we discuss the CE detection method analysis and develop the

Detection Policy Evaluation Mechanism (DPEM). First, we define a CE table to store the
information about the CE problem and its detection method. Then, we propose a
measure, detect-ability (ß), to evaluate the CE detection method. Based on the detect-
ability (ß) of detection methods, a detection policy that considers the cost and potential
damage of a given CE problem is determined for a Co-U to perform its CE detection
processing.

4.1 Conflict / Error Knowledge Base

The CE knowledge base is a repository, or a dynamic (“active”) database of CE
detection information. It can be accessed by Co-Us. A CE table is defined and
maintained to store all information about the CE problems in the CE knowledge base.
The CE table is a basic data unit to store certain information, such as CE index (x), CE
description, CE occurrence frequency (Fx), CE detection method (dMxy), detection
accuracy (dAxy), average detection cost (dCxy), detection cycle time (dTxy), possible
damage (Dx), and potential CE resolution. The structure of a CE table and an illustration
are shown in Table 4.

Table 4: The CE table of a task T
Index of Co-U
CE index (x) The unique index of a CE problem
CE description The description of this CE
CE occurrence frequency
(Fx)

Fx is the occurrence frequency of a CE event. It is the number of occurred
CE problems per time unit. For example, Fx might be 0.01/hour. Higher
frequency means this CE has a higher probability to occur.

Damage (Dx) The estimate of total possible damage of a CE problem
Detection methods (dMx)
Detection method (dMxy)

xxyxy dMdMdM ∈∀ :

dMx is a set of applicable detection methods for CE x
xydM is a detection method y to detect CE x

Storage of a set of applicable detection methods that can be used to
detect CE x. There could be more than one useful detection method
available to detect a CE problem.
y -- the index of the detection method (y >= 1)

Detection accuracy (dAxy) The accuracy of specific detection method y, e.g., detection rate of
sensor

Average detection cost
(dCxy)

dCxy is the average detection cost per time unit of the specific detection
method y to detect CE problem x. For instance, dCxy might be
$10/second or $600/minute, etc. Each detection method may have a
different detection cost.

Detection time (dTxy) dTxy is the time spent on finishing a detection cycle of the specific
detection method y. For example, in manufacturing, a visual sensor might
need 2 seconds to finish inspection. In this case, the dT is 2 seconds.
Each detection method may require a different detection time.

Potential CE resolution This element describes the possible CE resolutions

16

 A CE table is stored in a CE knowledge-base and categorized by Co-U’s task (T).
In terms of task processes, several possible CE problems might happen in a Co-U. A CE
table is a systematic storage that is input by Co-Us in a Co-net. CE problems can be
registered in a CE table, in which several detection methods are contained. Therefore,
CE tables can be treated as common accumulating experiences of CE detection in a Co-
net. The information of detection methods stored in a CE table provides the Co-U
sufficient data to analyze or examine possible detection procedures when the Co-U
faces an analogous CE problem.

4.2 Detection Policy Evaluation Mechanism (DPEM)
 Detection Policy Examination Mechanism (DPEM) is responsible for evaluating
each detection method (dM) regarding each possible CE problem and recommending
the detection policy (dP)T for executing a task T. The detection policy is a guideline of
how to detect a particular CE problem. According to the information stored in the CE
knowledge base, DPEM can evaluate all applicable dM for a specific CE and
recommend the best one if only one dM is required by comparing Detect-ability (ß). Then,
DPEM will evaluate the cost-effectiveness of the recommended dM and decide whether
it should be applied, based on calculation of Detection Method Applicability Factor (κ).
After evaluations, DPEM recommends the effective detection policy (dP)T for executing
the CE detection when the Co-U is ready to perform a task T.

 The operation of the DPEM is illustrated in Figure 3. In the following sections, we
discuss the details of this detection mechanism.

1≥κ

Figure 3: Operation of the DPEM

Detect-ability (ß)
 The detect-ability (ß) is defined as a measure to evaluate a detection method’s
competence in detecting CE. Based on this measure, the DPEM can select the most
applicable detection methods. ß can be defined by using the CE information in the CE
table, as follows.

xydMxyxy

xy
xy dTdC

dA
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

×
=)(β (5)

17

where x is the index of a CE;
 y is the index of a detection method for CE x;
 xy)(β is the detect-ability measure of detection method y for CE x;

 xydA is the accuracy of the detection method y for CE x;

 xydC is the average detection cost per time unit of detection method y for CE x;

 xydT is the detection time of detection method y for CE x.

