July 23, 2014
Call# ARC TK7874 .L35 v.4 1983

Borrower: RAPID:IPL

Article Title: Progress Toward the Ideal”" Silicon

8
'_3 Location:
b = Lending String: o
E B s it
o = olume: 4 'lssue: 6
— E Month/Year: October 1983Pages: 78-81 Odyssey: 128.210.126.171
= =
S § Article Author: Werner, J.
Z
o *;g Compiler Part 2: the Layout Problem
22
é ;—; Imprint:
= £ ILL Number: :8189784
s & AR
=

“NOTICE WARNING CONCERNING COPYRIGHT RESTICTIONS"

The copyright law of the United States [Title 17, United States Code] governs the making of photocopies or the other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the reproduction is not to be used for any purpose other than private
study, scholarship, or research. If a user makes a request for, or later uses, a photocopy or reproduction for purposes in
excess of fair use, that use we use may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would
involve violation of copyright law. No further reproduction and distribution of this copy is permitted by transmission or any
other means.

Part 2: The Layout Problem

Progress Toward the
‘““‘Ideal’’ Silicon Compiler

Jorry Werner, Editor-in-Chief

Although conceptually straightforward, the automatic
transformation of an electronic system functional
specification into a completely laid out integrated circuit is
a formidable challenge. The term silicon compiler is often
used to describe the set of tools that would (theoretically,
at least) accomplish this task. The first part of the silicon
compilation problem, including such tasks as logic synthe-
sis (what one Japanese company calls ‘‘gate generation’),
was discussed in last month’s report (September 1983). In
this article, we'll explore recent efforts to automate the
“back end,” or layout portion, of silicon compilation.

cuit specification to an IC layout has been solved.

Several semiconductor suppliers, as well as larger sys-
tem companies, can automatically or semi-automatically
lay out a gate array or a standard-cell chip from such an
input specification. However, work continues on the devel-
opment of more powerful and/or more general tools that
will completely automate the implementation-specific por
tion of the silicon compiler (see Figure 1).

There is a clear distinction between automatic layout
techniques for semicustom and cell-based ICs, and what
most companies call silicon compilers. In the former case,
the functional elements that are placed around the chip
(typically either at the gate or MSI complexity level) are
pre-designed and characterized, then simply called from a
library. In the latter case, however, these functional ele-
ments (which can be up to LSI complexity) are designed
as required. In a sense, the automatic layout of gate arrays
or standard-cell ICs is analagous to the design of a printed
circuit board with pre-designed (standard) parts, whereas
IC layout using a silicon compiler is similar to p.c.b.
design with custom elements.

In one sense, the problem of converting a structural cir

Compiling Gate Arrays

Although traditional gate-array automatic-layout tech-
niques do not fall under most experts’ definition of silicon
compilation, one approach by Lattice Logic Ltd.
(Edinburgh, Scotland) is a notable exception. Using Lattice
Logic’s design tools, users specify designs in a hierarchical
structural language called MODEL (Gray er al. 1983). A
MODEL compiler then creates an intermediate description

78 VLSIDESIGN October 1983

The “ideal” silicon compiler

A
:

} Automatic layout
e S NS
Implementation- I Implementation- (and

[independent ~——— technology-) dependentl

| |
High-level [Low-level (mask)
behaviorial/functional ‘ description :
description Intermediate-levet

description

FIGURE 1. The automatic layout process is the back
end portion of the ideal silicon compiler.

that is fed in parallel to physical design, simulation
test generation subsystems (Gray er al. 1982). |

Lattice Logic’s system is called a silicon compiler, {3
cause its cell library is “‘soft”—that is, the user calls {§

(consisting of two inverters) are connected to create g8
desired function. One advantage of creating cells “on {8
fly” is that unused circuits are removed For example il -

adapted to a variety of gate array images (generic layoutgiit
Instead, the LL software actually generates a speciff
underiying array structure. ‘“That’s the nature of]

adds. The software creates the base array from a proccffl
design file that contains all the dimensional design ruleg
Gray claims that the software has been successful with§
wide range of CMOS processes—from 5 micron p-well {
3 micron n-well CMOS.

