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Abstract

Achieving high performance in cryptographic processing is
important due to the increasing connectivity among today’s
computers. Despite steady improvements in microprocessor
and system performance, private-key cipher implementa-
tions continue to be slow. Irrespective of the cipher used, the
main reason for the low performance is lack of parallelism,
which fundamentally comes from encryption modes such as
the Cipher Block Chaining (CBC) mode. In CBC, each
plaintext block is XOR’ed with the previous ciphertext block
and then encrypted, essentially inducing a tight recurrence
through the ciphertext blocks. To deliver high performance
while maintaining high level of security assurance in real
systems, the cryptography community has proposed Inter-
leaved Cipher Block Chaining (ICBC) mode.

In four-way interleaved chaining, the first, fifth, and every
fourth block thereafter are encrypted in CBC mode; the sec-
ond, sixth, and every fourth block thereafter are encrypted
as another stream, and so on. Thus, interleaved chaining
loosens the recurrence imposed by CBC, enabling the multi-
ple encryption streams to be overlapped. The number of
interleaved chains can be chosen to balance performance
and adequate chaining to get good data diffusion. While
ICBC was originally proposed to improve hardware encryp-
tion rates by employing multiple encryption chips in paral-
lel, this is the first paper to evaluate ICBC via
multithreading commonly-used ciphers on a symmetric mul-
tiprocessor (SMP). ICBC allows exploiting the full process-
ing power of SMPs, which spend many cycles in
cryptographic processing as medium-scale servers today,
and will do so as chip-multiprocessor clients in the future.
Using the Wisconsin Wind Tunnel II, we show that our mul-
tithreaded ciphers achieve encryption rates of 92 Mbytes/s
on a 16-processor SMP at 1 GHz, reaching a factor of
almost 10 improvement over a uniprocessor, which achieves
9 Mbytes/s.

1  Introduction
Information security is an important concern due to the

increasing connectivity among today’s computers. Crypt
graphic algorithms (ciphers) form the underpinnings of pr
viding security assurances for both informatio
communicated via a public medium such as the Intern
and data stored in modern multi-user computers. With t
advent of Secure IP [2] and virtual private networks [10
cryptographic processing will become more important, ev
beyond its pervasive role in the world of e-commerc
Hence, achieving high performance in cryptographic pr
cessing is increasingly important.

Cryptographic processing involves applying a key
transform regular data (or plaintext) into encrypted data (
ciphertext), communicating the ciphertext, and the
decrypting the ciphertext back to plaintext. Two categori
of cryptographic algorithms are private-key and public-ke
ciphers. In private-key ciphers, both the encrypting an
decrypting ends use the same key. Private-key ciph
require a means of securely sharing the common private k
between the encrypting and decrypting ends. Unfortunate
secure exchange of the private key requires encrypting
key itself using another private key! Public-key cipher
avoid this problem by encrypting using an openly-publishe
public key, and decrypting using a private key known on
to the decrypting end.

Because public-key ciphers usually involve calculation
using 1024-bit precision numbers, they are computationa
more expensive, by as much as a factor of 1000, than equ
alent private-key ciphers. Consequently, typical crypt
graphic systems, such as the Secure Sockets Layer (S
use a public key to exchange the private key among t
communicating parties, and then use the private key for s
sion data. Except for short sessions where public key p
cessing dominates, private key processing speed is key
achieving fast response times, especially for typical sess
lengths of 20KB-32KB [1].

Despite steady improvements in microprocessor a
system performance, private-key cipher implementatio
continue to be slow. For instance, encrypting 50 bytes
data takes more than 1000 processor cycles on the Alp
21264 for many of the commonly-used ciphers. While pr
vate-key ciphers are computationally intensive (althou
not as much as their public-key counterparts), the main re
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son for the low performance is lack of parallelism and not
computational intensity [5]. Modern computers exploit par-
allelism to achieve performance, and the lack of parallelism
severely obstructs achieving fast response times.