The detect-ability xy)(β of a detection method y for CE x (dMxy) can be

calculated as the ratio of detection accuracy (xydA) over average detection cost (xydC)

multiplied by detection cycle time (xydT). If xydC or xydT are relatively high, xy)(β will be
smaller since the Co-U needs to spend more cost and/or time on the detection process.
In addition, since a detection method might not reach 100% accuracy on a given CE
detection, the accuracy should be considered in calculating the detect-ability measure.

 During the detection process, several CE problems might occur while a Co-U
executes a task T. Regarding each possible CE, several detection methods might be
applicable. Based on this measure, if the ß of a detection method is relatively higher, it
means that this detection method is better compared to others with lower ß. Therefore,
the DPEM of a Co-U can evaluate and compare alternative detection methods by ß and
select the recommended one if one detection method is required.

Detection Method applicability Factor (κ)
Once a dM is chosen from available detection methods, the system continue to

evaluate cost-damage analysis of chosen dM. According to CE information stored in the
CE table, we propose a decision-making logic to decide whether a particular dM should
be applied based on cost perspective (not ability perspective). The proposed logic is
addressed in the following equations.

xdxyxxdxxydM
TdCDTFdAI

x
)()()1()(" ×+×××−= (7)

where x is an index of a CE problem;
 y is an index of a detection method;
 (Td)x is the total detection process time for detecting CE x;
 "

xdM is an applicable detection method that is selected from dMx to detect CE x;

")(
xdM

I is the accumulated damage and detection cost if a "
xdM is applied to

detect CE x in (Td)x;
 Fx is the occurrence frequency of a CE x (No. of occurred CE per time unit);
 Dx is damage from a CE x;
 xydA is the accuracy of the detection method y for CE x;

 xydC is the average detection cost per time unit of detection method y for CE x.

18

xdxxx DTFII ××=)((8)

where x is an index of a CE problem;
 (Td)x is the total detection process time for detecting CE x;
 xII)(is accumulated damage if no detection method is applied to detect CE x
 in (Td)x ;
 Fx is the occurrence frequency of a CE x (No. of occurred CE per time unit);
 Dx is damage from a CE x;
 (Td)x is the total detection process time for detecting CE x.

Based on Eq.s 7 and 8, ")(
xdM

I is the accumulated damage plus detection cost if

a selected "
xdM is applied to detect CE x. On the other hand, xII)(is the accumulated

damage if no detection method is applied to detect CE x. We can compare ")(
xdM

I and

xII)(to decide whether "
xdM should be applied or not. If ")(

xdM
I is greater than xII)(, we

should not apply "
xdM to detect CE x because even if we spend the detection cost, the

overall cost-effectiveness is worse than “do-not-detect-it”. Here, we define the
applicability factor (κ) of a "

xdM as the ratio of xII)(and ")(
xdM

I to evaluate the selected
"
xdM according to relative cost, time, and accuracy.

xyxxxy

xx

xdxyxxdxxy

xxdx

dM

x

dCDFdA
DF

TdCDTFdA
DTF

I
II

xy
+××−

×
=

×+×××−
××

==
)1()()()1(

)(
)(

)(
κ

if 1<κ Do not apply "
xdM to detect

if 1≥κ Apply "
xdM to detect ('"

xx dMdM →) (9)

where κ is applicability factor of dMx,
 "

xdM is a applicable detection method that is selected from dMx to detect CE x;

 '
xdM is a detection method that is chosen from dMx to detect CE x and can

 maintain relatively higher viability of a Co-U;

Based on κ in Eq. 9, the DPEM can decide whether it will apply "
xdM to detect a

particular CE or not. If 1<κ , it means that the cost-effectiveness of applying this "
xdM is

even worse than for not applying it. It also means that the viability of a Co-U will be
harmed if this "

xdM is applied. Therefore, this "
xdM should not be included in the (dP)T.

On the other hand, if 1≥κ , this "
xdM will be selected as '

xdM and be included in (dP)T
for performing detection.

