
In spite of its somewhat unlikely sounding name,
this complier can effectively design custom ICs

from an algorithmic specification of circuit behavior.
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The design of integrated circuits

There arc at least twso separable aspects to IC design.
One is the rigorous specification of the integrated
circuit's tinctioti. Another is the layout ot the active
deices and ititercorinections required to instantiate the
circuit. This lax out descriptiot- assunies sonic specific or
gerieric ICW tabticatiori technology. Because goiiig direct-
lv tIroii behavioa r to laxout is usuallv too coniplicated to
accoriiplissh in one step, ce.signcers customarily construrct a
circuit description that lies somexvhere between the be-
ha ioral atid laN Olrt descriptionis of a specific circuit. The
amiiount ot) engineering tinie spenlt in each of these three
design areas is shown in FigLure 1.

During the past 15-20 vears, great strides have been
niade in the understanding and utilization of program like
behavior specifications. It was quickly discovered that the
majoriti ot the t'urnctioris of exen the niost complex digital
hards are svstem could be described bh a riiodest program.
Thus, the riiain thrust ot research activxiti must be to ii-

pl ox e lax out anid circuit designi productivitr.
Below, sie will connect these factors to the evolution

of the MacPutts4 silicon compiler. For those desiring a
still more comprehensise surrey of integrated circuit
design niethods, one can be found in the literature.5

Layout

In sinmple desigrus, the laxvout is often obvious to a good
cdcsigner. In miiorc corimplex designs, hosever, there are a

riulrliber ot reasoniable layouts to corisider. Additionally,
the furnctioris of iimediuLni-scalc integrated circuits can often
be circuit designled in sex eral intuitivelv reasonable wavs.
In order to improve produretixity, two basic approaches to
IC laVout design have traditiorially been used: computer-
aided draftinlg arid layout synthesis froin circuit design.
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Computer-aided drafting. This layout method recog-
nizes the "fine structure" of the layout design task. In
order to achieve efficiency vis-a-vis a specific technology,
the real design process must be iterative, as shown in
Figure 2, rather than follow the straight flow of Figure 1.
A computer-aided drafting tool combined with hierar-
chical design style can thus be valuable for easing the task
of reworking a layout. In addition, the layout specifica-
tion in the computer can be utilized to provide automatic
layout and electrical checks and device simulations.

Because the drafting system and the photomask fabri-
cation process deal with the same objects, the designer
has, potentially, complete freedom to utilize all the capa-
bilities of any imaginable process. In practice, however,
two productivity implications must be taken into account
when laying out a circuit. One factor is implied by a hier-
archical design style. If some cells already exist-cells
that can be incorporated into a new design-this can
result in greatly reduced design time and greatly in-
creased confidence that those cells will work. The other
productivity factor is a consequence of the fact that the
time required to design a large-scale IC often spans one
or two modifications of the target IC fabrication process.
Successful integrated circuit production will span many
such changes. A highly optimized layout for one process
will be suboptimal for its successor. It is valuable to be
able to automatically modify otherwise satisfactory
masks so that they match an improved fabrication pro-
cess. Although the modified layouts are generally still
suboptimal, automatic modification is usually an accept-
able engineering compromise.

Layout synthesis. New layout tools and techniques
generally emphasize the above-mentioned practices, even
at the cost of some further reduction in the absolute effi-
ciency of the available fabrication technology.
The standard cell layout method institutionalizes the

hierarchical borrowing practice. This method provides a
cell library composed of logic gates and complex cells. It is
common practice to include automatic place-and-route
routines in the cell library, meaning that the designer only
needs to specify the connectivity between cells, not lay out

Figure 1. Three levels of IC specification and the time
spent In each. The time chart is based on actual
measurements.3

Figure 2. The iterative design process.

the interconnection.6 Again, this is a trade-off of efficien-
cy for productivity.
Another approach to layout synthesis is sometimes

called "symbolic layout." Here, the layout is not
specified down to its absolute geometrical location.
Rather, relationships are sketched out from which the
layout can be automatically generated.7 The sketchier
the relationship specification, the harder the automatic
program must work, and the less efficient the resulting
layout will be. However, the relationship sketch is a
general specification that need not be altered for reason-
able changes in fabrication capabilities. Only the layout
program will be modified, and that will be used to resyn-
thesize many designs. Although advantageous, these
symbolic layout systems still require considerable skill
and effort for them to be used properly.

