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ABSTRACT

Theoretical and semiempirical studies of two-dimensional (2D) metal nanoparticle arrays under periodic boundary conditions yield quantitative
estimates of their electromagnetic (EM) field factors, revealing a critical relationship between particle size and interparticle spacing. A new
theory based on the RLC circuit analogy has been developed to produce analytical values for EM field enhancements within the arrays.
Numerical and analytical calculations suggest that the average EM enhancements for Raman scattering (Gh ) can approach 2 × 1011 for Ag
nanodisks (5 × 1010 for Au) and 2 × 109 for Ag nanosphere arrays (5 × 108 for Au). Radiative losses related to retardation or damping effects
are less critical to the EM field enhancements from periodic arrays compared to that from other nanostructured metal substrates. These
findings suggest a straightforward approach for engineering nanostructured arrays with direct application toward surface-enhanced Raman
scattering (SERS).

Nanostructured metal-dielectric interfaces often exhibit
enhanced optical phenomena at visible and near-infrared
(NIR) frequencies via excitation of surface plasmon modes.1,2

The enticing possibilities of engineering such properties for
applications in photonics and chemical sensing have led to
a resurgence of activity in the design of plasmonic materials
with subwavelength dimensions.3 Enhanced electromagnetic
(EM) field effects can be generated either in a broad spectral
range, as is the case for disordered metal-dielectric com-
posites,2,4 or at select frequencies from periodically ordered
metal nanostructures. Periodicity plays a key role in tuning
the optical response of the latter, and has been documented
in experimental and theoretical investigations of plasmon-
enhanced effects such as surface-enhanced Raman scattering
(SERS),5-7 extraordinary optical transmission,8-10 and robust
photonic band gaps at visible and NIR wavelengths.11-13

SERS has attracted widespread attention because of its
demonstrated potential for single-molecule spectroscopy and
chemical sensing with high information content.14-16 The
rational design of optimized SERS substrates remains a
challenging goal, despite extensive efforts to elucidate the
physical basis of signal enhancement. Several theoretical
studies have described highly localized EM fields at the
junction of metal nanostructures,7,17-19 with local EM
enhancement factorsGloc ) |Eloc(λ)/E0(λ)|4 as high as 1011-
1012 for a two-particle system.20 However, less attention has
been paid to the average EM enhancement factors (Gh )

〈Gloc〉), which has greater relevance for the design and
optimization of SERS-based chemical sensors. In this regard,
Garcı́a-Vidal and Pendry have provided electrodynamics
calculations on periodic nanostructured metal films withGh
values on the order of 106, a level of activity commonly
observed in many experimental systems.7

Here we provide numerical calculations and a simple
analytical theory for calculating EM field enhancements in
two-dimensional (2D) arrays of metal nanoparticles embed-
ded in a dielectric medium. The numerical simulations and
analytical values are in good agreement and yieldGh values
as high as 2× 1011 for arrays of cylindrical Ag nanodisks
and 5× 1010 for arrays of Au nanodisks. Analytical values
can also be obtained for 2D arrays of metal nanospheres,
yielding Gh values on the order of 2× 109 and 5× 108 for
Ag and Au nanoparticles, respectively. These activities,
which are up to several orders of magnitude greater than
those of aperiodic metal-dielectric composites or roughened
metal surfaces, are independent of morphology-dependent
resonances such as those responsible for microcavity-
enhanced SERS.21 The enhancements of the nanostructured
arrays are strongly dependent on the ratio of particle diameter
to interparticle spacing, which determines both the intensity
of local field factors and the available cross-sectional area
for sampling chemical and biomolecular analytes. Our
models illustrate how the interplay between field enhance-
ment and interparticle spacing can impact the design of array-
based SERS sensors for trace chemical analysis.

