Rapid #: -8177693

CROSS REF ID: 1199077

LENDER: IQU :: CSEL
BORROWER: IPL :: Main Library
TYPE: Article CC:CCL

JOURNAL TITLE: VLSI design

USER JOURNAL TITLE: VLSI Design

ARTICLE TITLE: Progress Toward the "Ideal" Silicon Compiler Part 1: the Front End
ARTICLE AUTHOR: Werner, J.

VOLUME: 4

ISSUE: 5

MONTH: September

YEAR: 1983

PAGES: 38-41

ISSN: 0279-2834

OCLC #:

Processed by RapidX: 7/15/2014 10:41:42 AM

. ' le&é This material may be protected by copyright law (Title 17 U.S. Code)




Branch CSEL Lending Page | of 1
Odyssey
pid #: -8177693 IP: 128.210.126.171/ILL
Status Rapid Code Branch Name Start Date
New IPL Main Library 7/15/2014 7:02:11 AM
Pending QU CSEL 7/15/2014 7:02:18 AM
Batch Not Printed 1QU CSEL 7/15/2014 7:02:32 AM
CALL #: TK7874 V558
LOCATION: IQU :: CSEL :: sper
TYPE: Article CC:CCL
JOURNAL TITLE: VLSI design
USER JOURNAL TITLE: VLSI Design
IQU CATALOG TITLE: VLSI design
ARTICLE TITLE: Progress Toward the " ' Ideal" Silicon Compiler Part 1: the Front End
ARTICLE AUTHOR: Werner, J.
VOLUME: 4
ISSUE: 5
MONTH: September
YEAR: 1983
PAGES: 38-41
ISSN: 0279-2834
OCLC #: IQU OCLC #: 7719803
CROSS REFERENCE ID: [TN:1199077][ODYSSEY:128.210.126.171/1LL]
VERIFIED:
BORROWER: IPL :: Main Library
. “:WD This material may be protected by copyright law (Title 17 U.S. Code)

7/15/2014 7:02:32 AM

https://rapid2.library.colostate.edu/Ill/ViewQueue?View Type=PendingByBranch&Id=333&RequestType=Article 7/15/2014




Part 1: The Front End

Progress Toward the
‘“Ideal’’ Silicon Compiler

Jerry Werner, Editor-in-Chiet

“The introduction of the automatic layout and wiring pro-
gram helped reduce the layout processes. As a result, the
area where the design cost can be cut down is shifting in the
direction of the functional and logical design steps. Thus, it
is essential that the automatic logical synthesis and the auto-
matic design method be established.”

—From a paper by NTT researchers presented at the 1983
Convention of the Electronic and Communication
Society of Japan.

ver since the phrase *‘silicon compiler”” was coined in
E the late seventies, it has come to mean different things

to different people. It ideally implies a design tool that
automatically translates a high-level functional or behavioral
description of a chip down to the actual layout of the device.
With present-day capabilities, only designs that fall into a
narrow range of pre-ordained “‘target implementations™ have
been designed successfully using this strategy (Werner
1982). Nonetheless, research efforts toward the ideal silicon
compiler appear to be accelerating.

Recently published research suggests that the ideal silicon
compiler may really involve solutions to two complementary
design problems (see Figure 1). The first solution is the trans-
lation of a brief behavioral or functional description into a
more precise intermediate description that is still implemen-
tation independent; and the second solution is the automatic
generation of a chip layout from that intermediate
description.

One important reason for separating the ““front end” of a
silicon compiler from the “back end” is the short-lived na-
ture of the target semiconductor processes. *“The back end
has a life of maybe two years, because the technology
changes,” says Charles Rupp, manager of the exploratory
research group at Digital Equipment Corp. in Hudson, MA.
“For companies like DEC, that means that the back end
might be used for two or three projects.”