Lattice Logic’s software can be used in two related buji
different modes. In the normal gate-array mode, g
underlying array can be pre-designed and pre-diffuscdi
with metal personalization added later. In the secongh
mode, and in a fashion resembling standard cell design, gl
“optimizing compiler”” designs an array from the grouf
up. In this way, chip area is minimized, because the chag
nels are only as wide as required by the circuit.

Gray says that the run time for Lattice Logic’s softwiss

j=

RAMETERS

RE=11 Specific Parameters

RARAMETER PARAMETER DEEAULT RANGE

[ME DESCRIPTION Min/Max
K& _PILE PLA code file name - n/a

:"l _TYPE Specifies PLA core type: SLOW SLOW/FAST

SLOW => slow speed, small
core version.

PAST => fast speed, large
¢ore version.

Specifies each location of default n/a
outputs for "PAST" type
PLA. 1 letter for each
outputs. T means cell top
B means cell bottom. The
word *default” makes all
outputs be at cell bottom.

‘[‘m PBT_BUFFER_LOCATION

BV CLOCKED_INPUTS True creates clocked input false n/a
buffer.

¥ C1.0CRED, OUTPUTS True creates clocked output) false n/a
buffer.

' vs5_wioTE vSS bus width for AND 12 8/50
plane, OR plane, input

f and ouotput buffers
[RLYDD_WIDTE VDD bus width for pullups 12 8/50
| [% NBOPES_A_PULLDOWN_WIDTH | Gate width for input buffer| 10 8/14

| drivers, ("PAST" core only)

Gate A pulldown width in 17 10/20
"SLOW® core's input buffer

‘ RA.INBUPSS_A_PULLDOWN_WIDTE

Gate A pullup width in 5 4/6

R@INBOPSS_A_PULLUP_WIDTH
] "SLOW® cote's input buffer

|

Gate A pullup length in 4 4/6

ERTNBUFSS_A_PULLUP_LENGTH
*SLOW" core’s input buffer

! Gate B pulldown width in 16 14/20

RRINBUPSS_B_PULLPOWN_WIDTH
*SLOW" core's input buffer

' Gate B pullop width in 5 4/6

P¥1B0FSS_B_PULLOP_WIDTH
"SLOW® cora's input buffer

Specifies how many minterms 10 2
and outputs ace created

}'}r‘ EFRESH_NUMBER
. before a VSS refresh occura

LE 1. Partial 1ist of the user-defined parameters
VTII's PLA “cell compiler.” (Dimensions are in

bda, unless otherwise noted.)

g2 DEC VAX 11/750 computer is approximately 20
s (40 transistors) per cpu second for the MODEL
piler, and 2 stages (4 transistors) per cpu second for
hysical design subsystem. Gray acknowledges that the
ical design time is ‘‘slightly worse than linear” in re-
§on to the number of stages, but he insists that a
tured design methodology can give a “fantastic com-
sion in run times—like 60 minutes of cpu time for a
gf0-gate gate array.” Gray explains that ‘‘structuring a
gn” means partitioning it into logically distinct mod-
This partitioning determines the placement strategy of
layout program. ‘“The key concept is using the engi-
s ideas about architecture in placement,” he adds.

Enpiling Pieces of a VLSI Chip

contrast to initial silicon compilation efforts in the
1970s, the current emphasis is on compilation at the
ule level, rather than at the whole-chip level-
mospecially for production-quality devices. One of the
commercial firms to propose a methodology and tools
wpport block compilations is VLSI Technology, Inc.
Jose, CA). VTI supports what it terms ‘‘cell
lers” —programs that will automatically generate
ts of specific functions ranging from simple gates to
complex functions, such as PLAs and multi-
ers/demultiplexers.