Numerical calculations were first performed on 2D arrays
of cylindrical oblate disks with high aspect ratio and diameter
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d , λ, arranged in square or hexagonal lattices in a dielectric
mediumεd using periodic boundary conditions (see Figure
1).22 Such arrays can be approximated as planar systems for
the purpose of estimating local field factors.2 Here we apply
the current conservation law, which can be expressed in terms
of a local potentialæ(r )

whereE0 is the incident electric field,σ(r ) ) -iωεm/4π is
the local conductivity, andεm ) ε′m + iε′′m is the complex
dielectric function of the metal. Describing the continuity
equation in these terms allows the collective plasmon
response to be determined under quasistatic conditions in a
scale-invariant manner.2 In addition, Eloc(r )/E0 can be
calculated as a continuous function of packing density,
described by a single geometric parameterγ ) d/δ, where
d is the distance between the particles at the point of closest
approach. The parameterγ is fundamentally important,
because the resonance condition can be derived directly from
Poisson’s equation to yield the simple relationshipε′m ≈
-γεd.

It is important to note that the quasistatic approximation
is valid for nanoparticle arrays with periodicities below the
diffraction limit (λ/2). Radiative loss from elastic (Rayleigh)
scattering is negligible, and losses due to retardation effects
(a function of the finite skin depth of nanoparticles larger
than 30 nm) can be accounted for by a first-order correction
(see below).2 Furthermore, for a 2D nanoparticle array where
γ . 1, the spatial localizations of the EM resonances
between particles are well within the quasistatic limit.

Discretization of eq 1 on a square-mesh lattice under
periodic boundary conditions yieldedL2 equations (L ) 120),

which were solved by the exact block elimination approach.23

This method provides solutions for site potentials corre-
sponding toEloc(r )/E0 in L4 operations, an enormous savings
in computing time compared with theL6 operations required
by Gaussian elimination methods.24 Gh is obtained simply as
the mean value ofGloc) |Eloc(r )/E0|4 within a unit cell of
the periodic lattice. We note that these calculations are
equally valid for periodic arrays of nanowires at constant
depth as for oblate metal nanodisks with high aspect ratio,
whose electric fields and currents are confined to the plane
of the system.2

The intensities of the local and average EM field enhance-
ments depend greatly on both incident wavelength and
diameter-spacing ratio (see Figures 1 and 2 forGloc andGh
of Au nanodisk arrays at different values ofγ). Au nanodisk
arrays with large diameter-spacing ratios (γ g 30) can
produceGloc values as high as 1010, whereas Ag nanodisk
arrays can produceGloc values as high as 1012. These optical
gains are the product of wavelength-selective resonant modes
within the periodically ordered arrays (see below).22 With
respect to the average EM enhancements,Gh can be described
as a resonance band whose width increases withγ. Arrays
with large γ can produce highGh over a greater range of
excitation wavelengths, which has important practical rami-
fications for SERS.

The highestGh values (Gh max) can be several orders of
magnitude greater than that generated by a random metal-
dielectric film at the percolation threshold (p ) pc), as well
as those produced by periodic gratings whose plasmonic
responses are at the saturation limit for continuous metal
films (see Figure 2).7 In contrast, average field enhancements
outside of the resonance band are much lower than those
generated by broadband amplifiers such as disordered metal-
dielectric films. Introducing disorder into the 2D arrays also
substantially decreasesGh , indicating that long-range order
is an important factor for generating high local EM resonant
enhancements, which in turn provide the greatest contribution
to Gh .

The intensities of the local field enhancements that
compriseGh are also dependent on their spatial relationship
within the nanoparticle array, and also in their relationship
with the polarization of the incident wavevector. In our
calculations, values forEloc were obtained at fixed diameter-
spacing ratios with the incident light polarized along the
x-axis, such that the local EM enhancements are greatest at
sites between particles along the direction of polarization
(see Figure 1 forγ ) 5 and 10). However, a change in the
polarization angle produces large shifts in the positions and
intensities of the maximum local field factors, with a small
reduction in the average EM enhancements (see Figure 3).
For example,Gh values produced by square-lattice 2D arrays
decrease by a factor of 2 whenθ changes from 0° to 45°.
The polarization angle is likely to be an important parameter
for single-molecule SERS and related spectroscopies, in
which the analytes of interest are thought to be localized
between particles.14,15,25In this scenario, the Raman signals
can be maximized by adjustingθ until the highest local fields
are coincident with the exact position of the molecule.