Behavioral vs. Structural Specifications

Most programs that purport to tackle the front end of the
silicon-compiler problem start with either a behavioral or
structural definition of the desired system. A behavioral
description might be very similar to a common algorithmic
language, containing statements in a form such as IF-THEN-

38 VLSIDESIGN September 1983

ELSE, or DO. Or else the behavioral specification might be a
special-purpose language, whose syntax rmore closely em-
ulates the behavior of common hardware blocks. Conversely,
structural descriptions specify which blocks (or high-level
functions) are used, as well as all inputs, outputs, connec-
tions, etc.

Although most experts agree that behavioral input exists at
a higher level than structural input (even higher than a
hierarchical structural description), some people believe that
going from a behavioral to a structural description (even a
high-level structural description) should be the province of
engineers, not of computers. “It’s a mistake to start from a
behavioral description,” flatly states John Gray, president of
the Scottish software firm Lattice Logic, Ltd., which claims
to have a silicon compiler for gate arrays. His rationale: “To
map from a behavioral description to a physical description,
you have to make assumptions about an architecture. That’s
what engineers are really good at. Coming up with an archi-
tecture is the creative part of designing. Engineers have all
the right insights.”

Others see the behavioral-input system as the real
challenge—and one that offers a greater potential payback.
“I'm not knocking them [structural-input systems],” says
John Darringer, a research staff member at IBM’s Thomas J.
Watson Research Center in Yorktown Heights, NY. “But
you’d like to do better than that—accept a description that
Just says the behavior but doesn’t prejudice the implementa-
tion. You’d like to get more leverage—with transformations

“The ideal silicon compiler”

-

I
(System architectural and logic design) | (Technology selection and IC layout)
1

implementation-independent ‘__‘_’ Implementation- (and technology-)

1 ] dependent |
' [
|

High-Level

Behavioral Functional
Description

i
intermediate-Level
Description

Low-Level (mask)
Description

FIGURE 1. Although the concepts involved in an
“ideal” silicon compiler span the entire design
spectrum, much current research falls into either
the left half (the technology-independent part) or
the right half (the technology-dependent part) of
the spectrum.



to allow you to think about better ways of implementing the
hardware.” :

Still other knowledgeable people don’t see a clear disting-
tion between behavioral and structural input. “In reality, you
can’t distinguish these very much,” says Stuart Feldman, a
member of the technical staff in the research department at
Bell Laboratories (Murray Hill, NJ). “When the smoke
clears, you’re saying (assuming you’re above the geometry
level) that ‘this output depends this way on these inputs.” The
question is whether you're concentrating on the devices or on
the values.”” Feldman is presently coding Version 2 of the Xi
(£) language, a dialect of the C language modified for use as
a behavidral circuit-description language (Feldman 1983).

However, according to IBM’s Darringer, there is a big
difference between programs like the Xi compiler (which has
a one-to-one map between the behavioral description and the
logic implementation) and programs that have intermediate
steps to optimize the logic, remove redundant gates, and
perform other tasks. ““Some people don’t make that distinc-
tion,” he says, adding that programs belonging to the former
class ‘““are easier than taking an arbitrary [behavioral in-
put] program and trying to figure out what the hardware is.”

A Simple Illustration

Amie Peskin, the principal investigator on a small silicon
compiler project at Brookhaven National Labs (Peskin 1982),
explains the type of thinking that goes into translating from
an algorithmic statement describing behavior to a logic im-
plementation. “A Boolean IF-THEN-ELSE would translate
to a simple decoder,” he says. “Or if you see ‘DO something
ten times’ then you’re invoking a counter.”

Peskin, like Darringer and his colleagues at IBM, uses a
top-down approach to the problem of creating a program that
will translate from a behavioral description to a more explicit
logic description. Others, such as the group that developed
the MacPitts program at MIT’s Lincoln Laboratory (Siskind
et al. 1982; Fox 1983), are working both top-down and
bottom-up. The MacPitts language, which specifies a chip
behaviorally, takes into account which bottom-level
primitives (called ‘‘organelles’) are available to implement a
data path. Declarations in the source specification for Mac-
Pitts determine what will be implemented in the datapath,
and what will operate in the random-logic control portion of
the chip. “The user does have to know which organelles are
presently provided by the compiler,” explains Jeff Siskind,
principal researcher of the original MacPitts effort and now
president of a fledgling silicon-compiler firm called
Metal.ogic (Bedford, MA). He adds that the low-level library
is expandable: new functions can be defined, and the corres-
ponding additions can be made to the MacPitts language.