Irrespective of the cipher used, the lack of parallelism
fundamentally comes from encryption modes such as the
Cipher Block Chaining (CBC) mode. In CBC each plaintext
block is XOR’ed with the previous ciphertext block and
then encrypted, essentially inducing a tight recurrence
through the ciphertext blocks. Other modes such as the
Propagating Cipher Block Chaining mode, Cipher Block
Chaining with Checksum mode, and Cipher FeedBack
mode also have the recurrence property. Because such
recurrence thoroughly randomizes (diffuses) the ciphertext
while concealing any patterns present in the plaintext, CBC
is approved by NIST [29] and widely used in SSL ciphers
IDEA, RC2, DES and 3DES, and in authentication systems
such as Kerberos 5. Electronic CodeBook and Plaintext
Block Chaining modes do not have this recurrence property,
and are not used as widely.

To deliver high performance while maintaining high
level of security assurance in real systems, the cryptography
community has proposed Interleaved Cipher Block Chain-
ing (ICBC) mode [23,], which is approved by the recently-
announced FIPS 140-2 [31] for 3DES [30,14], and deployed
in real-world systems [13]. This mode creates multiple
interleaved encryption streams instead of just one. In four-
way interleaved chaining, the first, fifth, and every fourth
block thereafter are encrypted in CBC mode; the second,
sixth, and every fourth block thereafter are encrypted as
another stream, and so on. Thus, interleaved chaining loos-
ens CBC’s recurrence, enabling the multiple encryption
streams to be overlapped.

For typical input sizes, ICBC diffuses the ciphertext
quite well. First, ICBC does not change the algorithm,
whose mathematical properties are what provide the key
security guarantees. Second, applying ICBC to small inputs
results in chaining of only a few blocks. For instance, a 1KB
plaintext with 8-way interleaving results in chaining of only
128-bytes per chain. While such small inputs will need to
use CBC, such small inputs do not gain much performance
by using ICBC anyway. Also, the processing time may be
dominated by the session’s public key processing, and not
private key processing, for such input sizes [5]. Third, for
large inputs, ICBC diffuses data well. For instance, for the
median web object of about 21KB [1], 8-way interleaving
allows chaining of more than 2.5KB per chain. Fourth, web
objects are increasing and not decreasing in size, so ICBC
will be more effective in the future. Fifth, ICBC affords a
balance between performance and cryptographic security by
allowing a number of interleaved chains which gives good
diffusion with reasonable speedups. Real systems have
always had to maintain this balance: even though public

keys are more secure, private keys are more commonly u
due to their performance advantages.

While ICBC was originally proposed to improve hard
ware encryption rates by employing multiple encryptio
chips in parallel as done for IDEA [13], this is the first pape
to evaluate ICBC via multithreading commonly-use
ciphers on a symmetric multiprocessor (SMP). Using ICB
ciphers need not be interleaved into as many threads as t
are processors in the SMP, if the data per chain seems in
ficient. For instance, a 16-processor SMP can use 8-w
interleaving if the input is too small to be 16-way inter
leaved.

There are other advantages to using SMPs: First, SM
spend many cycles in cryptographic processing, deployed
medium-scale servers (e.g., the Sun Enterprise 6000 i
popular choice for web servers). Multithreading ciphe
using ICBC allows exploiting the full processing power o
the machines. It is true that improving throughput is impo
tant for such servers, and ICBC reduces latency. Howev
when the server is not saturated and not all the process
are busy with messages, ICBC reduces per-message late
by multithreading a single message on the available proc
sors. Second, many clients in the future will use micropr
cessors with support for multithreaded execution, such
Simultaneous Multithreading [27] or Chip Multiprocessor
[19]. Therefore, not only servers but also clients will hav
the ability to exploit multithreaded ciphers. Third, ou
approach is low cost because it requires little beyond st
dard multiprocessor/multithreaded hardware. Only the so
ware implementation of the ciphers (perhaps in the SS
layer of the OS networking code) changes to being mu
threaded.

The main contributions of the paper are:

• Multithreaded ciphers using ICBC are a good match f
SMPs because there is no data sharing and no comm
cation among the threads. The threads are naturally lo
balanced and computationally intensive, spending hu
dreds of cycles per cache line of input data brought fro
memory.