Figure 1. Cross-sectional view of local EM field factors pro-
duced byp-polarized light (l ) 647 nm,E0 ) Ex) within periodic
2D arrays of Au nanodisks embedded in a low-dielectric medium
(εd ) 1.5). Two different lattice geometries are shown: (a, b) 2D
square lattice; (c, d) 2D hexagonal lattice. Two different diameter-
spacing ratios are shown: (a, c)γ ) 5; (b, d) γ ) 10. Note the
change in scale for|Eloc(r )/E0| for arrays with different values of
γ. Discretization was performed using a 120× 120 square lattice.

∇‚[σ(r )(- ∇æ(r ) + E0)] ) 0 (1)
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To confirm the validity of the numerical calculations under
quasistatic conditions, we have developed an analytical
approach for estimatingGh . The EM coupling between metal
nanoparticles can be conceptualized as arrays of RLC circuits
across the interparticle gap, with each elementi representing
a resonance defined by local spacingδi (see Figure 4).2 The
negative permittivity of the metal (ε′m < 0) and the dielec-
tric εd are represented respectively by inductanceR-L and
capacitanceC. The RLC model suggests that the collective
plasmon resonances of the 2D nanoparticle arrays should
shift strongly toward lower frequencies (highLC) with
increasingγ, in accord with our numerical simulations and
recent calculations involving metal nanoparticle dimers (see
Figure 2).20 In addition, the model is consonant with the
broadening of the plasmon bandwidths that occurs with red-
shifting, which reflects a greater degeneracy of EM states at
high γ due to the effectively greater radius of curvature at
the interface between particles.

The RLC model provides a theoretical framework for
describing changes in EM Raman enhancement as a function
of γ andεm. Under low-loss conditions the dielectric function

can be expressed asεm ) ε′m(1 - iκ), whereε′m < 0 and loss
factor κ , 1. If γ . 1 and the surrounding dielectricεd is
taken into account, one can derive an expression for an
effective dielectric functionεeff

where parametersW ) |ε′m|/εd and ∆ ) (W/γ - 1)/κ (see
Supporting Information for more details). This composite
dielectric function reaches a maximum when∆ f 0, so that
εeff

max = |ε′m|(1 + i)π/x4κ(W + 1). If ∆ > 1, εeff is mostly
real and larger thanεd, such that the array response is
dominated by interparticle capacitance (C). If ∆ < 0, the
imaginary part ofεeff prevails, resulting in large losses and
subsequently large fluctuations in local field. It is worth
noting that the effective absorption of the metal-dielectric
composite,ε′′eff, is proportional tox|εm|/κ near resonance,
which increases asκ goes to zero. A high effective absorption
is necessary to produce giant fluctuations in the local fields
between particles and determines the capacity of the 2D
arrays to accumulate and release EM energy.

The EM enhancement factorGh (averaged over the unit
cell, minus metal particles) can now be expressed analytically
as

(see Supporting Information for more details). The maximum
EM enhancementGh max is also achieved when∆ f 0; if a
Drude free-electron response is assumed in whichε′m(ω) )
1 - (ωp/ω)2 andκ ) ωτ/ω, with plasma frequencyωp . ω
and relaxation frequencyωτ , ω, parameterW can be
approximated as (ωp/ω)2εd

-1 andGh max can then be estimated
as

Figure 2. Average EM enhancements (Gh ) from 2D arrays of Au nanodisks as a function of incident wavelength (λ) at fixed particle
diameter-spacing ratios (γ ) 5, 10, and 30): (a) 2D square lattice; (b) 2D hexagonal lattice. A plot ofGh from random metal-dielectric
films at the percolation threshold (p ) pc) is included for comparison.

Figure 3. Local EM field distributions and intensities at different
polarization angles. Left,θ ) 0° (E0 ) Ex); Right, θ ) 45°.

Figure 4. Frequency-dependent plasmon response depicted as an
array of RLC circuits.