19

Viability-based detection policy (dP)T
 Viability-based detection policy (dP)T is a set of detection methods that are used
to monitor a Co-U’s activities after evaluation of their contribution to maintaining
relatively higher dynamic viability of a Co-U. It is defined as follows:

{ } xxxNxT dMdMdMdMdMdMdMdP ∈∀= '''''
2

'
1 :|,...,,..,,)((6)

where T is a task performed by a Co-U;
 N is the total number of CE problems;
 x is the index of a CE;
 (dP)T is a viability-based detection policy for performing task T;
 dMx is a set of detection methods for CE x;
 '

xdM is a detection method that is selected from dMx to detect CE x and that can
 maintain relatively higher viability of a Co-U.

In general, detecting all possible CE problems is a usual detection policy. The
purpose of this policy is to detect any possible CE problems to prevent damage caused
by CE problems. In order to execute this policy, for each possible CE, a Co-U must
apply at lease one detection method. However, since this detection policy does not
consider the correlation of average detection cost and damage level of a CE, it might
lead to a Co-U spending tremendous cost to detect the CE problems which cause slight
or negligible damages in an extreme case. In other words, in this case, the cost-
effectiveness of applying “detecting-all-CE-problems” policy will be low and wasteful.
That low cost-effectiveness detection policy will harm the viability of a Co-U. Therefore,
after the DPEM selects the applicable dM, the DPEM must decide whether the
recommended dM should indeed be applied or not by cost-damage analysis.

The average detection cost (dC) of a detection method is the average expense
that each Co-U has to spend per time unit in detecting CE. The dC is a part of operation
cost that Co-U needs for maintaining its operations. If the dC is very high and the CE
problem appears rarely, it means that a Co-U has to spend more money or energy on
continually detecting the CE. It will reduce the benefit or profit from performing a task.

In addition, the potential damage caused by a CE problem is also an important
consideration for Co-U to apply CE detection methods. The damage might be the profit
lost, time wasted or reputation loss in case the CE is not detected. In a collaborative
environment, a Co-U with frequent CE problems might not be a good partner because
the CE problem will reduce and harm the trust and value of partnership among Co-Us. If
the damage of a CE is very high, each Co-U should try to detect that high-damage CE
and eliminate that potential damage. Therefore, the trade-off between detection cost and
CE’s damage is a major consideration of the DPEM.

According to the measure ß and applicability factorκ , the DPEM can evaluate
detection methods and generate a viability-based (relatively-high-cost-effectiveness)
detection policy. In the next section, we design an experiment to evaluate the detection
policy based on the strategy of selecting detection methods.

20

5. Experimental Results and Discussion
The purpose of this experiment is to examine alternative CE detection policies.

Generally, detecting all possible CE problems is one of several feasible detection
policies and is often the intuitive practice in manufacturing and business. However,
before we automate the detection processes, it may be necessary in certain cases to
consider other policies. The reason is that detecting all possible CE problems for a Co-U
may cost too much and achieve relatively low overall results with CE detection. For
instance, if the cost of a detection method is prohibitive while the preventable damage by
applying this method is relatively low, the cost–effectiveness of applying this detection
might not be acceptable. In other words, we can hypothesize that a Co-U can maintain
higher viability by enhancing its cost-effectiveness with a rational, selective detection
policy.

In this experiment, we use a viability measure to evaluate a Co-U’s detection
performance. The higher detection-based dynamic viability a Co-U can maintain when it
performs CE detection, the higher cost-effectiveness of CE detection the Co-U can
achieve. By considering the gains (preventable damage) and losses (detection cost), a
better detection policy can be made to optimize the detection activity and maintain
higher viability of a Co-U. It is assumed that a higher viability of Co-Us implies a higher
total viability of the Co-net. In other words, the impact of effective detection can be
summarized for the total effective impact for the company.

We compare two detection policies. One is detecting all CE problems and
another is applying DPEM evaluation logic to generate the viability-based detection
policy (dP)T. The detection-based dynamic viability is introduced to evaluate a Co-U’s
performance in performing detection processes.

5.1 Experimental Assumptions

a. When a Co-U accepts a task request, all possible CE problems regarding this
task can be obtained from the CE table which had been formulated in advance.