Circuit design:
silicon compilation precursors

The difficulty with the layout methods described
above is that none of them provide an underlying system-
ization for transforming behavior into the required struc-
tural, circuit terms. In other words, they do not address
the problems of circuit design. In this context, two sub-
system generation techniques deserve special mention.
One involves the use of PLAs (programmable logic ar-
rays) in implementing finite-state machines.8 The other is
an offshoot of the standard cell methodology-the
"data-path generation" technique pioneered by Johann-
sen9 and also recently used by Shrobe.'0

Subsystem generators must be used in conjunction
with other subsystem generators to create a complete
integrated circuit. This means that several decoupled
descriptions of the same system must be created-one for
each subsystem generator. Also, the generated layouts
must be combined, either manually or by some "chip as-
sembler" techniques that are not yet generally available.

Finite-state machines and PLAs. Finite-state ma-
chines, or FSMs, are a powerful conceptual technique
for specifying some forms of control. PLAs are an effi-
cient and easily laid out implementation of logic. A PLA
implements a universal form of logic; all logic functions
not requiring storage can be implemented in a large
enough PLA. Additionally, efficient algorithms for trans-
forming any logic expression into PLA forms are well-
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known. Generating a PLA layout from the PLA forms is
also a well-understood process, though new wrinkles are
always being introduced. A simple addition to a PLA
generator will create an FSM implementation.

Finite-state machines are not enough for complete
systems, especially when computation must take place.
In such cases, a computation subsystem can often be
controlled by an FSM. One choice for the computation
subsystem is a "data path."

Data-path generation. A data-path generator is a
specialized standard cell system that systematizes and
takes advantage of typical constructions. In a data-path
generator, bit-wise subunits are combined to create func-
tional units, and multiple units are combined to create a
data path. A data path is a sequence of operators-addi-
tion units, multipliers, comparators, etc.-connected to
perform a computation. Thus, a systematic transforma-
tion is possible from the behavior/computation speci-
fication of an IC directly to its structural, standard cell
specification. The connection of operators is done by
automatic routing of interunit signals.
The systems that use the generated data paths, how-

ever, typically require conditional data flows, looping,
and other control constructs. The data paths, therefore,
must be capable of being switched during operation by
signals generated outside the data path. To do this, the
data-path generators leave hooks for control signals. A
different tool, and, more importantly, an unrelated
description, must be used to create these control signals. *

First

Another precursor to general silicon compilation is
First.12 First (fast implementation of real-time signal
transforms) was designed for digital signal processing
(DSP) applications. First and MacPitts differ in nearly
every way-from philosophy of behavioral specification
to circuit implementation. Both are alike, however, in
that they produce complete chip layouts, including I/O
pads and routing.
There are several interesting facets to First, but the one

most important is that many DSP applications can be
described strictly in terms of data-flow graphs-for ex-

*Recently, Agrell reported on work in which a unified high-level descrip-
tion-one similar to MacPitts-was used to generate the descriptions for
both an existing data-path generator and a control signal synthesizer.

Figure 3. Data-flow graph of a nonrecursive digital filter. Note that
there are no options In the flow of data; there Is no control flow.

Figure 4. The MacPitts target architecture.

ample, the nonrecursive filter of Figure 3. Note that there
are no conditionals of any kind because there is no need
for them. This is in contrast to the data-path generators
typically used for algorithms and systems that do require
conditionals, time-varying interconnections, and so on.
First is also superior to most data-path generators in that
it can interconnect any network of its functional units.
First uses bit-serial operations to implement its func-
tions, and this often yields a superior fabrication cost/
function ratio. However, it also results in greater design
complexity because of the necessity of taking the bit delay
timings into account when connecting functions.
The necessity of considering bit delay timings led the

First team into a powerful, formal method of bit-level
design. Also, the very restrictive operator combination
paradigm allows the First designer to guarantee speed
performance. In turn, this guarantee has led to methods
for time multiplexing units to match the actual perfor-
mance with specified performance criteria.

