Rapid #: -8177647

CROSS REF ID: 1199076
LENDER: IQU :: CSEL
BORROWER: IPL :: Main Library

TYPE: Article CC:CCL
JOURNAL TITLE: VLSI design
USER JOURNAL TITLE: VLSI Design

ARTICLE TITLE: The MacPitts Silicon Compiler: A View from the Telecommunication Industry
ARTICLE AUTHOR: Fox, J.R.

VOLUME:

ISSUE:

MONTH: May/June

YEAR: 1983

PAGES:

ISSN: 0279-2834

OCLC #:

Processed by RapidX: 7/16/2014 2:58:42 PM

. ' le&é This material may be protected by copyright law (Title 17 U.S. Code)

Branch CSEL Lending Page 7 of 8
Odyssey
: =817 IP: 128.210.126.171/ILL

Status Rapid Code Branch Name Start Date
New IPL Main Library 7/15/2014 6:51:22 AM

.. note: only the last 3 transactions are shown below. view details
Unfilled PAU Storage 7/16/2014 11:29:53 AM
Pending IQU CSEL 7/16/2014 11:30:05 AM
Batch Not Printed 1QU CSEL 7/16/2014 12:12:12 PM

CALL #: TK7874 V558

LOCATION: IQU :: CSEL :: sper

TYPE: Article CC:CCL

JOURNAL TITLE: VLSI design

USER JOURNAL TITLE: VLSI Design

IQU CATALOG TITLE: VLSI design

ARTICLE TITLE:
ARTICLE AUTHOR:
VOLUME:

ISSUE:

MONTH:

YEAR:

PAGES:

ISSN:

OCLC #:

CROSS REFERENCE ID:
VERIFIED:

BORROWER:

The MacPitts Silicon Compiler: A View from the Telecommunication Industry
Fox, J.R.

May/June j % Q
1983 | J
—_—
:7-7
’——-—'
0279-2834 3 (ﬁ »

IQU OCLC #: 7719803
[TN:1199076][ODYSSEY:128.210.126.171/ILL]

IPL :: Main Library

X ;mmg% This material may be protected by copyright law (Title 17 U.S. Code)

7/16/2014 12:12:12 PM

http://www.rapidill.org/lIll/'ViewQueue?ViewType=PendingByBranch&ld=333&RequestT... 7/16/2014

The MacPitts Silicon
Compiler: A View From the
Telecommunications Industry

Jeitrey R. Fox, GTE Labs, Inc. Waltham, MA

acPitts is a “silicon compiler’’ program that lets users
‘ M design VLSI circuitry by specifying the circuit al-

gorithmically in a high-level LISP-like language. The
compiler generates the logic needed to implement a given func-
tion in the MacPitts target architecture, and produces two
levels of output. The first is a technology-independent network
listing, and the second is a CIF description that is compatible
with the ARPA/MOSIS nMOS depletion-load process.

The MacPitts target architecture divides the chip into data-
path and control sections. The input language and the data-path
organization allow a high degree of parallel processing, which
can increase circuit performance in high-speed signal-
processing applications. Several telecommunications-oriented
circuits, implemented earlier using traditional logic-design
techniques with an nMOS standard-cell library, were redesig-
ned with MacPitts; this article reports the design time and the
chip size for each method. Some disadvantages of MacPitts for
these applications were discovered, and several changes were
made in the program to improve performance for telecommuni-
cations circuits.

The control section of MacPitts is implemented in a
Weinberger-type NOR gate array. Relaying out the control-
logic NOR functions in a standard-cell array saved a lot of
space, and may have increased the speed of the circuit.

A Brief Overview

MacPitts (Siskind et al. 1982) was developed at the MIT
Lincoln Laboratories by Siskind, Southard and Crouch. It
accepts high-level LISP-like (Foderaro and Sklower 1981) al-
gorithmic description of a circuit, and generates the logic cir-
cuitry needed to implement the specified function. MacPitts
first produces a technology-independent network listing in its
target architecture; i.e., a chip consisting of a data-path and
control-section and finite-state-machine sequencers. The
silicon compiler can then use this network listing to lay out the
circuit, and produce a CIF geometric description of the entire
chip that is compatible with the 5-um nMOS ARPA/MOSIS
process. The fixed floorplan of MacPitts casually resembles

that of a conventional microprocessor. Unlike conventional
" microprocessors, however, MacPitts lets several special-
function sub-data-paths, control sections, and sequencers be
compiled and combined to produce a chip that can perform any

30 VLS| DESIGN May/June 1983

number of operations in parallel. These sub-processes commu-
nicate with each other, in a limited way, through internal sig-
nals. The MacPitts data path consists of functional
‘“‘organelles” and registers. (The term *‘organelie’ refers to a
single bit slice of a register or operator.) These organelles oper-
ate oninteger-type data, with functions such as add, increment,
word-and, and test-equality. Data is stored in registers that are
incorporated into the data path.