Peskin, for one, thinks that it is needlessly restrictive to
limit the possible behavioral input statements to those func-
tions that have a known hardware implementation. ““The user
is worried about his entire problem,” he says. I see no point
in constraining him. I’d rather let him describe the algorithm
fully, in an attempt to see what can be rendered in hardware
and what cannot.”

Logic Synthesis

In systems that accept an unconstrained behavioral input,
the concept of logic synthesis plays a vital role. Logic synthe-

sis is loosely defined as the translation from a high-level
specification to a more explicit (but still technology-
independent) gate-level (Boolean logic) specification. The
concept of logic synthesis certainly isn’t new: in the early
1960’s, researchers were investigating ways to ‘“synthesize”
circuits containing off-the-shelf SSI parts.

But much of the early work in logic synthesis for large
systems failed: perhaps because the programs didn’t take into
account factors such as circuit performance or the limitations
of the target implementation. As Darringer and his colleague
William H. Joyner, Jr. observed in a much-quoted paper
presented at the 1980 Design Automation Conference
(Darringer and Joyner 1980): “Previous efforts have dealt
primarily with technology-independent primitives and have
emphasized circuit minimization. However, larger scales of
integration have made other design requirements and technol-
ogy restrictions as important as circuit count.”

One of the most basic restrictions is the target chip technol-
ogy. ‘“‘A classical problem is the bias of the
implementation,” says DEC’s Charles Rupp. “TTL and
CMOS are biased to NAND structures, and nMOS is biased
to NOR structures. If you specify the design in Boolean logic
[without taking that bias into account], then you could have a
less-than-optimal implementation.”

Synthesis Work at CMU

Researchers at Carnegie-Mellon University have been
working on logic synthesis and transformation for several
years (Parker et al. 1979). Much of their work involves the
automatic translation from a behavioral description of a com-
puter system in the ISP language (Barbacci et al. 1978) into a
register-transfer level description.

Some experts in industry believe that CMU’s earlier work
using ISP started off at an unsuitably high descriptive level.
IBM’s Darringer, who holds the Ph.D. degree from CMU
(1969), says, “With an ISP description, it’s not obvious what
the registers, operators, and signals are. If you talk to engi-
neers at IBM, they’ll say, ‘I’ll tell you what the operators and
registers are; you do the rest of the work.” ”

“Clearly, if you try to use that {ISP] directly, the system
has to make a lot of assumptions,” says Rupp from DEC.
“Then you’re leaving so much up to the software that if it
blows half of its decisions, you have a pretty lousy design.”
Rupp adds that “A lot of people are speculating that a
knowledge-based system would help out a lot there.”

Indeed, the development of knowledge-based or “expert”’
systems for the front half of the silicon compiler is a popular
topic in research labs and is just starting to draw attention in
the product-development environment. At CMU, researchers
recently used a prototype expert system to design the func-
tional architecture of a 6502 microcomputer (Kowalski and
Thomas 1983). They interviewed several expert VLSI/system
designers at Intel and at Bell Laboratories, and created 130
design rules based on the experts’ responses. The CMU re-
searchers reported that it took only 4 hours of CPU time on a
DEC VAX11/750 computer to design a 6502 architecture that
the experts considered acceptable. However, the synthesized
chip was never laid out or built to verify the performance of
the architecture.

At Brookhaven, Peskin is also trying to incorporate
‘“knowledge-based transformations” in his software. “The

VLSI DESIGN September 1983 39



transformation isn’t set in concrete,” he says. ‘“There are
different paths you can take. The user can say-‘No, don’t use
that approach; it’s not working out. Use a different one.” And
the system learns which transformations are favorable and
which are not,” Peskin thinks that his software is better at
optimization than it was when he described it at the 1982
Custom Integrated Circuits Conference (Peskin 1982).
However, no chips have yet been fabricated (although the
output of his system is a net list suitable for input into Sandia
Labs’ standard-cell layout software).