• Our multithreaded implementation achieves encryptio
rates of 92 Mbytes/s on a 16-processor SMP at 1 GH
reaching a factor of almost 10 improvement over a un
processor, which achieves 9 Mbytes/s.

• The number of compute cycles per cache line of input
large enough both to hide prefetch of the next cache li
completely, and to allow the bus to service prefetc
requests from up to 16 processors.

• Serial initialization code, software barrier costs, and b
occupancy prevent multithreaded ciphers from achievi
perfect speedups on SMPs.

The rest of the paper is organized as follows. W
describe how we multithread the ciphers in Section 2, a
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discuss the key implementation issues in Section 3. In
Section 4, we present our results, and in Section 5 we dis-
cuss related work. Finally, we conclude in Section 6.

2  Multithreading Private-Key Ciphers
Ciphers are designed to encrypt plaintext into cipher-

text and decrypt ciphertext back to plaintext. While the spe-
cifics of the computation done by the cipher depends on the
algorithm used, there are several commonalities among
ciphers. Most recent ciphers operate on blocks of data
instead of individual bytes, typically using a block size of
128 bits (16 bytes). We refer to this block used by the algo-
rithms as Ablock. If the input to be encrypted is not an exact
multiple of 128 bits, it is made so by padding.

Another commonality among ciphers is the encryption
mode. While the algorithm defines how an Ablock of plain-
text is transformed into an Ablock of ciphertext, the mode
defines how the preceding ciphertext or plaintext Ablock
affects the encryption of the next plaintext Ablock. The idea
behind modes is to increase the diffusion of the ciphertext
and conceal any patterns in the plaintext. Electronic Code-
book (ECB) mode encrypts a plaintext Ablock without com-
bining with any previous ciphertext Ablock, and hence
achieves less diffusion. Cipher Block Chaining (CBC) mode
first XORs the plaintext Ablock with the previous ciphertext
Ablock, and then encrypts the XOR result. Figure 1(a) illus-
trates CBC. The Cipher Feedback mode (CFB) first uses the
previous ciphertext Ablock to generate some pseudorandom
numbers which are combined with the next plaintext
Ablock, and then encrypts the combined result. CBC, CFB,
and other chaining modes use a random initialization vector
(IV) to combine with the first Ablock of the input.

Because such chaining of the plaintext Ablocks with
previous ciphertext Ablocks distributes the resulting cipher-
text bit-values evenly among all possible combinations, the
chaining modes prevent codebook attacks. Consequently,
CBC is widely used and non-chaining modes like ECB are
not. Unfortunately, CBC results in low performance due to
lack of parallelism. CBC creates a tight recurrence where
the encryption of the next Ablock depends on the result of
encrypting the previous Ablock, eliminating any possibility
of overlapping the encryption of multiple Ablocks.

A relatively simple approach to break the recurrence
induced by CBC is to interleave multiple encryption
streams. Instead of chaining all the input Ablocks through a
single CBC chain, interleaved cipher block chaining (ICBC)
uses multiple chains, interleaving the input Ablocks. For
instance, in a four-way interleaved ICBC, the first, fifth and
every fourth block thereafter are encrypted in CBC mode
with one IV. The second, sixth, and every fourth block
thereafter are encrypted with another IV, and so on, as illus-
trated in Figure 1(b). Thus, four-way-interleaved ICBC can
be thought of as encrypting four different inputs with the

same key and four different IVs.

Fortunately, ICBC uses the same key as CBC, so th
are no additional overheads in public-key processing (i.
public-key encryption of the private key at the time of th
session setup) due to ICBC. However, ICBC’s total IV
longer than CBC’s IV. Because the overhead of CBC’s I
generation compared to the encryption computation is sm
to begin with, ICBC’s longer IV does not impact executio
time.

CBC induces a recurrence only for encryption, and n
for decryption. Decryption using CBC is parallelizabl
because all of the ciphertext Ablocks can be decrypted
parallel and then XORed with the previous cipher text
obtain plaintext back. However, if encryption uses ICB
then decryption also needs to use ICBC. ICBC’s decrypti
can be multithreaded exactly like ICBC’s encryption, wit
identical parallelism.

