ANALYSIS OF NON-COMPOSITE CONCRETE SLAB ON METAL DECK

Lab \#4

A 5" light weight concrete slab on a galvanized 2C22 steel deck. The concrete strength is 3000 psi and it is placed on the simple supported deck.
\#1) Determine the maximum steel deck construction stress on a 6 ft simple span. Does it meet SDI requirements? If not choose an adequate deck.

For the simple span check the 2 cases on page 36
$\underline{\text { Case } 1} \quad$ positive moment $\quad \mathrm{M} 1:=\left[(0.25 \cdot \mathrm{P} 1 \cdot \mathrm{~L})+0.188 \cdot \mathrm{~W} 1 \cdot \mathrm{~L}^{2}\right] \quad \mathrm{M} 1=488.952 \quad \mathrm{lb} * \mathrm{ft}$ Positive Moment Stress $\quad \mathrm{fb}_{1}:=\frac{\mathrm{M} 1 \cdot 12}{\mathrm{~S}_{\mathrm{p}} \cdot 1000} \quad \mathrm{fb}_{1}=20.73 \quad$ ksi $\mathrm{fb}_{1}=20.733 \mathrm{ksi}<\mathrm{Fb}_{\text {allow }}=19.8 \mathrm{ksi} \quad$ NOT OK

Case $2 \quad$ positive moment $\quad \mathrm{M} 2:=0.125 \cdot(1.5 \mathrm{~W} 1+\mathrm{W} 2) \cdot \mathrm{L}^{2} \quad \mathrm{M} 2=353.25 \quad \mathrm{lb} \star \mathrm{ft}$

Positive Moment Stress $\quad \mathrm{fb}_{2}:=\frac{\mathrm{M} 2 \cdot 12}{\mathrm{~S}_{\mathrm{p}} \cdot 1000} \quad \mathrm{fb}_{2}=14.98 \quad \mathrm{ksi}$
$\mathrm{fb}_{2}=14.979 \mathrm{ksi} \quad<\quad \mathrm{Fb}_{\text {allow }}=19.8 \quad \mathrm{ksi} \quad \mathrm{OK}$

Steel deck does not work for Case 1 - Choose adequate deck

If we keep the same weight of deck the moment on the deck will stay the same. We can solve for a required S value

$$
\mathrm{S}_{\text {req }}:=\frac{\mathrm{Fb}_{\text {allow }} \cdot 1000}{\mathrm{M} 1 \cdot 12} \quad \mathrm{~S}_{\text {req }}=3.375 \mathrm{in}^{\wedge} 3
$$

A 2C20 Deck will meet this required S value - OK

Also Check Deflection for the 2 C 20 deck $\mathrm{E}:=29000000$ psi $\quad \mathrm{I}_{\mathrm{p} 2}:=0.423$ in^4
$\Delta 1:=\frac{0.013 \cdot \mathrm{~W} 1 \cdot \mathrm{~L}^{4}}{\mathrm{E} \cdot \mathrm{I}_{\mathrm{p} 2}} \cdot 1728 \quad \Delta 1=0.093$ in
Allowable Deflection $\quad \Delta_{\text {allow }}:=\frac{\mathrm{L} \cdot 12}{180} \quad \Delta_{\text {allow }}=0.4$ in \quad Therefore deflection is OK
\#2) Revise the design assuming the 2C22 deck is used on a 3-span condition. Does the deck now meet SDI construction load limits on a 6 ft span?

3 span conditions on pg 36
$\underline{\text { Case } 1} \quad$ positive moment $\quad \mathrm{M} 1:=\left[(0.20 \cdot \mathrm{P} 1 \cdot \mathrm{~L})+0.094 \cdot \mathrm{~W} 1 \cdot \mathrm{~L}^{2}\right] \cdot 12 \quad \mathrm{M} 1=3743.712 \quad \mathrm{lb} \mathrm{A}^{\mathrm{in}}$

$$
\begin{aligned}
& \text { Positive Moment Stress } \quad \mathrm{fb}_{\mathrm{m}}:=\frac{\mathrm{M} 1}{\mathrm{~S}_{\mathrm{p}} \cdot 1000} \quad \mathrm{fb}_{1}=13.23 \quad \mathrm{ksi} \\
& \mathrm{fb}_{1}=13.229 \mathrm{ksi} \quad<\quad \mathrm{Fb}_{\text {allow }}=19.8 \mathrm{ksi} \quad \mathrm{OK}
\end{aligned}
$$

Case 2
positive moment $\quad \mathrm{M} 2:=0.094 \cdot(\mathrm{~W} 1+\mathrm{W} 2) \cdot \mathrm{L}^{2} \cdot 12$ $\mathrm{M} 2=2395.872 \quad \mathrm{lb} * \mathrm{in}$