IBM’s LTS

An effort is underway at.IBM to experiment with logic
synthesis and other types of transformations in several prod-
uct development labs, albeit in a “‘field-test” mode. John
Bendas, a department manager at IBM’s Poughkeepsie (NY)
facility, is heading that effort. Bendas descibed the ‘“‘logic
transformation subsystem’ (LTS) at the recent Design
Automation Conference (Bendas 1983). The LTS includes
several different processes to convert a high-level system
specification into a flattened net list suitable for input to
IBM’s masterslice (gate-array) layout system. Those pro-
cesses include the following transformation steps:

1. Synthesis, defined as the transformation of a technology-
independent high-level specification into a
technology-independent low-level one (e.g., a Boolean
description);

2. Mapping, or the transformation of a low-level technology-
independent specification into a technology-specific one;

3. Remapping, or the transformation of one specific tech-
nological implementaion into a new technology (e.g.,
TTL to CMOS); and

4. Abstraction, or the transformation of a. technology-
independent low-level specification into- a functionally
equivalent high-level one. (This process is essentially the
reverse of synthesis.)

The IBM system primarily performs local transformations.
In other words, it works on one block in a local neighborhood
of logic. A user programming interface (UPI) was added
recently to LTS so that local experts could write their own
transformation programs and integrate them into the system.

IBM’s work so far looks promising. In one test case,
several small masterslice chips (approximately 500 gates
each) were remapped into a single larger device (with ap-
proximately. 3000 gates) by means of LTS. The projected
reduction in manpower, as compared to the same task per
formed manually, was by a ratio of 10 to 1. More recently,
the LTS has been used to synthesize the logic specification
for the control portion of a processor from a flowchart-
oriented hardware description language. Bendas declined to
give further information to VLSI DESIGN about the status of
these test cases, saying that such information was proprietary
to IBM.

NTT's ANGEL

Several major research efforts to develop logic synthesis
systems are underway in Japan. The most recent develop-
ments’ that have been described at leading technical confer
ences in Japan come from Nippon Telephone and Telegraph
Corp. (NTT). At NTT’s Musashino Electric Communication

40 VLS| DESIGN. September 1983

Laboratory, a “gate generation system” nicknamed ANGEL
is presently being developed (Endo et al. 1982). The ANGEL .
system progressively translates a functional-level
specification written in Function. Description Language
(FDL) into the Hierarchical Specification Language (HSL).
NTT’s cell-based automatic layout program (called
PLASMA) then automatically converts the HSL description
into a complete IC-mask design.

Figure 2 shows the process flow from an FDL input to a
fully flattened HSL output. Based on a comparison of the
total number of fan-ins (which is said to be a good measure of
circuit area) for circuits that were manually designed vs. the
number of fan-ins for circuits that used ANGEL, the gate-
level designs generated by ANGEL were from 1.2 to. 2.7
times larger. However, the NTT researchers claimed that a
10,000-gate . circuit that might take 5 to 10 work years of
manual design can be generated in only 3 hours by using
ANGEL on a 3-MIPS (million instructions per second)
computer.

The NTT researchers found that the FDL description had a
profound effect on the efficiency of the resulting HSL-level
design. In one case, two different FDL descriptions (that
nevertheless described the same circuit function) resulted. in
HSL designs that differed in size by a factor of nearly three to
one.

More recently, NTT used ANGEL to design the equivalent
of the Advanced Micro Devices AM2909 microprogram se-
quencer chip- (Kitamura ef al. 1983). Table 1 shows the
results of manual vs. automatic design. The gate-generation
program required approximately 30% more total gates and
20% more chip area than the manual design.

The NTT researchers acknowledged that the chip layout
did not take into account the original FDL description, and
agreed that such a constderation should reduce the total chip
area used by interconnections.

Could Silicon Compilation
Be a Three-Part Problem?

Although many researchers draw an arbitrary line be-
tween the front and rear portions of the “‘ideal” silicon com-
piler, the problem may fall into three parts. ““Our system now
has three stages,” says IBM’s Darringer. “The first one is
genuinely technology independent, the bottom stage [chip
layout] is technology dependent, and we have a not-very-

The Gate-Generation Subsystem
HSL
MULT

FDL .