MacPitts

MacPitts was designed to be a synthesizable, algorithm
description language. By synthesizable, we mean that the
language was designed in conjunction with IC synthesis
routines. Therefore, during the evolution of MacPitts,
proposed language features and concepts were consid-
ered both on the basis of possible application and on our
ability to automatically synthesize the hardware required
for its implementation. We have called this set of hard-
ware structures the "target architecture" (see Figure 4).
By describing MacPitts as an algorithm description

language, we mean that it has essential programlike fea-
tures, notably flow of control. We also mean that the
designer has the ability to describe the algorithm that the
IC is to perform, rather than one that describes the in-
tegrated circuit's structure (standard cell). In order to
understand the salient features of this architecture, let us
first examine the few simple concepts on which MacPitts
is based.

Data structures and storage. MacPitts has only two
data types: integer and Boolean. All integer-type objects
are of the same length and are implemented in the data
path. Boolean-type objects are implemented in the con-
trol and flags sections. Our terminology is based on the
following:
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Figure 5. Conventional data-path organization.

Integer
register
port

Boolean
flag
signal

stored
not stored

Storage is kept in master-slave flip-flops. These flip-flops
are called registers and physically exist in the data path if
they store integer-type data; they are called flags if they
store Boolean-type data. All storage is modified on a,
single, synchronous "state transition." During a state
(between two successive state transitions), the storage
devices present a constant output. At the same time, their
inputs are allowed to settle. At the state transition, the
storage input values are propagated to their outputs. The
flip-flops are designed so that the new outputs cannot
modify the inputs during the state transition. This is
precisely the effect that a programmer expects from the
Lisp instruction

(setq a (+ a 1))

or in Fortran

A=A+ I

On the other hand, nonstorage items are designed so that
they are modified asynchronously during the state. Thus,
the MacPitts instruction

(setq a (+ a 1))

while syntactically valid whether a is a register or a port,
will only be useful if it is a register.

Data-path operations and transfers. So far, we have
only presented the framework in which computation can
be accomplished. Because many of the target applica-
tions require high throughput and can utilize parallelism,
we wanted a design language and a target architecture
that would support such parallelism. Our target architec-
ture achieves this parallelism by implementing a high
degree of concurrency in data operations and transfers
within the data path. For comparison, this concurrency
can be considered alongside "standard" and "horizontal-
ly microprogrammable" computer architectures.
The conventional computer data path is typically par-

titioned into a register/memory array and an ALU, as
shown in Figure 5. Only one operation can proceed each
clock cycle. Efficient algorithm specification in the form

of a program, however, is simplified because of this
limitation; the ALU merely needs to be kept busy for full
efficiency.
A horizontally microprogrammed machine typically

has several buses connecting a small number of func-
tional units that can operate in parallel. The micropro-
gram specifies the connection of units to buses on an
instruction-by-instruction basis. Although some parallel-
ism is available, there is usually not enough to execute all
the parallelism implicit in the algorithm. Both the num-
ber of functional units and their allowed interconnection
are usually limited. Such restrictions create both pro-
gramming complications and execution bottlenecks.

For example, in one typical, high-performance micro-
programmed array processor, it is not possible to directly
sum a series of values from the main data memory be-
cause both the main data memory and the adder output
are limited to entering the adder at one and the same in-
put port. Efficient programming demands that many of
the units (and hence transfer buses) be kept busy simul-
taneously. Fitting an algorithm into the Procrustean bed
of any specific microprogrammable machine is typically
an error-prone and difficult programming chore. This
chore is complicated by the usual situation of obtaining
partial results in a unit that cannot be directly connected
to the unit required for the remaining computation.

MacPitts, however, allows a designer to specify an
algorithm as though completely general and sufficient
parallelism existed in some general-purpose machine. In
other words, any control/data-flow graph can be directly
specified in MacPitts. Then the MacPitts compiler "ex-
tracts" the minimum-hardware microprogrammed ma-
chine which executes that parallel algorithm, with all the
bus and unit merging and sharing that that implies. The
resulting structure is topologically similar to any micro-
programmable machine's architecture but is organized as
shown in Figure 6. The data-steering control functions
are provided in the control section, which is generated
from the same algorithm specification by the extraction
process. Thus, MacPitts combines ease of programming
with the efficiency and parallelism of the horizontally mi-
croprogrammed architecture.
From our knowledge of the data-path generators pre-

viously discussed, we were aware of the usefulness of
constructing the data path out of bit-wise units "glued"
together in one direction to form word-length units,
which are then bused together in the other direction. A
more detailed picture of the layout scheme for the data
path is given in Figure 7. A bit-wise unit is called an
organelle. A standard library of the usual functions-ad-
der, subtractor, shifters, comparators, etc.-is provided.
More sophisticated users can design their own organelles.
However, as units become more special-purpose, the
MacPitts program becomes more a structural than a
behavioral specification.