This assumption is reasonable in a practical environment. For instance, in
manufacturing, possible CE problems such as facility shut-down, operation error,
schedule delay, or material shortage can be predicted based on previous
experience, the result of a trial-run, the facility’s availability, or risk analysis. We
can assume that CE problem information; e.g., CE problem description, detection
method, detection cost, and damage of a CE can be obtained from the CE table
described in the Section 4.

b. If a CE is detected, the damage of the CE can be prevented.

Once a CE is detected, the CE resolution mechanism (automated or manual) will
be launched to solve the detected CE problem. Because the CE resolution
mechanism is beyond the scope of this research, in this experiment, we assume
that no damage is caused if a CE problem is detected.

c. The average detection cost is constant during detection.

The average detection cost is defined as detection expense per time unit.
Therefore, the total detection cost can be calculated by multiplying the average
detection cost per time unit by total detection processing time. Although not all
detection methods might cost a constant expense, e.g., applying a sensor or

21

detection device, we treat the cost of applying detection methods as the
continuous expense, for experimental convenience.

d. The damage (D) from a CE problem is significantly higher than average detection
cost per time unit (dC).

In general, the damage from the CE problem could be tangible or intangible, e.g.,
the loss of capital or time (tangible), or ruined reputation (intangible). Whether the
damage is tangible or not, we assume the damage is greater than the average
detection cost (cost/time). For example, the damage from a CE could be $1000 if
this CE is not detected and the dC of applying a dM could be $2/hour. According
to different total detection processing times, the total detection cost may be
greater than total accumulated damages. Based on this concept, a better
detection policy can be sought.

e. The detection time (dT) of a detection method is negligible.

We assume the detection time of a detection method is relatively smaller than
task operation time.

f. For experimental convenience, only one detection method is applied for each CE
problem.

In some cases, multiple detection methods might be applied to detect a particular
CE problem. In this experiment, we assume only one detection method is needed
for detecting a CE problem (but its accuracy is not perfect).

g. Each dM is independent of other detection methods in this experiment.

We assume that each detection method is independent of other methods.

5.2 Experimental Settings

The definition of a CE table is given in Table 4. In this experiment, the following
elements of the CE table are used:

a. The occurrence frequency (xF) of a CE x

b. Damage (xD) of a CE x

c. Detection cost (dCxy) of a detection method y for CE x

d. Detection accuracy (dAxy) of a detection method y for CE x

Based on the elements of the CE table and assumptions, we can implement Eq.
9 which is rewritten as Eq. 10 to determine viability-based detection policy (dP)T.

xyxxxy

xx

dCDFdA
DF

+××−
×

=
)1(

κ (10)

if 1<κ Do not apply "

xdM to detect

if 1≥κ Apply "
xdM to detect ('"

xx dMdM →)

22

where κ is the applicability factor of dMx;
 "

xdM is an applicable detection method that is selected from dMx to detect CE x;

 '
xdM is a detection method that is selected from dMx to detect CE x and can

 maintain higher viability of a Co-U.

Table 5 shows an illustration of variable settings in this experiment. Here,
because we only apply one dM to detect a CE, for each possible CE problem, we list
only one applicable dM for it. If more than one dM can be used to detect a particular CE,
we can select the dM with the highest ß. Table 5 is the same as the CE table stored in
the CE knowledge base. Before performing the CE detection, the DPEM of a Co-U will
retrieve this CE table, evaluate dM, and recommend a (dP)T based on Eq. 10. In this
example, two CE problems are not detected (CE 1 and CE 10) and the (dP)T is
generated as {dM2, dM3, dM4, dM5, dM6, dM7, dM8, dM9}.

Table 5: Illustration of the variable setting in the experiment

dM

CE x
xF

1

(sec.)
xD

($)
xdC

($/sec.)
xA

(%) ")(
xdM

I
xII)(

Applicability
factor
κ

Detect
or Not

1 100 100 10.00 1.00 10.00 1.00 0.10 No
2 100 200 0.20 0.94 0.20 2.00 9.97 Yes
3 150 300 0.30 0.97 0.30 2.00 6.66 Yes
4 150 400 0.40 0.98 0.40 2.66 6.66 Yes
5 200 500 0.50 0.91 0.50 2.50 4.99 Yes
6 200 600 0.60 0.92 0.60 3.00 4.99 Yes
7 250 700 0.70 0.93 0.70 2.80 3.99 Yes
8 250 800 0.80 1.00 0.80 3.20 4.00 Yes
9 300 900 0.90 0.99 0.90 3.00 3.33 Yes

10 300 100 1.00 0.93 1.00 0.33 0.33 No

Detection-based dynamic viability (DV)
 In order to analyze detection policy in terms of risk management, in this research,
we use detection-based dynamic viability (DV) that is revised from dynamic viability di(t)
(Eq. 2) to appraise the Co-U performance. The DV can be defined by the following
equation.