NAME: MULT; e Compile

*Boolean Egs
Simplification |

?2C17? F('«—A;,»_J_l>o Network- Gen.

?L2 ?7R-—B;, ¢ Bit-wise:
Separation
END; *Optimization

FIGURE 2. NTT's ANGEL system.



THE GATE-GENERATION SUBSYSTEM

Manual Design

Gate-generation

Signal 1/0 Design takes fan-in and Design takes function only into
fan-out into consideration consideration

Address- Register value maintained Register value maintained

register by the feedback of output by controlling the clock

portion

e >— o

Sp——

| &

Ry >

Ol
m

|_-c
Cp

o

}
Ej—c

Incrementor
(approx. 8 gates)

Incrementor portion

Use adder (approx. 40 gates)

RAM and stack pointer
are used

Stack portion

Shift register is used

Total number
of gates

Approximately 230 gates

Approximately 300 gates

Chip area Approximately 0.78 mm?

Approximately 0.92 mm?

Wiring-area ratio Approximately 50.6%

Approximately 51.8%

TABLE 1. Comparison of manual and automatic design of the equivalent of an AM 2909 chip.

complicated middle stage where you start to worry about the
technology. In the middle stage, you might choose your cir
cuit family (e.g., TTL or ECL), but won’t worry about fan-
out limitations until much later.”

Nevertheless, as the various steps in translating a
behavioral description into an input suitable for automatic or
semi-automatic IC layout tools become better understood, it
is clear that we are asymptotically approaching the goal of
truly automatic chip design.

References

Barbacci, M., G. Barnes, R. Cattell, and D. Siewiorek. March
1978. ““The Symbolic Manipulation of Computer Descrip-
tions; The ISPS Computer Description Language,”” CMU tech-
nical report.

Bendas, J.B. June 1983. “Design Through Transformation,”
Proceedings of the 20th Design Automation Conference,
Miami Beach, FL.

Darringer, J.A. and W.H. Joyner, Jr. 1980. “A New Look at Logic
Synthesis,” Proceedings of the 17th Design Automation Con-
ference, Minneapolis, MN.

Endo, M., T. Hoshino, and M. Nagatami. 1982. “An Engineering
Project: Gate Automatic Generation Program,” The 25th Con-
vention of the Information Processing Society (in Japanese).

Feldman, S.I. October 1983. ““The Circuit Design Language Xi
(E),” (to be presented at the 1983 IEEE International Confer-
ence On Computer Design, Port Chester, NY).

Fox, J.R. May/June 1983. ““The MacPitts Silicon Compiler: A View
from the Telecommunications Industry,” VLSI DESIGN.
Kitamura, Y., M. Nagatami, and T. Hoshino. 1983. *Evaluation of
the LSI Automatic Design Using the Function Description
Language,” 1983 All Japan Electronic Communication Society

Convention Record (in Japanese).

Kowalski, T.J. and D.E. Thomas. June 1983. “The VLSI Design
Automation Assistant: Prototype System,” Proceedings of the
20th Design Automation Conference, Miami Beach, FL.

Parker, A.C., D.E. Thomas, D.P. Siewiorek, M.R. Barbacci, G.
Leive, and J. Kim. June 1979. “The CMU Design Automation
System: An Example of Automated Data-path Design,”
Proceedings of the 16th Design Automation Conference.

Peskin, A.M. 1982, “Toward a Silicon Compiler,” Proceedings of
the 1982 Custom Integrated Circuits Conference, Rochester,
NY.

Siskind, J.M., J. R. Southard, and K.W. Crouch. 1982.
“Generating Custom High-Performance VLSI Designs from
Succinct Algorithmic Descriptions,” MIT Conference on Ad-
vanced Research in VLSI, Cambridge, MA.

Werner, J. September/October 1982. “The Silicon Compiler:
Panacea, Wishful Thinking, or Old Hat?”’ VLS DESIGN.

VLS| DESIGN September 1983 41