MacPitts specification language-forms. There are
two fundamental concepts to the MacPitts language. The
first of these is "state transition," which we have already
discussed, and the second is that of a "form." Form in-
cludes the syntax and semantics of logic, arithmetic, and
control expressions. Forms are composed of an operator
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Figure 6. Organization of the MacPitts-generated data
path. Note the lines going to and from the control section
(not shown). The control section is generated from the
same program-like specification.

and argument values, and they produce a value and, pos-
sibly, a side effect. In their syntax and intent, forms
usually resemble Lisp functions. For example, (+ b 1) is
a legal Lisp or MacPitts form if b is integer valued. The
quintessential integer-valued form is a register or port.
However, the above code is also an integer-valued form
because it results in an integer value. Therefore, the state-
ment (+ (+ b 1) 1) is also legal.
There are two other possible value types-Boolean

and void. A void form has no resultant value. Any form
can contain a mixture of both input and resultant values.
For example, the right shift form (>>) can use one
Boolean and one integer input and produce an integer
result. Note, too, that some forms have side effects. The
most obvious examples of such forms are assignment
statements and control flow branches. These forms ac-
commodate the storage and state transition concepts pre-
viously presented. Thus (setq a (+ a 1)) has the desired
effect of incrementing a after the next state transition.
A compile-time side effect not usually occurring in a

standard computer language is that some forms cause
other forms embedded in their scope-that is, the forms
that make up the arguments of the outer form -to be ex-
ecuted in parallel instead of sequentially. Forms that can-
not be executed in parallel can share physical units in the
data path. Those that cannot syntactically (at compile
time) be determined as mutually exclusive, must be
assumed to execute in parallel and thus cannot share
physical units. Parallelizingforms increase the computa-
tional throughput of a design at the expense of silicon
area. A later example will demonstrate the use of
parallelizing forms in examining the trade-off between
throughput and silicon area.

Figure 7. Detailed organization of MacPitts data paths.
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The cond operation. In MacPitts, the cond operation
is the method of condition testing for execution and con-

trol flow. This operation is probably the most important
MacPitts form; it is certainly the most complicated. It is
cond that distinguishes MacPitts from a data-path gener-

ator and makes it an algorithm specification language
rather than a data-path specification language. The cond
operation is also a parallelizing form.

There are several ways of thinking about the cond
statement. First, it is syntactically identical to the Lisp
cond statement and may easily be viewed as a program-
like "case" statement. This paradigm, however, ignores
not only the implicit parallelism of the form, but also a

possibly preferable paradigm based on finite state
machines.

Consider the following code fragment (assuming that a

and b are registers and exch and incr are Boolean values):

execute
(cond (exch (setq a b) (setq b a) (go fetch))

(incr (setq a (+ a 1))
(setq b (+ b 1))
(go fetch))

(t (setq a (- a 1))
(setq b ( -b 1))
(go fetch)))

MacPitts interprets this specification of the state labeled
execute as follows: If exch is true, exchange the contents

of registers a and b and go to the state labeled fetch.
(Note that cond has parallelized the two setqs, otherwise
this code would just have set a to b.) If exch is not true,

but incr is, then increment both a and b simultaneously
and go to fetch. Finally, if neither conditional is true, a

and b will both be decremented (simultaneously), and,
again, fetch will be the next state. Notice that MacPitts
has assumed that the programmer wanted all the condi-
tions to be mutually exclusive. This is consistent with the
Lisp interpretation of the conditions (predicates), but
not the consequent actions. The flowchart equivalent of
this code is displayed in Figure 8.