Ithough VTT uses the term compiler, at least one indi-
Rl contends that they are taking undue liberties with

the word. *“VTI is making a big hoopla about ‘compilers’
that are, in reality, parameterized cells,” says Jeff Siskind,
president of a fledgling silicon compiler company called
MetaLogic, Inc. (Bedford, MA). Siskind was formerly the
principal researcher on the MacPitts silicon compiler proj-
ect at MIT’s Lincoln Laboratories (Siskind er al. 1982).
“Anybody who has a layout language embedded in another
high-level language has parameterized cells,” he adds.

Indeed, a user of VTI’s cell compilers specifies physical
size or electrical parameters, upon prompting by the soft-
ware. Alternatively, the user can use the default parameters
pre-entered into the cell compiler program. Table 1 shows
the list of parameters for VTI’s HPLA32 static programma-
ble logic array (PLA). This list defines a PLA cell
(maximum access time of 120 ns) with up to 25 inputs, 30
minterms and 30 outputs. Larger PLAs, with correspond-
ingly longer access times, can also be laid out.

At the time of this writing, VTI offered two different
cell compiler libraries (HMOS only): the VTS 810
“primary”’ library and the VTS 820 “extended” library.
The former includes simple buffers, gates, latches, and
flip-flops, and is routinely supplied with the other design
software. In addition to the PLA generator described
above, the VTS 820 library includes (among others)
counter, adder, ROM, RAM, and ALU cell compilers. VTI
requires a fabrication commitment from users before it will
release the extended cell-compiler library.

In-Tune Texans

Even Texas Instruments, which in recent months has
backed off from several of its earlier announced plans for
semicustom (gate-array) devices, is now talking about
offering parameterized cells. At a recent press conference
called to unveil the company’s new SN54/74SC standard
cell library and design approach (see *“‘News’ in this
issue), one slide labeled “The Future” made the following
statement: ‘‘Procedural cells will be added, providing some
unique new capabilities . . . RAM, ROM, [and] N-wide
counters, registers, etc.” (A TI spokesman confided that
the company had not yet settled on a suitable approach for
customer specification of such cells, but he hoped the
problem would be solved by the end of 1983.)

Combﬂing Blocks for DSP Chips

‘e

Layout programs that ‘‘compile’” portions of a chip
layout are emerging for data processing and random logic
applications, and for digital signal processing (DSP) appli-
cations. At the recent Custom Integrated Circuits Confer
ence, one researcher from the Philips Research
Laboratories (Eindhoven, The Netherlands) described a
layout generator for parameterized array-multipliers
(Benschop 1983). Philips’ approach to creating a
parameterized array-multiplier layout generator was as fol-
lows:

1. The array was logically decomposed into slices that
were further decomposed into cells having regular
structures.

2. Simulations were performed on a small (‘*minimal’’) ar
ray containing all the rypes of cells that would likely be
contained in a larger array.

VLSI DESIGN October 1983 79

Specify -
microarchitecture

!

Refine

]

level)

a

chip size)
Estimate chip size
(heuristic analysis based
on the number of blocks]
and interconnections)
“Design loop” Automatic
' interconnection
routing
Estimate chip speed
¥ Yy
Detailed
Simulate timing _
(register transfer analysis

Generate geometry
ot individual pieces

Y

Floorplanning (interactive)
(more accurate estimation of

b

FIGURE 2. According to Silicon Compilers, silicon compilation consists of two parts: a “bhigh-level”
design phase (a), and an artwork-generation phase (b).

3. The basic cell was carefully laid out so that it could be
used in all known contexts. This cell was then sim-
ulated under worst-case conditions.

4. Local cell parameters and global composition parame-
ters were built into the layout description.

Perhaps a more ambitious approach to compiling digital
signal processing chips is being taken by researchers at the
University of Edinburgh in Scotland. They have developed
the EI.R.S.T. (Fast Implementation of Real-time Signal
Transforms) silicon compiler (Bergmann 1983), which lays
out a network of interconnected bit-serial operators on a
relatively fixed floorplan.