∑ ∑−−=
N

x

N

x
xxi tDtdCtWtDV)()()()(" (11)

where DV(t) is the detection-based dynamic viability in time t;
 Wi(t) is the accumulated reward in time t;
)(" tdCx is the accumulated detection cost of an applied detection method
 regarding CE x in time t. It is equal to tdCx × ;
 Dx (t) is accumulated damage of CE x in time t;
 N: the total number of CE problems that a Co-U tries to detect.

23

 Based on Eq. 11, Wi(t) is the reward accumulated by performing correctly a task
in time t. In this experiment, we calculate the DV by accumulating Wi(t) and subtracting
two values. One is accumulated detection cost,)(" tdCx ; another is the accumulated
damage Dx (t) of a CE that has occurred but was not detected. This means that the
dynamic viability should be affected by the accumulated detection costs and damages.

 AutoMod simulation tool [AutoMod, 1999] has been used to simulate a single Co-
U. A simulation program was developed to calculate the DV of a Co-U. The CE
occurrence cycle times (1/Fx) of CE problems are assigned by Automod’s exponential
distribution. A simulated Co-U continually calculates DV until the end of a run. The
experiment setting and variable setting are shown in Table 6 and 7.

Table 6: Experiment settings

Parameters Value
The number of CE problems 10
Reward of performing a task 30 ($/sec.)
Runs of each combination 5 runs
Simulation time for each run One hour (3600 seconds)

Table 7: Experiment variables of CE table

Experiment Variables
Average Detection
cost (dC)
($/Second)

Damage (D)
($)

CE cycle time
(1/ xF)
(Seconds)

Detection
accuracy (xdA)
(%)

Assigned from 0.1
to 0.5, the interval
is 0.5 (5 groups of
dC)

Assigned from 10 to
100, the interval is
10 (10 groups of D)

Randomly assigned
by exponential
distribution
(1/ xF is assigned
form 100 to 250
seconds randomly)

Randomly
assigned by
triangular
distribution

(0.94, 0.98, 1)

1. DV of a Co-U is calculated over 3600 seconds (one hour)
2. All combinations of various detection costs and damage values are simulated.

The number of combination is 5X10=50 and each combination has 5 runs.
3. Totally, 250 simulations for each detection policy are run in this experiment.

 The purpose of this experiment is to determine that the viability-based detection
policy (dP)T can maintain higher dynamic viability based on the decision-making logic of
DPEM. Two simulations are run based on two detection policies. They are Detection
Policy #1 - detecting all CE; Detection Policy #2 – viability-based detection policy (dP)T;
i.e. following Eq. 10. All parameter settings and variable settings are the same in the two
simulations except for the value level of average detection cost and damage. The
experiment results and ANOVA results based on these two detection policies are
addressed in the following sections.

5.3 Experiment Results
 In this experiment, there are 5 value levels of “average detection cost”, 10 value
levels of “damage of a CE”, and 2 kinds of detection policies. Therefore, there are 100

24

combinations and totally, 500 simulations runs (each combination has 5 runs). Partial
experiment results are shown in Table 8 (full listing is available in Yang, 2004), and
corresponding ANOVA results for the complete results are shown in Table 9.

Table 8: Experiment results (partial)
Detection
Policy dP

Damage from CE
(D)($)

Average Detection
Cost (dC)($)

Detection-based dynamic
viability (DV)($)

1 10 0.1 67779.94
1 10 0.1 69481.13
1 10 0.1 68607.90
1 10 0.1 68190.35
1 20 0.1 68166.87
1 20 0.1 68356.47
1 20 0.1 67399.98
1 20 0.1 67466.63
1 30 0.1 67200.41
1 30 0.1 67391.90
1 30 0.1 68758.92
1 30 0.1 69179.91