In the execute sample, the predicates are simple
Boolean values. These would be distributed via the con-

trol section, commanding the organelle multiplexers to

connect the operators and registers to the correct buses.
Instead of Boolean values, any form with a Boolean
result could have been used as a predicate:

(cond (( = a b) (setq a 0))
(t (setq a ( + a 1))))

In this case, a comparator in the data-path would com-

pare a and b. The comparison would result in a Boolean
signal that would be distributed via the control section to

command other multiplexers in the data path.
The crux of the difference between Lisp and MacPitts

interpretations is that Lisp's consequent actions are se-

quential but MacPitts' are parallel. The entire MacPitts

cond statement can be, and is, compiled into silicon

capable of executing it in a single state cycle. The Mac-

Pitts code, and its timing, make eminently good sense in

the context of a Mealy-type FSM. * First, let us make the

distinction bet\veen data storage and storage of FSM

state. The cond form can then be interpreted as the way
MacPitts specifies the next-state and output mappings
for the current FSM state. In fact, we can adopt the con-

vention that each FSM state is represented by a set of
< condition / actions / transition > triples. Note that,
unlike the usual FSM conventions, "actions" may affect
data storage as well as specify output. The sample code is
thus the equivalent of the triples

exch/a-b,b-a / fetch
exchnincr / a-a+l,b-b + I
exchUincr / a-a l-,b-b- 1

fetch
fetch

for the state execute. This is presented graphically in
Figure 9.

*The Miealy-type FSi outpuLt functionis depend on both the current state

and the input values.

Figure 8. Flowchart of the exchange, increment, or decrement code.
Note the awkwardness in describing the exchange due to the implica-
tions of the sequence of execution.

Figure 9. FSM implementation for exchange, increment, or decrement
code. Note that FSM concept implies that the actions performed on
the selected state transfer arm are simultaneous.
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By inspecting the FSN1 representation, it is clear that
actions on different "arnis' of thc (eraph cani nes ei bc
cxccutcd siniulta1neotusir Therefore, the physical uinits
cxccuting the operationis oni ans arimi cani be sharcd w ith
those tused for other arims. Thc onil rcqtii emilcint is that
the appropriatc input signals be switcheci (the task of the
muLiltiplexers and their control) into theC pi-opei uinits fooi
the selecctd arn. The MiaeIitts compiler keeps track of
\\hat uinits atl-e aailable aLnicl generates the mILltiplcxilln
nilld conitrol recqtitecl t'or this -merciucg.-

The interpreter. A \lae Pitts plioc.ialm is not o0ls ani IC
s 'teif cation, it is also ani alcorit hm speciIication. The

\Ilac3it ts compilei ,Cule Iates I( lavouit; hosesci, tthce-e is
al o all in-terprctcr trlat cxccutcs the speciticationIpr-o-
tram on a general-puripose computer -Tlis intei-preter is

inalulabilc bccauisc, unlikec oftsate or esen 55iir-c-wsrap
hardwsate bhoar ds, it is seIr clit't'icult to intciractis els pr-obc
and moodif s the interInals of an integratecl citrcuit Bs
using the saille lancuace to driie both the interpreter- and
nicatL-ttced cii-ciit coImileruma-, Cii-or- is nlecessarils
educcIedc. T[he alowrithmic \NlaclPitt specification is also

iiiore slitable than a strtiet ic-al stec iicationi for intcrae-
ti\ e t uinction design and che}ck.

MacPitts examples. BCaCuLISC Ot the sosCl- ot' NlaCPitts,
it is crs clit't'ifeult to produc simple xanimples thLait
dCili0liateL-tC all ot thle teat i1-CS ot tIliS CeotileiP1C'.MansL
deiciccl alorithrins cani be describedusili-Ln onls one state!
or example, thic clicital t'ilter pi-seentecl in thic sectioll on1

li rt ..an, in \lacP1ittS, bc clescribecd in onls onie state t hat
loops back to itsellt' forescir. Itt t'aLct, aLll sLuch} t'Ilter-likec
>!stemns cLian be so clescr-ibecl, and \IaePiitts has aLni a/nut,ss
coinsti nLet semanticalls ecjLis talci-t to sLit1 an FS\, or
roc vsszasswe Usualls call it. Ai\otheri- poe rful t'catLnrc

not Often LuseCC iln simple examples is the abilits to spCeeIs
ni ltipl parallel I S\ls or /roc('esse.