The control logic is implemented with an arbitrary depth of
NOR gates in a regular array of wires and transistors called a
Weinberger array (Weinberger 1967). Sequences aré really
mini-data-paths, with registers and incrementers combined to
implement state counters.

Applicability of MacPitts to
Telecommunications Circuitry

General Considerations

Many telecommunications applications involve encoding,
processing, and decoding high-speed serial bit streams. The
decoding process often involves clock recovery, error detec-
tion and correction, and serial/parallel/serial conversion. The
encoding process usually involves coding according to an error-
correction scheme, rate, and format conversion. Loop-back
circuitry is often needed for testing. These algorithms can
exploit functional parallelism and would seem amenable to a
MacPitts implementation. We recognized from the outset that
the present MacPitts program provides only for a single,
synchronous clocking system, which would not permit the
independent clocking of encoder/decoder pairs (as is often
required in telecommunications). Because this difficulty was a
MacPitts implementation problem, and not a theoretical
roadblock, we ignored it in order to get a sense of the basic
architectural issues.

Limited Storage Capability

MacPitts handles storage much the same way a general-
purpose Von Neumann computer does. In a computer, results
are stored either in main memory or in one of several special-
purpose registers. Any operations that must be performed on
this data require that the contents of the storage element be
read, operated on by the machine’s arithmetic and logic unit
(ALU), and restored to a memory location or register. MacPitts

High-order input
from control circuit
Shifter

Register 1 Register 2

FIGURE 1. A bit-displacement shifter.

F= Ay + Aux

=z
X

Length

3
7
15
31

PN
R b b et

a) Pseudo-random shift register

— it O b OO =
Pl OROO A -
O= QO ==—m

-
-
-

O ,

Detect ‘1’ bus -7

b) Pseudo-random sequence for N = 3

FIGURE 2. Pseudo-random counting.

stores all integer data in a special-purpose, globally named and
addressable element called a “‘register.”” Operators in MacPitts
are not limited to a single, general-purpose ALU.

MacPitts provides a library of optimized special-purpose
integer arithmetic operators called ‘‘organelles.”’ These or-
ganelles may be word-wide logical functions such as AND, OR,

or XOR; arithmetic functions such as increment, add, or sub-
tract; or fixed, hard-wired ‘‘bit-displacement” shifters. Figure
1 shows a bit-displacement shifter. MacPitts will instantiate
only those organelles that are needed to perform the user’s
specified function.

The user can specify to MacPitts that several independent
processes are to be executed in parallel. Each process causes
the independent instantiation of all the organelles it needs to
execute the specified algorithm. Because processes are ex-
ecuted in parallel, there can be no interprocess sharing of
operator organelles. Within a process, however, MacPitts will
automatically share operator organelles, to the extent permit-
ted by the user’s algorithm. Thus, if an adder is required in two
distinct states in one process, only one adder organelle need be
instantiated. The adder will be shared by the use of multiplexer
input transistors.

Many telecommunications circuits require high-speed rate-
conversion, event counting, and frequency division. A data-
path architecture that only permits direct addressing of a
general-purpose storage register precludes the use of an
addressable, efficient, autonomous counter function that could
otherwise be used in these applications. For example, to per-
form a modulus count, a register must be addressed. The regis-
ter’s contents must be fed to an incrementer organelle, tested
for equality with the specified modulus by an equality-tester
organelle, and then restored to the register. Extending the
MacPitts storage concept to include the notion of a ““functional
state”” would enable performance improvement of one order of
magnitude in many telecommunications applications.