3  Multithreading Issues
Our multithreaded code employs a straightforwa

strategy for parallelization using the standard shared-me
ory application programming interface to multithrea

FIGURE 1. (a) Cipher block chaining, (b) interleaved
cipher block chaining using Ablocks, and (c)
interleaved cipher block chaining using Iblocks.
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encryption. One processor executes the serial part of the ini-
tialization code and initializes like 3DES’s SBOX, PBOX,
and other arrays. Parts of the initialization code can also be
multithreaded. Then the code simply forks as many threads
as there are processors. Each thread encrypts its portion of
the input using CBC within its portion. As such, there is no
data sharing among the threads, implying that multithreaded
ciphers are naturally amenable to high performance through
parallelization.

From a performance standpoint, there are many issues
with multithreaded ciphers, such as false sharing, global
synchronization, data locality, and serialized initialization,
much like any multithreaded application.

3.1  True and False sharing
Although there is no true sharing of data among the

threads, false sharing due to cache line granularity needs to
be avoided. The way ICBC is defined, one encryption thread
encrypts an Ablock and writes its result at location A, and
another thread encrypts the next Ablock and writes its result
at location A+Ablocksize (Ablocksize is 128 bits usually).
If locations A and A+Ablocksize fall within the same cache
line, then the two threads incur false sharing of that cache
line upon the writing of the encrypted Ablocks.

We avoid false sharing by assigning a set of contiguous
input Ablocks, called anIblock, to one processor and the
next Iblock to the next processor. Iblocks need to be as large
or larger than cache lines to be effective, but should not be
so large as to reduce the number of interleaved chains.
When the processors write the encrypted Ablocks they are
guaranteed to write to different cache lines, without incur-
ring any false sharing. For instance, for a system using 32-
byte cache lines, Iblock sizes of 32 or 64 bytes would work
well. With such input data assignment, a processor can
chain the Ablocks within every Iblock assigned to it, and
then interleave-chain with the Ablocks in the next Iblock
assigned to it, as illustrated in Figure 1(c). This chaining
within each Iblock ensures that the overall chaining of
ICBC using Iblocks is no less than that of the original ICBC
using Ablocks. Thus, ICBC using Iblocks differs from the
original ICBC in only the grouping of Ablocks into each
chain.

3.2  Data Locality
Because each input Ablock is accessed only once,

encrypted, and written to output, cipher codes do not exhibit
much temporal locality in the input data. This access pattern
implies that caches are not effective for input data, but inter-
nal data structures such as the SBOX and PBOX are
accessed repeatedly and benefit from caching. However,
cipher codes do exhibit spatial locality in the input data.
That is, on an input Ablock access, the entire cache line con-
taining the Ablock is brought in, so that subsequent input

Ablocks within the cache line are accessed fast from t
cache.

We address the lack of temporal locality by prefetchin
the next Iblock. Because cipher codes predictably mar
down the input data, determining the address of the n
Iblock to perform the prefetch is trivial. While a thread i
encrypting one Iblock, a prefetch is issued for the ne
Iblock and the latency of bringing the next Iblock into th
cache is hidden under the current Iblock’s encryption.
memory latency or contention is more, then prefetch wou
have to be initiated earlier (e.g., two Iblocks ahead). Th
prefetching is accurate in that every block prefetched
actually accessed, and does not generate any unneces
memory traffic.