Magnitude approximation. * The follos ing algorithm
approximates x a +,

let: max aba

h

'a'+ hb =max 7- £ + ii}

The MacPitts code to implemllent this algorithm is

(ais\s avs
;et a-absolute b-ahsolute
(cowlc ((bit m19sb a) (setcl aab ( (Ia)))

(t ('e1tqaab a)))

iiI11ilt'rt I il t)X11 r)'l' It)I I C1 11i'tStlt It i.itO it l
itit t t il t' It I lflf9 i)i il ii i lli111 'li

', !1't1<61+ oldcr -Ind ha, a ImIIt tiI t'mti it\

(cond ((bit msb b) (setq bab ( 0 b)))
(t (setq bab b)))

set g and I
(cond ((unsigned -> aab bab)

(setq g aab)
(setq bab))
(t
(setq aab)
(setq g bab)))

;sqs: =7/8 g + 1/2 1
(setq sqs ( + (- g (3>> f g))

(»> 1)))
nmax of sqs and g
(cond ((unsigned ->g sqs) (setq res g))

(t (setq res sqs)))))

The first code section computtes the absolute c alnLes oft
arid h. The seconCl uses these to comiputite g and I. Next,
7/8i-£: 1/2 / is calculatecd ancd comiiparecd to g. Bothl a aLindc
b) miLst be specifiec as input ports ancd re.s as the otitptit
port.

Note, too, that the sorcl size mutst be dc'linecl and tte
pinont specif'ied. These cani be easils chanced to accoIt-
modate moclified reqLirements. The def'iniition s ate
located in an initial \lacPitts clefinitionis sectioll, shosn
belos f'or a f'ouLr-bit s ord sie:

(proranFm cenmag 4
(def rush constanit 3)
(de' I crouLnd) ; pin uctimibet- one iS ciOLIncl
(def' a port inipuLt (2 3 4 5)) pins 2-5 ate resetsecl

tfor- input a

(det' b port input (6 7 8 9))
(clef' res poort ouLt pUt ( 10 I I 1 2 13))
(def' 14 pOser)
(def' IS phia) othercta 'or plin det'inition of'

thlcse pins,
(det' 16 phib) clockinc is imiiplicit in the Strate

concept,
(det' 17 plhic) ; ancl can otherssise be ntcloed.
(alsswavss
set a-absollte b-absolLIte

The abose cocde does niot fullr specif tthe cdie en; the
deCFree of parallelism and pipelillne muSt st'ill be decidecl.
It is a sinmple mllattci- to specifs and modify thcese charFac-
teristics, andc swe ws ill noss ins estigate somie ot the
pos; IbIit ics.

If the intecer saa's ,hab19l, 1, 1, arnd sq.s ate- chccIlai-ccl as inl-
ternal ports, then the enltire coniptitationi ssill p-occeech
tSrclCrnIF0u1osly aidcucmbinationalIs W e Imcake the clec-
laration in the lef section of' the MacPitts ccdce:

(procram macass tic 4
(clef m sb constant 3)
(clef aab port inter nal)
(det' bab port internial)
(clef' (c port internal)
(def I port interinal)
(def s5cs port internal)
(clef' I crourich)
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There is really no "state" or cycle here. Rathler, the pro-
gram accepts inputs and produces the outputS. The com-
binationial delay, how ever, is fairlv large, as the inputs
must propagate through several cascaded functional
operator ullits.

For slightly greater area, pipelining can be acconm-
modated. For example, aab, bab, g, and /cani be declared
as registers instead of ports. If so, the start of the pro-
gram nox looks like the following:

(program magpipe 4
(def msb constant 3)
(def aab register)
(def bab register)
(def g register)
(def I register)
(def sqs port internal)
(def 1 ground)

With no other changve in the code, this becomiies a tullv
pipelined system. The w-orst-case comiibinationial delav
per cycle is shortened. It takes three cxcles to obtain a
result (latency from inputs to output). Howexer, new in-
puts canl be accommodated each cycle, thus increasinlg
overall throughput.