εeff = |ε′m|( π

x2κ(∆ - i)(W + 1)
-

(1 + π/2)

(W + 1) ) (2)

Gh =
π(W + 1)7/2

2((4 - π)W + 4)κ7/2
×

x 4∆2 + 9

(∆2 + 1)3/2
-

∆(4∆4 + 15∆2 + 15)

(∆2 + 1)3
(3)

Gh max = π(ωp/xεd)
5ωτ

-7/2ωres
-3/2 (4)

Nano Lett., Vol. 4, No. 1, 2004 155



in which the resonance frequency is defined asωres ≈
ωp(γεd)-1/2. For the case of Au nanodisk arrays, we useωp

) 9.3 eV andωτ ) 0.03 eV26 to obtain an approximateGh max

value of 5× 1010εd
-5/2λres

3/2, whereλres ) 2πc/ωres is the
resonance wavelength expressed inµm. For the case of Ag
(ωp ) 9.1 eV,ωτ ) 0.021 eV26) we obtain aGh max value of
2 × 1011εd

-5/2λres
3/2, which is four times larger than that of

gold.
The analytical expressions derived from the RLC model

are in excellent agreement with the numerical calculations
of Gh for the 2D nanowire arrays at different values ofγ
(see Figure 5). It is particularly noteworthy that the analytical
Gh max values are essentially identical with those obtained by
numerical calculations under quasistatic conditions. It should
be noted, however, that the numerical calculations exhibit
additional maxima at shorter wavelengths that are not present
in the analytical solutions. These peaks are likely related to
artifacts resulting from the discretization procedure.

For periodic 2D arrays of metal nanospheres, the analytical
expression for the effective dielectric function is rather
different from eq 2:

As in the case of metal nanodisk arrays, the imaginary part
of εeff prevails when∆ < 0, producing large fluctuations in
local field. The average EM enhancement between nano-
spheres is then expressed as

whereGh sph is further averaged in thez-dimension between
+d/2 and-d/2. Assuming a Drude free-electron response,
the maximum EM enhancementGh sph

max can be estimated as

in which the resonance frequency is again defined asωres≈
ωp(γεd)-1/2. Substituting in the same optical constants as

before, we find that theGh sph
max values for Ag and Au

nanosphere arrays are approximately 2× 109εd
-2λres and

5 × 108εd
-2λres, respectively. The nearly two order-of-

magnitude difference between eqs 4 and 7 can be ascribed
to the change in unit particle geometry. In the case of the
2D disk arrays, plasmonic contributions to the local EM field
strength are constant with respect to depth, whereas in the
case of the 2D nanosphere array the field strength rapidly
decreases with distance from the particle surfaces. Neverthe-
less, the resonance behaviors of the two systems are entirely
analogous with respect toγ andεeff.

The analyses thus far have been performed using quasi-
static approximations in which retardation effects are as-
sumed to be negligible. However, such effects may become
significant when the particle size or lattice constant is no
longer small compared with the incident wavelength. Here
we estimate the extent to which retardation effects influence
G as a function of lattice periodicityD, for a given diameter-
spacing ratio (γ ) 30; see Figure 6). Local field factors were
calculated by solving the coupled-dipole equations both with
and without retarded potentials for very large square-lattice
arrays of Au nanodisks (N∼106; see Supporting Information
for more details).27 A comparison of these factors reveals
no effects of retardation onGloc for periodicities up to 40
nm, after which a gradual decrease ensues. Even so, the
retardedG values remain relatively high, indicating that
periodic order can significantly reduce radiation losses in
arrays of particles which otherwise experience significant
retardation effects.