….. …. …. ….
2 100 0.5 56188.29

Table 9: 3-way ANOVA output for experiment results
Class Levels Values

Detection Policy 2 1, 2
Damage 10 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Average Detection Cost 9 0.1, 0.2, 0.3, 0.4, 0.5
One Variable: Detection-based dynamic viability (DV)
Number of observations 500

The ANOVA Procedure
Dependent Variable: Detection-based dynamic viability (DV)

Source DF Squares Mean Square F Value Pr > F
Model 63 11530078927 183017126 43.05 <.0001
Error 436 1853489125 4251122

Corrected Total 499 13383568052

R-Square Coeff. Var. Root MSE Detection-based dynamic
viability (DV) Mean

0.861510 3.313937 2061.825 62216.77

Source DF ANOVA SS Mean Square F Value Pr > F
Policy (dP) 1 1295119460 1295119460 304.65 <.0001

Damage (D) 9 582623798 64735978 15.23 <.0001
Cost (dC) 4 8280286927 2070071732 486.95 <.0001

Policy*Damage
(dP*D)

9 204392876 22710320 5.34 <.0001

Damage*Cost (D*dC) 36 270534925 7514859 1.77 <.0001
Policy*Cost (dP*dC) 4 897120941 224280235 52.76 <.0001

25

 The 3-way ANOVA results (

Table 9) indicate that all null hypotheses of each factor; i.e., detection policy (dP),
damage (D), and average detection cost (dC) are rejected. This means that dP, D, and
dC are significant and affect detection-based dynamic viability (DV). Next, we compare
detection policies based on average detection cost and damage analysis.

5.4 Comparison of Detection Policies
 The ANOVA results in

Table 9 already indicate that both dC and dP are significant in affecting the DV in this
experiment. Figure 4 illustrates the comparison of detection policies (dP) based on
different average detection costs (dC). The results show that both DV of dP1 and of dP2
decrease as dC increases, on average. It is intuitive, since a higher dC means a Co-U
has to spend more on detection. In addition, in comparing dP1 and dP2, we find that dP2
maintains relatively higher DV as dC increases, and is always better than dP1 in terms
of DV from about dC > 0.14. It makes sense because when dC increases significantly, a
Co-U is not likely to afford to detect all the CE problems, based on the selective dP2’s
decision logic (κ decreases).

Comparison of dP based on dC

50000

52000

54000

56000

58000

60000

62000

64000

66000

68000

70000

0.1 0.2 0.3 0.4 0.5

Average Detection Cost (dC) ($)

D
yn

am
ic

 V
ia

bi
lit

y
(D

V)
 ($

)

dP1-Detecting all dP2- Viability-based detection policy

Figure 4: Comparison of dP based on different dC

 Similarly, the ANOVA results in

Table 9 also indicate that both D and dP significantly affect the DV in this experiment.
Figure 5 illustrates the comparison of detection policies (dP) based on different damage
levels (D). The results show that both DV of dP1 and of dP2 decrease as D increases,
on average. It is intuitive, since a higher D means a Co-U’s operations will be harmed by
higher damages if they are not detected and prevented. Besides, while comparing dP1
and dP2, we can notice that dP2 can maintain a relatively higher DV as long as D

26

increases, because when D increases, a Co-U is more likely to attempt to detect the CE
problems based on dP2’s selective decision logic (κ increases). It also implies that
policies of detecting-CE are more cost-effective than not-detecting-CE when the D
increases.

Comparison of dP based on different D

50000

52000

54000

56000

58000

60000

62000

64000

66000

68000

70000

10 20 30 40 50 60 70 80 90 100

Damage of CE (D) ($)

Dy
na

m
ic

 V
ia

bi
lit

y
(D

V
) (

$)

dP1-detecting all dP2-viability-based detection policy

Figure 5: Comparison of dP based on different values of D

We can now plot DV values on a 3D chart both relative to dC and D (Figure 6).
The X and Y axes in Figure 6 (a) and (b) represent D and dC, respectively. The Z axis of
Figure 6 (a) and (b) shows the level of DV values. Again, in Figure 6, dP2 can maintain
relatively higher DV since the DV surface of dP1 is steeper than the surface of dP2
overall. The largest difference between the DV of dP1 and dP2 is found when D is
relatively low (D = 10) and dC is relatively higher (dC = 0.5). It is reasonable, because in
the reverse (very high damages, low detection cost), it makes more sense to detect all
CE problems.