3.3  Initialization Serialization
Initialization of data structures is typically sequential i

multithreaded applications. In the case of some of t
ciphers such as Rijndael, Twofish, and IDEA, initializatio
is long and contributes significantly to the execution tim
Fortunately, parts of the initialization is amenable to mult
threading. In multithreading the initialization part, there is
trade off between performance gain due to parallelizati
and overhead introduced due to the extra barriers which
might have to use. We do semi-parallelization of the initia
ization code of Rijndael, Twofish, and IDEA. Unfortunately
not all of the initialization is parallelizable. Blowfish has
high fraction of initialization code, which uses CBC chain

FIGURE 2. High-level multithreaded cipher
pseudocode.

fork(); /* spawn n threads */
initialize();
/* multithread init if needed */
global_barrier();

/* Pick each thread’s Iblock */
Iblock = &input_start+Iblock_size*threadID;
Iblocks_per_thread = Input_size/

(Num_threads*Iblock_size);
for (i = 0; i < Iblocks_per_thread; i++) {

/* prefetch next Iblock */
Prefetch(Iblock+Iblock_size*Num_threads);
/* first Ablock within Iblock */
Ablock = Iblock;
for (j = 0; j < Ablocks_per_Iblock; j++) {

/* encrypt current Ablock */
Encrypt(Current_Ablock);
(Num_threads*Iblock_size);
/* jump to next Ablock within Iblock*/
Ablock += Ablock_size;

}
/* jump to next Iblock*/
Iblock += Iblock_size*Num_threads;

}
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ing to initialize later array elements by chaining earlier array
elements. Consequently, Blowfish’s initialization cannot be
parallelized. Note that the non-parallel nature of the initial-
izations are inherent to the algorithm and are not an artifact
of the implementation.

3.4  Barrier Synchronization
While there is no synchronization among the encryp-

tion threads, there is a global synchronization (i.e., a barrier)
at the end of the initialization, so that the encryption threads
do not start before the initialization is complete. In the cases
where parts of the initialization is parallelized, more barriers
are inserted to ensure dependent loops of the initialization
do not start before previous loops finish. Because barriers
are global synchronization among all the processors in the
system, barriers usually cost many processor cycles (e.g.,
hundreds to thousands of cycles). For small input sizes, the
cost of the barrier may not be amortized over the encryption
of the input, resulting in the barrier accounting for a large
fraction of the overall encryption time. We employ efficient
barrier implementations in software using MCS locks [16]
to reduce the cost of barriers. We also show improvements
achieved by hardware barrier implementations.

3.5  High-level pseudocode
Figure 2 gives the high level pseudocode of the multi-

threaded ciphers. After forking the threads, each thread
works on its share of the cipher initialization. If the initial-
ization is not parallel, a single thread does the initialization.
The global barrier ensures that the initialization is complete
before any of the threads embark on encryption. As part of
encryption each thread is assigned a certain number of
Iblocks, which is calculated as the input size divided by the
number of threads and Iblock size. Each Iblock consists of
multiple Ablocks. Each thread encrypts Ablock size of data
at a time. After working on all the Ablocks in an Iblock, the
thread moves on to the next Iblock.

4  Results
Our experimental results are organized as follows.

First, we show that our multithreaded approach achieves
good speedups over a uniprocessor. We analyze the speed-
ups in light of the maximum achievable speedups taking
into consideration the fraction of the multithreaded code
that is sequential (for initialization) and the barrier over-
heads. Then, we show that the number of compute cycles to
encrypt each cache line of input data is significantly larger
than typical memory latencies, allowing us to prefetch the
next cache line while the processor is busy encrypting the
current cache line. This timely prefetching hides the mem-
ory latency of the input data almost entirely. We further
show that the number of compute cycles per cache line is
large enough for the bus to service prefetch requests from
even 16 processors in the time a processor encrypts one

cache line. This measurement implies that even in a 16-p
cessor SMP, there is not any significant queuing at the b
for input data prefetches. Finally, we show that we achie
encryption rates of 92 MB/s using 16 processors and
MB/s using 4 processors, compared to 9 MB/s achieved b
uniprocessor, assuming clock speed of 1GHz.

4.1  Methodology
To simulate the multithreaded ciphers on symmetr

multiprocessors (SMPs), we use the Wisconsin Wind Tu
nel II (WWT2) [18]. We configure the WWT2 simulator to
simulate an SMP with the parameters shown in Table
Because the ciphers do not exhibit temporal locality,
explained in Section 3.2, having bigger caches or a dee
hierarchy (two or three levels of caches) do not improve p
formance. A 32-KB L1 cache is sufficient to hold all th
data except for the plaintext data. Plaintext data, howev
does not have any temporal locality and hence does not b
efit from a larger cache. We picked a typical cache blo
size of 32 bytes, which takes advantage of the spatial loc
ity present in the ciphers. Our simulator does model a sp
transaction bus and cache-block interleaved memo
including contention at the bus and memory.