Finallv, bv removing the parallelizinlig alwaYs, a trute
multistate sequential loop can be easilN formed. Tho1ugh
slower, this desi-n is able to share (time multiplex) some
of the actual physical operation Units the nlLnuber ot
subtraction units can be reduced from 3 to- 1, tot exanm-
ple. The determinlationi of which phy sical operationi uLnits
can be multiplexed is done automatically, as is the actual
multiplexer specification and layout. Howexer, register
sharing is not done automaticall. In this case, the aclb
and g xalues can share one register, while hub, I, and s.qs
share another. An extra input signal, reset, munst be pro-
xided. The MacPitts compiler automatically generates
hardware to set the process state to the beginning of the
loop if the reset signal is high. This ensures that the
resulting FSM can be started in a known state. Putting
together the definition section and the sequential loop,
the code to do all of this now looks like this:

(programn magseq4
(def msb constant 3)
(def aab-g register)
(def bab-l-sqs revister)
(def I ground)
(def a port input (2 3 4 5))
(def b port input (6 7 8 9))
(def res port output (10 11 12 13))
(def reset signal input 14)
(def 18 power)
(def 15 phia)
(def 16 phib)
(def 17 phic)
(process compmag 0
set a-absolute b-absolute

loop
(cond ((bit msb a) (setq aab-g (- 0 a)))

(t (.setq aab-g a)))

(cond ((bit msb b) (setq bab-l-sqs ( 0 b)))
(t (setq bab-l-sqs b)))

set g and 1
(cond ((not ( unsigned -> aab-g bab-l-sqs))

(setq aab-g bab-l-sqs)
(setq bab-l-sqs aab-g)))

sqs: = 7/8 g + 1/2 1
(setq bab-l-sqs ( (- aab-g (3>> f aab-g))

(>> bab-l-sqs)))
max of sqs and g
(cond ((unsigned -> aab-g bab-l-sqs)

(setq res aab-g))
(t (setq res bab-l-sqs)))

(go loop)))

These modifications are simple ways of achiexing per-
tormance g-oals either for area or speed. The area re-
quirements and number of transistors for each of the
three designs (four-microni minimum feature size) is
shownii in Table 1. Sex eral recently proposed silicoin conm-
pilers, as Xwell as Agre's work, attempt to automate this
process by using resource and timing constraints to guide
an extraction of parallelism from a single, fundamnentally
sequential program representation.

It is also possible to construct custom designed units.
For example, a max-min org:anelle could be created to
generate g and 1. This was the solution forced on First.
XX ith cond, we can conmpose functions from the primitixe
librarv set in minutes (paying area and speed penaltics, oa
course). XVithout such a construct, howexer, circuit de-
sign and lax-out must be performed for maux nexx ap-
plications.

MacPitts: past, present, and future

Several MacPitts chips have been fabricated and
tested. The latest and largest of these is an automatic gain
control chip, shown in Figure 10, that is actually in use in
a digital vocoder system built at MIT's Lincoln Labora-
tory.t3 This chip was designed in a few weeks by an
engineer with no previous experience in IC design. The
large areas of unused space and other layout inefficien-
cies are continually being reduced by compiler improve-
ments. Note that the chip does not need to be redesigned
to take advantage of any such improvements.
A more ambitious project, a test controller, is current-

ly being fabricated. Since the original design, which used
standard functional units, was initially too large to be
fabricated, some improvements to the basic organelles'
layouts had to be implemented. Doing this did not re-
quire a new MacPitts specification for the test controller,
and other designs could benefit from these improve-
ments as well. However, these improvements were still
not sufficient. At this point, the designer was confronted

Table 1.
Area requirements and number of transistors

for each of three designs.

DESIGN
asynchronous

pipelined
sequential

SIZE (mm xmm) NO OFTRANSISTORS
5.1 x 2.1 867
5.4 x 2 1 1 088
3.4 x 2.4 806
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with three courses of action. First, a speed/area trade-off
could be investigated, but this approach was deemed un-

suitable for a test controller. A second method was to
partition the system into several integrated circuits. Mac-
Pitts does not have any facilities for aiding the partition-
ing of a too-large system into a chip set. By way of com-
parison, First can easily partition systems because of its
bit-serial approach; splitting a word-parallel design
usually generates overly large pin counts. The third ap-
proach, the one finally used, was to create some special-
purpose organelles.

These designs, and others, have pointed out several
weaknesses of MacPitts. Performance prediction and
automatic trade-off analysis is not a strong point; Mac-
Pitts lacks system partitioning facilities and only gener-
ates NMOS designs. Finally, the test generation mecha-
nisms of MacPitts still require human interaction. We
have no shortage of ideas, but a great deal of work will be
necessary to overcome these problems. Nevertheless,
MacPitts has demonstrated its fundamental goal: Cus-
tom integrated circuits can be effectively designed from
an algorithmic specification of the circuits' behavior. E
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