In order to maintain relatively higher levels of DV and cost-effectiveness of CE
detection, a new, selective detection policy has been developed and studied. According
to the above discussion, a selective detection policy made by DPEM can maintain a
higher DV especially when D is relatively lower and dC is relatively higher. This
conclusion can be proven by using a linear programming procedure to solve this
optimization problem for maximum viability. Although this problem can be modeled as
deterministic and linear programming technique can be applied to solve this problem,
based on DPEM’s decision logic, a relatively simple decision-making process for the
actual, non-deterministic behavior can be applied by evaluating κ of each dM.
Furthermore, in a practical situation, the timing of deciding which CE should be detected
might vary. The evaluation method and measures developed in this research can be
applied in this type of dynamic situations instead of deterministic optimization calculation.
Especially, when the number of CE problems is relatively large, the viability-based

27

selective detection policy can enhance the efficiency of the detection decision process
when a Co-U needs to decide which detection policy, dP, it should prefer for the given
case.

0.
1

0.
3

0.
5 10

30

50

70

90

50000
52000
54000
56000
58000
60000
62000
64000
66000
68000
70000

D
yn

am
ic

 V
ia

bi
lity

 (D
V)

 ($
)

Z
Damage (D)

($)
XDetection Cost (dC) ($)

Y

Cost-Damage analysis of DP1
(Detecting all)

(a)

0.
1

0.
3

0.
5 10

30

50

70

90

50000
52000
54000
56000
58000
60000
62000
64000
66000
68000
70000

D
yn

am
ic

 V
ia

bi
lity

 (D
V)

 ($
)

Z

Damage (D)
($)
X Detection Cost (dC) ($)

Y

Cost-Damage analysis of DP2
(viability-based detection policy)

(b)

Figure 6: Comparison of dP1 and dP2 based on different dC and D

In this section, the results of the experiment show that DPEM can facilitate the ability
of a Co-U to decide how to determine a recommended detection policy for CE detection.
The applicability factor (κ) of each detection method dMx can be used to decide
whether this dMx should be applied or not. By applying selectively recommended
detection policies, the impact on individual Co-Us and the total impact on the Co-net of
the company, in terms of beneficial viability which represents profitability, can be
measured and optimized.

6. Conclusions and Recommendations
In this research, we focus on the analysis of conflict and error problem in a task

planning collaborative environment, and their impact on company competitiveness
(which is measured here as dynamic viability). First, we define conflict and error
problems in task planning collaboration. In order to analyze a CE problem after task
allocation, taxonomy of the CE problems is developed. Based on the taxonomy, different
types of conflict and error problems in task planning can be categorized. Relative cost,
damage and detection method analysis also show that applying appropriate, rationally
selective detection methods to detect CE problems is beneficial.

In addition to analyzing and categorizing CE problems, we identify the CE table
for storing the CE information. When a Co-U attempts to detect CE problems, related
information and experiences can be retrieved from the CE tables to enhance the
detection performance. This table can become a knowledge base for detection. In
addition, detect-ability (ß) measure is introduced in this research. Detect-ability (ß) can
be used to evaluate the competency of detection methods. Another measure, dynamic
viability (DV), can be used to evaluate the CE detection performance of the Co-U.

28

Maintaining a higher level of DV when performing CE detection means that the overall
cost-effectiveness of CE detection is higher.

The DPEM can evaluate particular CE detection methods and recommend a
better detection policy, viability-based detection policy, to decide how to apply alternative,
applicable detection methods. The important objective of a DPEM is to maintain higher
viability when it performs CE detections. By considering the preventable damage of a CE
and its detection cost, the Co-U can have greater flexibility in deciding on its detection
policy.

The experiment was designed to simulate the decision-making process when a
Co-U selects a detection policy before actually detecting CE problems. It focuses on the
performance comparison between a common detection policy and the viability-based
detection policy proposed in the Section 4. The common detection policy is to try and
detect all possible CE events, regardless of the relative comparison of the average
detection cost of applied detection methods and relative to the magnitude of potential
damages resulting from un-detected and un-prevented CE events. On the other hand,
viability-based detection policy (dP)T considers the possible damage of CE and average
detection cost in order to maintain higher dynamic viability of a Co-U, even when certain
CE cases are not going to be detected. In this experiment, for both detection policies, a
DPEM retrieves CE tables to obtain CE information for a particular task before
performing a detection process. After the Co-U evaluates alternative detection methods,
it determines a viability-based detection policy (dP)T that decides how to apply detection
methods on CE detection and maintain the higher viability of a Co-U.