The Functional State

The concept of a functional state refers to the incorporation
of a logical function into a storage device. The functional
storage element would thus be responsible for both maintaining
the state of a calculation and executing the necessary function.
High performance could be achieved by eliminating the need to
read, operate on, and re-write the data. The counting operation
(required in many high-performance telecommunications cir-
cuit functions) is one example in which functional state could
be applied in MacPitts, and would yield a significant increase in
performance. Nevertheless, the original MacPitts only permit-
ted storage in a single type of global register.

Event counting and rate-conversion can be implemented
efficiently using a pseudo-random sequence in a polynominal-
feedback shift register. A shift register is a particularly efficient,
simple way to count, because no combinatorial logic exists
between shift-register stages. The only combinatorial function
required is the proper feedback expression. A pseudo-random
counter is completely synchronous, has no ripple-through, and
can be any desired length. It is often an order of magnitude
faster than the original MacPitts register-adder counting
method. A shift register with irreducible polynominal feedback
can count a maximum of 2¥-1 states, where N is the number of
shift-register bits. Figure 2 shows a typical pseudo-random
counter and its sequence.

A pseudo-random counter capability was added to MacPitts,
thereby introducing the concept of autonomous functional
state to the data-path.

Counters operate during all MacPitts processes. Each
counter can be synchronized to a specific state in the algorith-
mic flow of a chip, and has a dynamically programmable

VLS DESIGN May/June 1983 31

Exclusive-OR
Feedback Link
Bit 0 Only

Shift

Data To Lower-
In i ? Order Bits

Pull-up |
Bit 0 Only —

Modulus O
In

% Modulus % Counter
Latch Register

'5/1 (& < m\lé Lo L
£ 3 5 |3
5 2 8 |8 5
O O o © £
~ 3
Clocks $.
V From Higher-
Detect Shift Order Bits
Bus Data EXOR
(a) Out Bus

Detect Bus
/ Data In

_| J:E?@?Ji T | : H l oo [D = Ega
i %& Aesaliiee s
r_ O O~ (15} !%Eﬂ"i G £
Modulus \Exclusive-on
n Data Out

Bit0
(b) Pull-up

FIGURE 3. (a) Block diagram of a pseudo-random counter
organelle. The EXOR circuit only exists on biis with
feedback taps; on all other bits, the EXOR link is
instantiated. (b) Pseudo-random counter organelle

(30 x 176 lambda).

modulus. The user must give each counter a unique name. Each
counter’s name and maximum modulus {consistent with the
data-path width) is defined with a MacPitts <def> statement,
in much the same way registers are defined. MacPitts calculates
the number of bits required to count the maximum declared
value, and only instantiates the number of counter stages
necessary—thus saving power.

The MacPitts library consists of a LISP procedural definition
of the organelles. The original MacPitts library allowed the
conditional instantiation of organelles exclusively as a function
of the bit number. This capability was extended to let the
organelle description calculate its instantiation form based on
information passed to it by the user program. Thus, the counter
organelle could calculate the number and position of exclusive-
OR taps required for a given pseudo-random counter.

The counter is activated by a <sync>> statement in the body
of the circuit’s algorithmic description. The <sync> statement
specifies the counter’s name, the input signal that will cause the
counter to advance when it is a logic one, and the current
modulus. MacPitts calculates the proper pseudo-random state
to which to preset the counter, so that after <modulus>
counts, the pseudo-random counter reaches all logic ones. This
causes a wired-OR *‘detect’’ bus to notify the control logic that
the counter has reached terminal condition. This in turn causes
the re-loading of the current modulus to continue the count.
Any number of <sync> statements (with or without the same

32 vVLSIDESIGN May/June 1983

“{a)

(b)

FIGURE 4. (a) Clock chip with registers and adders.
(b) Clock chip with counters.

modulus) can be used with one counter. Entering a state with a
<sync> statement immediately sets the named counter to the
specified modulus, regardless of the current state of the
counter. Thus, counters are a semi-autonomous element, in-
structed to count and to signal according to the periodicity of
the modulus. Figure 3 shows the counter organelle. Figure 4(a)
is a clock chip implemented with registers. Figure 4(b) is the
same clock chip, implemented with counters. The speed im-
proved by a factor of ten.

Many organelles in the original MacPitts library were
redesigned and laid out for speed and power optimization. The
new library makes much wider use of wired-ORing and MOS
complex-logic gates. For example, Figure 5 shows the origin?

. .. continued on page 36

/.