Our simulator models an in-order-issue process
which is representative of architectures such as the SU
UltraSPARC and network processors such as the In
IXP1200. Our results are applicable to SMPs using Ultra
PARC processors, and the IXP1200 which has multiple
order cores on a single chip.

We chose eight cipher algorithms for our analysis. Th
eight cipher algorithms are3DES[9], RC6[21], IDEA [15],
RC4 [22], Mars [6], Rijndael8], Blowfish[7], andTwofish
[3]. All the eight cipher algorithms use at least 128 bits o
key data, and each of these is considered strong hav
undergone extensive review and aggressive cryptanaly
3DES, Blowfish, IDEA, and RC4 are used in popular sof

CPU clock 1 GHz

L1 cache 32 Kbytes, 32-byte
lines

Memory 100 cycles, n-way
interleaved for a n-
CPU SMP

Processor to Bus cycle
ratio

5

Bus cycles per transac-
tion

4

Memory bus 32-byte, split transac-
tion, pipelined

TABLE 1. System configuration parameters.
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ware packages. Mars, RC6, Rijndael, and Twofish were sec-
ond round candidates for the Advanced Encryption
Standard (AES) [28]. Rijndael has been selected as the new
US encryption standard (to replace DES) by the National
Institute of Standards and Technologies which coordinated a
multi-year AES competition. We put extra effort in analyz-
ing the Rijndael cipher and we obtain one of the best
encryption rates for this cipher. We use the most efficient
algorithms available as our sequential implementation of the
ciphers.

To make our multithreaded implementation of the
ciphers most efficient, we consider parallelization of the ini-
tialization part of the cipher wherever possible, as men-
tioned in Section 3.3. We semi-parallelize the initialization
code ofRijndael, Twofish,and IDEA. These ciphers have
high fractions of serial initialization. Blowfish has the high-
est fraction of initialization serial code among the eight
ciphers. Unfortunately, Blowfish’s initialization uses CBC
chaining of the initial array and thread level parallelism
could not be extracted. For all the ciphers, we use an Iblock
size equal to the cache line size of 32 bytes. RC4 is a
stream-based cipher which doesn’t use chaining. We multi-
threaded RC4 by using different key-based random-number
generators on separate threads which encrypt separate
streams of data.

4.2  Multithreading speedups on SMPs
In Figure 3, we show the speedups by our multi-

threaded implementation of the eight cipher algorithms,
varying the number of processors as 2, 3, 8, and 16. The Y-
axis shows the execution speedups achieved over a unipro-
cessor running sequential code (without parallelization
overheads) and the X axis shows the input sizes. In this
experiment,bothsequential and parallel codes use prefetch-
ing for Iblocks. On an average over all the eight ciphers, the
uniprocessor encrypts at a rate of 8.79 Mbytes/s assuming a
1GHz clock speed. For the 128-byte input size, we show
only 2- and 4-processor configurations because the Iblock
size is 32 bytes and there can only be at most 4 threads for
this input size.

As is evident from the plots, we get good speedups
(hence encryption rates) by multithreading the ciphers. For
example, on a 16-processor SMP, we get a speedup of about
10.64, on average, for 16 Kbytes input and a speedup of
about 12.97 for 64 Kbytes input. Assuming a 1 GHz clock
speed, these speedups correspond to encryption rates of 91.6
Mbytes/s and 113.3 Mbytes/s for 16 and 64 Kbytes, respec-
tively. We get the best speedups for IDEA. The 16-processor
SMP achieves a speedup of 14.5 with 16 Kbytes input and a
speedup of 15.5 with 64 Kbytes input. We get the worst
speedups for Twofish. The 16-processor SMP, achieves a
speedup of 7.5 with 16 Kbytes input and a speedup of 11
with 64 Kbytes input.