Finally, we collate the theoretical relationship between EM
enhancement and periodic structure with some recent ex-
perimental SERS measurements, taken from hexagonally
close-packed 2D arrays of colloidal gold nanoparticles whose
diameter-spacing ratios range from approximately 15-100
(see Figure 7).5 The empirical Raman signal enhance-
ments (GSERS) are amplified by local EM field factors and
are proportional toGh with the modification thatGSERS )
|E(λ)/E0(λ)|2|E(λ′)/E0(λ′)|2, whereλ andλ′ are the incident
and Stokes-shifted wavelengths, respectively.2,28 In our
theoretical considerations we take into account the skin effect
by renormalizing the dielectric permittivity (see Supporting
Information for more details). We also take into account the
loss of incident field due to reflection and absorption at the

Figure 5. Analytical solutions of average EM enhancements (Gh )
as a function ofλ for 2D square-lattice arrays of Au nanodisks and
nanospheres (solid and dashed curves, respectively), calculated for
γ ) 5 and 10. The corresponding numerical solution for the 2D
nanodisk array (dotted curve) is included for comparison.

εeff,sph= 2εd[(1 + κ∆
W + 1) log( W + 1

κ(∆ - i)) - 1] (5)

Gh sph=
3(W + 1)3

(W + 3)κ3[π
2

- ∆
1 + (∆ + κ)2

- tan-1(∆ + κ)] (6)

Gh sph
max = (3π/2)ωp

4
εd

-2ωτ
-3ωres

-1 (7)

Figure 6. Ratio of Gloc values (located midway between gold
nanodisks) calculated with and without retardation effects as a
function of lattice periodD. Nanoparticles are arranged in a square-
lattice array withγ ) 30 and incident wavelengthλ ) 1 µm.
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air-metal interface by introducing a first-order correction
to the enhancement factorGh ′ ) T2Gav, where T is the
transmission coefficient (T∼0.25 based on experimental
extinction measurements).5 Even so, the comparison between
experiment and theory remains semiquantitative, as the
empiricalGSERSvalues also depend on several other factors
such as chemical “first-layer” effects and the efficiency of
the collection optics.

Analytical EM enhancement values were calculated for
2D arrays of Au nanospheres at fixed incident wavelengths
(λex ) 647, 785 nm), in which local order was assumed.
Values forGh ′ were obtained as means of distributions about
a given value ofγ using a 30% coefficient of variance to
account for the limited precision of measurement.5 These
enhancements are in fact very similar toGh ′ values derived
for crystalline 2D arrays with precisely defined spacings,
particularly asγ becomes large (see Figure 7). The com-
parison ofGh ′ with empirical GSERS values reveals similar
trends with respect toγ, demonstrating good correlation
between experiment and theory.

Two additional observations are worthy of discussion.
First, for a given incident wavelength,Gh is essentially
equivalent toGh max whenγ is above a threshold value. This
is a consequence of the tradeoff betweenGloc, whose
maximum intensities increase rapidly withγ, and the total
available field volume which decreases withγ. The wide
range of diameter-spacing ratios that can provideGh max is
of great practical benefit for designing 2D nanoparticle arrays
as SERS-based chemical sensors. However, it is also
necessary to consider geometrical requirements for accessing
high-field regions, so that analyte molecules can be rapidly
detected. Highly localized EM field enhancements have a
lower probability of detecting exogenous analytes than those
which are diffused over a larger cross-sectional area;
therefore, the optimal diameter-spacing ratio should be the
threshold value ofγ which producesGh max with the greatest
possible sampling volume.

Second, both theoretical and empiricalGh values of the
2D nanoparticle arrays remain approximately constant asγ
increases with respect to the wavelength, i.e., with increasing

d/λ‚δ, in contrast to that calculated and observed in isolated
nanospheres for whichG decreases asd/λ becomes large.29-31

This again indicates that size-dependent radiative damping,
which is known to degrade field factors from isolated metal
nanoparticles as an approximate function of particle volume,
does not have a strong effect on the SERS activities of the
2D nanoparticle arrays. The modest effect of particle size
on GSERSfrom the experimental system further supports our
notion that damping and retardation effects are minimized
when the local EM fields are spatially confined to volumes
within the quasistatic limit.
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(31) Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.;

Wilson, O.; Mulvaney, P.Phys. ReV. Lett. 2002, 88, 077402.

NL0343710

158 Nano Lett., Vol. 4, No. 1, 2004