MacPitts Compiler continued from page 32

O]
[s]

sl

li=zlliig =l
Si o [P i i

[
=)

Carry In

™

A —

FIGURE 5. Original MacPitts equality organelle
(31 x 150 lambda).

Bit 0 Pull-up
_] D] T
1B P . BLE
T T Ja%% ! Ial !-L
Bte—= o G
Bit 0
Pull-up on
Bit 0 Only
‘ 0
A__
B_....

Wired-OR Bus ——/

FIGURE 6. Wired-ORbased equality organelle (28 x 80 lambda).

word-equality-tester organelle. The number of logic levels is
approximately two times the datapath width. Figure 6 shows
the new wired-OR complex-logic version. It consists of three
levels of logic, irrespective of word length.

Optimizing the Control-Logic Layout

AWeinberger array (Siskind er al. 1982, Weinberger 1967) isa
regular architecture for laying out a collection of NOR gates
having arbitrary input size. It consists of a set of pull-ups
connected between Vpp and vertical wires that extend the
length of the array. These wires form NOR-gate outputs. Adja-
cent and parallel to these output wires are ground wires that
also run the length of the array. Input wires (made of a suitable
material) enter the array vertically. Each NOR-gate input is
formed by a pull-down transistor connected between an output
wire and a ground wire, whose gate is connected to either an
array input or the output of another NOR gate. Internal hori-
zontal straps form the interconnections between gates. AWein-
berger array can be synthesized very easily with a priori
knowledge of its full size. Starting in one corner of the array,
gates can be added by extending the array towards the opposite

36 VLSIDESIGN May/June 1983

)

FIGURE 7. (a) DTMF3 receiver chip with Weinberger control
layout. (b) DTMF3 receiver chip with FAMOS control layout.

corner. The array grows horizontally with the number of out-
puts and inputs, and vertically with the number of horizontal
interconnections between gates and NOR-gate inputs. This
process can be continued to implement any number and com-
plexity of NOR gates.

We investigated the alternatives to the Weinberger array. A
MacPitts-designed and-laid-out-version of the DTMF3 (Touch-
call® receiver) chip was compared to the MacPitts-designed
FAMOS (Schuler and Ulrich 1972, Mattison 1972) control
layout of the same logic. Table 1 summarizes the results of this
comparison, which is shown in Figure 7.

The data in Table 1 deserve explanation and comment. The
standard cells and layout of the DTMF3 were done using an
nMOS depletion-load S-micrometer cell library and standard
computer-aided logic-design techniques. Placement and rout-
ing were done by the FAMOS standard-cell layout program.
(FAMOS is a standard-cell placement and routing program
used at GTE Laboratories to lay out MOS integrated circuits.)
It places arbitrary-sized cells in rows according to the strength

Control Only
Name |Standard- |MacPitts MacPitts Weinberger |Standard
cell design design and |array cells
design and data-path imple-
and layout layout; menting
layout standard- MacPitts
cell NOR logic
control
fayout
HOB3 {12,535mils2 | 93,564mils?| 61,020mils?| 26,693mils2} 7,737mils?
CODEC
DTMF3| 36,660mils? |492,929mils?|265,684mils?}153,950mils?|25,948mils?*

Dual-
tone
multi-
freg-

quency *Includes sequencers and flags

TABLE 1. Size comparison of design and layout methodologies.

of their interconnections, and wires them according to
Hightower’s algorithm. The data paths of the MacPitts chips
used in this experiment were entered as cells in the FAMOS
library, so that FAMOS would automatically wire the existing
I/O points. We wrote a computer program to convert the
control-logic portion of the technology-independent MacPitts
output to FAMOS format.

The total design and layout time was six man-months. The
MacPitts design and layout is functionally equivalent to the
FAMOS version; however, the MacPitts logic design is totally
different. The algorithmic system description (which already
existed for the standard-cell version) was entered into Mac-
Pitts. The total time required to translate the algorithm descrip-
tion to the MacPitts language, enter it, and obtain a plot was
eight man-hours. If the time required to generate the algorithm
description is included, the total MacPitts design time would be
about five man-days.