Experimental results indicate that “detecting all CE problems” even with the
recommended detection method, is not always useful if the detection costs are relatively
high or the damages from the CE events are relatively low. By implanting the DPEM
decision-making logic, a Co-U can improve the detection policy to maintain overall
higher viability, which represent an overall positive impact on the company.

Future Research
 Conflict/error detection is an initial stage of conflict/error management
[Balakrishnan et al., 1994]. Solving or recovering the detected CE problem in the
collaboration environment is a following mission. Several undeveloped areas which need
to be investigated are:

a. A well-organized conflict/error knowledge base is necessary to improve the
conflict/error detection and resolution process. Knowledge acquiring and query
mechanisms that enable collaborative members to deposit and retrieve detection
information are important issues.

b. Since the cost of resolving CE problems might be also costly and significantly
affect the profitability of a company, including it in a proposed Detection Policy
Evaluation Mechanism will be the next step to improve this mechanism.

c. Evaluation and comparison of the proposed measures with other quality control
measures should be investigated in the future work.

29

30

References
AutoMod User’s Manual volume 1 and 2, 1999, AUTOSIMULATIONS, Inc.

Anussornnitisarn, P., 2003, Design of Active Middleware Protocols for Coordination of Distributed
Resources, Dissertation for Ph.D., Purdue University, West Lafayette, IN., U.S.A.

Anussornnitisarn, P., and Nof, S. Y., 2003, e-Work: The Challenge of the Next Generation ERP
Systems, Production Planning and Control, v. 14, n 8, pp. 753-765.

Bakken, D. E., 2003, Middleware, Chapter in Encyclopedia of Distributed Computing, Urban J.
and Dasgupta P.(editors), Kluwer Academic Publishers.

Chen, X., and Nof, S.Y., 2004, Design of Active Middleware for Error and Conflict Detection,
Research Report GM-CEDM-Report 04-1, March.

Dellarocas, C., and Klein, M., 2000, An Experimental Evaluation of Domain-Independent Fault
Handling Services in Open Multi-Agent Systems, 4th Int. Conf. on Multi-Agent Systems.

Huang, C. Y., and Nof, S. Y., 2000, Autonomy and Viability-measures for Agent-based
Manufacturing Systems, International Journal of Production Research, 38(17), 4129-4148.

Klein, M., 2000, Towards a Systematic Repository of Knowledge About Managing Collaborative
Design Conflicts, Proc. of the 6th Int. Conf. on AI in Design, Worcester, MA, June 26-29.

Klein, M., and Dellarocas, C., 2000, A Knowledge-based Approach to Handling Exceptions in
Workflow Systems, Computer Supported Cooperative Work, v 9, pp. 399-412, Kluwer
Academic Publishers.

Luo, Z., Sheth, A., Kochut, K., and Arpinar, B., 2000 ,Exception Handling in Workflow Systems,
Applied Intelligence, v 13, n 2, pp. 125-147, Sept.-Oct. 2000.

Luo, Z., Sheth, A., Kochut, K., and Arpinar B., 2003 ,Exception Handling for Conflict Resolution in
Cross-Organizational Workflows, Distributed and Parallel databases, v 13, n 2, pp. 271-
206, May 2003.

Nof, S. Y., 2003, Design of Effective e-Work: Review of Models, Tools, and Emerging Challenges,
Production Planning and Control, 14(8), 681-704.

Ostergaard, K. and Summers J. D., 2003, A Taxonomic classification of collaborative Design
Process, International Conference on Engineering Design, ICED 03, Stockholm.

Robin, V., Girard, P., and Barandiaran, D., 2004, Performance Evaluation of the Collaborative
Design Process, 11th IFAC Symp. INCOM’04, Salvador, Brazil, April.

Smith, R. G., 1980, The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver, IEEE Transactions on Computers, C-30(5), 372-385.

Yang, C.-L., Conflict and Error Detection Protocol with Active Middleware, M.S.I.E. Thesis,
Purdue University, August 2004.