Positive Moment Stress $\quad \mathrm{fb}_{22}:=\frac{\mathrm{M} 2}{\mathrm{~S}_{\mathrm{p}} \cdot 1000} \quad \mathrm{fb}_{2}=8.47 \quad \mathrm{ksi}$
$\mathrm{fb}_{2}=8.466 \mathrm{ksi} \quad<\quad \mathrm{Fb}_{\text {allow }}=19.8 \mathrm{ksi} \quad$ OK

Case 3
negative moment
$\mathrm{M} 3:=0.117 \cdot(\mathrm{~W} 1+\mathrm{W} 2) \cdot \mathrm{L}^{2} \cdot 12$
$\mathrm{M} 3=2982.096 \quad \mathrm{lb} *$ in

Negative Moment Stress $\quad \mathrm{fb}_{3}:=\frac{\mathrm{M} 3}{\mathrm{~S}_{\mathrm{p}} \cdot 1000} \quad \mathrm{fb}_{3}=10.54 \quad$ ksi
$\mathrm{fb}_{3}=10.537 \mathrm{ksi} \quad<\quad \mathrm{Fb}_{\text {allow }}=19.8 \quad \mathrm{ksi} \quad \mathbf{O K}$

Stress on 3-span condition meet SDI requirements - OK

Deflection
$\Delta 2:=\frac{0.0069 \cdot \mathrm{~W} 1 \cdot \mathrm{~L}^{4}}{\mathrm{E} \cdot \mathrm{I}_{\mathrm{p}}} \cdot 1728 \quad \Delta 2=0.061$ in $<\Delta_{\text {allow }}=0.4$ in OK

Steel Deck meets deflection requirements - OK
\#3) Based on ACI-318 Criteria, select $4 \times 4 \mathrm{~W} 2.9 \times \mathrm{W} 2.9$ as reinforcement to carry a service live load of 120psf on the 6 ft simply supported span. Assume the reinforcing is undraped. Does the reinforcement satisfy the requirements for moment capacity of the slab?

Known Values	2C22 Steel Deck	$\mathrm{h}:=2$ in	
	Height of slab	$\mathrm{D}:=5 \quad$ in	
	thickness above deck	$\mathrm{t}:=\mathrm{D}-\mathrm{h}$	$\mathrm{t}=3$ in
	Undraped WWF reinforcement distance from comp face to reinf.	$\mathrm{d} 1:=\frac{\mathrm{t}}{2}$	$\mathrm{~d} 1=1.5$ in compression top

Maximum Moments due to superimposed loads

$\mathrm{w}:=120 \quad$ psf \quad Given in problem

The value from the chart is a service live load - Must use load factors to determine maximum moment Load factor for live load ll := 1.7

Positive Moment only for a simply supported slab
$\mathrm{Mu}_{\mathrm{p}}:=\frac{\mathrm{ll} \cdot \mathrm{w} \cdot \mathrm{L}^{2}}{8} \quad \mathrm{Mu}_{\mathrm{p}}=918 \quad \mathrm{lb}-\mathrm{ft}$

Flexure Positive Moment - Compression on Top, Tension on Bottom

Known Values	Area of steel (per foot)	As $:=0.087$	in^2	Pg 28
	Yield of Steel	fy $:=60$	ksi	
	Conc comp. strength	$\mathrm{f}_{\mathrm{C}}:=3$	ksi	
	width	$\mathrm{b}:=12$	in	

Sum of forces in horizontal direction $=0 \quad \mathrm{C}=\mathrm{T}$
$C=0.85 * f . c * a * b \quad T=A s * f y$
Find value of a
$\mathrm{a} 1:=\frac{\mathrm{As} \cdot \mathrm{fy}}{0.85 \cdot \mathrm{f}_{\mathrm{C}} \cdot \mathrm{b}} \quad \mathrm{a} 1=0.171 \quad$ in compression zone in concrete

Sum of moments $=0 \quad$ Sum moments about C

Force $\quad \mathrm{T} 1:=\mathrm{As} \cdot \mathrm{fy} \quad$ Distance $\mathrm{z} 1:=\mathrm{d} 1-\frac{\mathrm{a} 1}{2} \quad \mathrm{z} 1=1.415 \quad$ in

Nominal Positive Moment Capacity of Slab

$\mathrm{Mn} 1:=\mathrm{T} 1 \cdot \mathrm{z} 1 \quad \mathrm{Mn} 1=7.385 \quad \mathrm{k}$-in

Factored Nominal Capacity $\quad \phi:=0.9 \quad \mathrm{ACI} 318$ factor for flexure
$\phi \mathrm{Mn} 1:=\phi \cdot \mathrm{Mn} 1 \cdot \frac{1000}{12} \quad \phi \mathrm{Mn} 1=553.86 \quad \mathrm{ft}-\mathrm{lb}$

Compare Maximum Positive Moment and Factored Nominal Moment
$\mathrm{Mu}_{\mathrm{p}}=918 \quad \mathrm{lb}-\mathrm{ft} \quad>\quad \phi \mathrm{Mn} 1=553.857 \mathrm{lb}-\mathrm{ft} \quad$ NO GOOD

The reinforcement does not satisfy the requirements for moment capacity