Like Lattice Logic’s approach, the EL.LR.S.T. software
has a structural description language that describes the
function blocks and their interconnection. (The similarity
to Lattice Logic’s MODEL language is not a coincidence;
most of Lattice Logic’s founders came from the University
of Edinburgh.) The EIL.R.S.T. tool set also includes two
simulators:; one that uses data extracted from a chip layout,
and another that simulates operators at a higher level.

Higher Level Tools

The use of functional (or register-transfer level simula-
tors) in conjunction with module generators is gaining
popularity. Two-year-old Silicon Compilers, Inc. (Los
Gatos, CA), many of whose founders came from Caltech’s
now defunct Silicon Structures Project (SSP), is a case in
point. According to SCI president Phil Kaufman, system
designers will need tools to specify and “compile” ICs at
the architectural level, instead of at the transistor level.
Kaufman says that future system designers “will not need

80 VLSIDESIGN October 1983

to lay out MOS transistors to design VLSI circuits.”

Kaufman is reluctant to divulge specifics about SCE
suite of tools under development, but says it will includg
high-level functional simulator, block generators for layi
out specific functions (an approach SCI terms “‘compilé
geometry”), and tools for automatically laying out and if
terconnecting those blocks (see Figure 2). “For us, vl
start and finish at the block diagram level,” he explains.

tends that “‘they’re [VTI] coming up from the bottom afg
we're coming down from the top.”” Like VTI, SCI is dg
veloping parameterized cell generators, but Kaufman ed8
phasizes that parameters required for SCI's generators wj
primarily be performance related, whereas VTI's paramg
ters are at a lower level (e.g., gate lengths). '

One of SCI's founders is Dave Johannsen, whose Ph. 1
thesis at Caltech described the ‘‘Bristle Blocks™ silicig
compiler (Johannsen 1979). Although Bristle Blocks is dif
ten cited as one of the pioneering attempts at silicon cog
pilation, Kaufman says that “Bristle Blocks had sever
limitations that prevented it from being suitable for coffff
mercial chip designs.” These limitations, he explains, ij
cluded its preconceived notion of a chip’s intern
architecture, and its inability to concatenate fairly righ
blocks consistently.

The Plex Project

Although SCI now eschews any approach to silic
compilation requiring a preconceived notion about the cl
architecture, others continue to pursue just such a tack. g
Bell Labs (Murray Hill, NI}, researchers recently descritg

- Bu _ Sl L . u
EGURE 3. One possible implementation of a 16-bit
x microcomputer. (Photo courtesy of Bell
'_,‘3 boratories.)
fpoogram that automatically generates nMOS microcom-
i layouts (Buric ef al. 1983). Although these so-called
Plex” computers are intended to be components on larger
LSI devices, they are individually quite complex: up to
§bit microcomputers have been tested (see Figure 3).
§A primary driving force behind Bell Labs’ Plex project
& e desire to give the chip designer an easy-to-specify
gohi-level building block. The user needs only to specify
k: program (in assembly or C language) that the micro-
i puter is to execute. A conventional software compiler
gemines which instructions, from a global instruction
. arc actually used in that program. This selection
$iermines the microcomputer’s specifications, including
f number of registers needed in the data path, and the
Be and contents of the data ROM. Once an intermediate-
bl representation of the microcomputer has been
guerated, a hierarchy of special macrocell layout
crators creates the layout. (In such a ““hierarchy,” mod-
e senerators can call lowerlevel module generators until
& most primitive level is reached.)
. BMisha Buric, head of the Interactive Digital Systems Re-
fach Department at Bell Labs, and leader of the three-
un Plex effort, is quick to point out that the Plex
- @oach is still experimental.
_ &Buric and his associates Tom Matheson and Carl Chris-
fiscn at Bell Labs have developed cell generators that
¥ into account both electrical specifications and physical
p: equirements (Matheson er al. 1983). The ability to
Snee the aspect ratio of compiled cells suggests that it's
uible to create blocks automatically that can be tailored
pecific area and connection constraints imposed by the
¥nill chip layout plan.
udeed, other researchers are working to develop ways
s generate cells with specific dimensions. At the Univer