The MacPitts design and data-path layout, in combination
with a FAMOS standard-cell control layout, was produced by
using the technology-independent network listing produced by
MacPitts, extracting the control section, converting the listing
to the FAMOS mput format, and implementing the exact logic
of the Weinberger array with standard cells. The MacPitts data
path was then wired to the standard-cell control layout. The
resulting chip size is somewhat deceptive. As shown in Figure
7(b), the control section is roughly square; there is much was-
ted space to the right of it. Ideally, the control layout should
have consisted of two or three rows of cells exactly the width of
the data-path. There is no real reason why it was implemented
as shown. FAMOS, however, being ten years old, was not able
to produce a circuit wide enough to match the data-path width.
(This was due to array-overflow problems in the unstructured
FORTRAN code.) A more up-to-date program would be able to
produce the desired layout, resulting in a one-third decrease in
the total chip area shown in column 3. To obtain a better
comparison between the Weinberger array and the standard-
cell layout the last column lists the areas of the exact logically
equivalent control sections.

Although the Weinberger implementation shows alargerarea
than the standard-cell version, this is not a fundamental prob-
lem with Weinberger arrays. The Weinberger array used in this
version of MacPitts was totally non-optimized. The only order-
ing performed allowed river-routing between the control sec-
tion and the data path. This technique would create inordinately

complex wiring—much larger than warranted. Furthermore,

all processes were consolidated into a single Weinberger array,

without regard for their degree of interconnectedness. A con-

siderably more efficient control structure would result if:

a) the gates inside the Weinberger array were ordered accord-
ing to their strength of connectivity, with channel routing
between control and data-path sections; and

b) the Weinberger array were partitioned into multiple arrays
(one Weinberger for each process). This would avoid the
phenomenon of growth as the square of the number of gates.

Conclusion and Prospects

MacPitts drastically reduced the time required to design a
complex LSI/VLSI circuit. For example, the standard-cell ver-
sion of the DTMF3 took six man-months, but the MacPitts
version took only eight hours. The LISP-like input language is
quite comfortable and expressive for hardware design, and is
certainly more useful for describing the function of a chip thana
network listing is. Technology-independent output will greatly
increase the applicability of MacPitts as new technologies are
developed. At this writing, there is no way to specify real-time
performance limits for the compiler. That problem is currently
being addressed. With the addition of parallel-to-serial conver-
sion semantics, multiple clocking, and performance features,
MacPitts and its successors show promise of being the
integrated-circuit design methodology for the VLSI era.

Acknowledgments

The author thanks the co-developers of MacPitts—J. Siskind, J.
Southard, and K. Crouch of MIT Lincoln Laboratories—for making
the program available to the MIT visiting-professional program. The
author also acknowledges the contributions of MIT visiting profes-
sional A. Margolies, who designed several telecommunication circuits
with MacPitts, and C.W. Hurlin, who re-laid out the entire organelle
library. The author also thanks Professor Jonathan Allen of MIT, whose
support and efforts made this work possible. Finally, the author ack-
nowledges the assistance of E. Goldman of GTE Laboratories, who
helped prepare this manuscript. 0

References

Foderaro and Sklower. September 1981. The FRANZ LISP Manual.

Mattison. June 1972, ‘“A High-Quality, Low-Cost Router for
MOS/LSL,” Proceedings of the 9th IEEE DA Workshop, Dallas,
X

Peterson, W.W. 1961, Error-Correcting Codes, MIT Press.

Schuler and Ulrich. June 1972. “Clustering and Linear Placement,”
Proceedings of the 9th IEEE DA Workshop, Dallas, TX

Siskind, Southard, and Crouch. January 1982. “Generating Custom
High-Performance VLSI Designs from Succinct Algorithmic
Descriptions,” Proceedings of the Conference on Advanced Re-
search in VLSI, MIT.

Weinberger, A. December 1967. ‘‘Large-Scale Integration of MOS
Complex Logic: A Layout Method,”” IEEE Journal of Solid State
Circuits, Vol. SC-2.

About the Author

Jeffrey Fox received the B.E. and MSEE
from SUNY at Stony Brook in 1973 and 1974,
respectively. He is currently Principal Inves-
tigator of the VLSI Design Project in the
Physical Design Automation Department of f
the Computer Science Laboratory at GTE
Laboratories, Inc. This work was performed
while he was a visiting professional in the
Microsystems Program at MIT. Jeffrey is a
member of IEEE and Sigma Xi.

VLSI DESIGN May/June 1983 37