—_— -

—_ e

O - T =

sity of Southern California, a team headed by Professor
Mel Breuer is studying what is being termed “‘row-column
(or RC) synthesis” of IC functional blocks (Breuer and
Knapp 1983). Specifically, Breuer’s group is studying vec-
tor functions that can be decomposed into arrays of identi-
cal or nearidentical cells. While this work appears to be in
its infancy, one potentially far-reaching finding has
emerged: the aspect (length-to-width) ratio of the kernel
cells has little or no effect on the aspect ratio of the overall
functional block.

Merging Blocks Into a Chip

The increasing use of module generators has simulta-
neously created a need for better techniques to compose a
complete chip layout from variably-shaped blocks. Better
floorplanning techniques that can be used before the blocks
are compiled may be part of the solution to this problem.
The results of the floorplanning exercise could then be
used as inputs to module-generation programs that take
physical constraints into account. Theoretical work at IBM
(Heller er al. 1982) and at the University of Edinburgh
(Brebner and Buchanan 1983) is addressing the variable-
size-block floorplanning problem. Indeed, this work may
help solve one of the more difficult problems still facing
developers of the “ideal” silicon compiler. 0]

References

Benschop, N.F. May 1983. ““Layout Compiler for Variable
Array-Multipliers,”” Proceedings of the Custom Integrated
Circuits Conference, Rochester NY.

Bergmann, N. 1983. “A Case Study of the EL.R.S.T. Silicon
Compiler,” Third Caltech Conference on Very Large Scale
Integration.

Brebner, G. and D. Buchanan. September 1983. ““On Compiling
Structural Descriptions to Floorplans,” Proceedings of the
IEEE International Conference on Computer-Aided Design,
Santa Clara, CA.

Breuer, M.A. and D.W. Knapp. 1983. “Row-Column Synthesis
of VLSI Macrocells,” Proceedings of the International
Symposium on Circuits and Systems (ISCAS), Newport
Beach, CA.

Buric, M.R., C. Christensen, and T.G. Matheson. September
1983. “The Plex Project: VLSI Layouts of Microcomputers
Generated by a Computer Program,” IEEE International
Conference on Computer-Aided Design, Santa Clara, CA.

Gray, J.P., I. Buchanan, and P. Robertson. 1982. “‘Designing
Gate Arrays Using a Silicon Compiler,” Proceedings of the
19th Design Automation Conference, Las Vegas, NV.

Gray, 1., 1. Buchanan, and P. Robertson. October 1983.
““Controlling VLSI Complexity Using A High-Level
Language for Design Description,” International Conference
on Computer Design, Port Chester, NY.

Heller, W.R., G. Sorkin, and K. Maling. 1982. “The Planar
Package Planner for System Designers,”” Proceedings of the
19th Design Automation Conference, Las Vegas, NV.

Johannsen, D. 1979. *‘Bristle Blocks: A Silicon Compiler,”
Proceedings of the 16th Design Automation Conference.

Matheson,T.G., M.R. Buric, and C. Christensen. September
1983. “‘Embedding Electrical and Geometric Constraints in
Hierarchical Circuit-Layout Generators,” International
Conference on Computer-Aided Design, Santa Clara, CA.

Siskind, J.M., J.R. Southard, and K.W. Crouch. 1982.
“Generating Custom High Performance VLS! Designs From
Succinct Algorithmic Descriptions,”” MIT Conference on
Advanced Research in VLSI, Cambridge, MA.

VLSI DESIGN October 1953 81