To understand the variation in speedups across
ciphers, we analyze the maximum achievable speedup
each cipher. The maximum speedup that could be achie
on a n-processor multiprocessor can be expressed as
lows:

(EQ 1)

wheref is the serial portion of the code (mainly seria
initialization) expressed as a fraction of uniprocessor exe
tion time, on is the barrier synchronization overhead for
processors, andT is the time to execute on a uniprocesso
The equation implies that the maximum speedup that co
be achieved is limited by the serial portion of the code a
the barrier overhead, which is consistent with Amdahl’s la
Increase in the fraction of serial portion decreases the spe
ups. In general, the fraction of serial initialization cod
decreases as the input size increases and the cost of (
ware) global barriers increase with increase in number
processors in the multiprocessor system.

Table 2 shows the fraction of serial fraction, barrie
overhead, and the maximum achievable speedups in all
eight ciphers. It also lists the actual speedups obtain
through simulation. These values are for 16 Kbytes input f
4- and 16-processor configurations. We use Table 2 a
EQ 1 to explain the graphs in Figure 3.

A basic observation from the graphs in Figure 3 is th
speedups increase with increase in the number of proc
sors. This trend is consistent with EQ 1 as long as f + on/T,
called thenon-parallel portion, does not increase rapidly
with n. For example, for a 16 Kbytes input, the non-parall
portion is 1.34 and 1.91 for 4 and 16 processors, on avera
Consequently, these the average speedups improve f
3.57 to 10.64 on going from 4 to16 processors.

On an overall basis, we see that 3DES, RC6, IDEA a
RC4 get better speedups than MARS, Rijndael, Blowfi
and twofish. This disparity is due to the difference in th
non-parallel portion between these two sets of ciphers. F
example, for 16-processor, 16K input configurations, t
average non-parallel portion for MARS, Rijndael, Blowfis
and Twofish at 3.35 is higher than the non-parallel portio
for 3DES, RC6, IDEA and RC4 at 1.09. This differenc
results in average speedup of 13 for 3DES, RC6, IDEA a
RC4 on a 16-processor SMP, and 9 for MARS, Rijndae
Blowfish and Twofish.

From Figure 3, we see that the speedups increase w
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Timemultiprocessor
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MaxSpeedup
T

1 f–( )T
n

--------------------- fT on+ +
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T
------+ +

----------------------------------------= =
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FIGURE 3. Speedups over uniprocessor.
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increase in input size. The length of serial code and the bar-
rier overhead remain constant for a particular cipher and a
specific number of processors. So, as input size increases,
the overall contribution of serial code and barrier overhead
decreases. For example, for 16 processors, the non-parallel
portion at 1.91, on average, is higher for 16 Kbytes input
compared to that for 64 Kbytes input. As per EQ 1, the aver-
age speedup of 10.64 for 16 Kbytes input is correspondingly
lower than that of 12.97 for 64 Kbytes input.

From Figure 3, we also see that fewer processors yield
closer to linear speedups compared to larger number of pro-
cessors. Even though the absolute value of the non-parallel
portion does not increase much with the number of proces-
sors, the relative contribution of the non-parallel portion to
parallel execution time increases with the number of proces-
sors. For 16 Kbytes input, the non-parallel portion at 1.34
for 4 processors and 1.91 for 16 processors result in speed-
ups of 3.57 for 4 processors, only 10% lower than the linear
speedup of 4, and 10.64 for 16 processors, 32% lower than
the linear speedup of 16.

In Table 2, we see that for many ciphers the maximum
achievable speedups and actual speedups diverge more on
going from 4 to 16 processors. The simulator models over-
head such as finite bus request table, and finite queuing at
the bus and memory, resulting in exposed latency due to
queuing delay and queue/table overflow. On the other hand,
EQ 1 assumes that there are no overhead other than barriers.
Because queuing delays and finite buffering are more signif-
icant for 16 processors, the actual speedups seen in our sim-
ulations are less than the maximum speedups predicted by
EQ 1.

4.3  Memory system effects
We get good speedups with larger number of proces-

sors. On initial thought, it might seem that memory system
saturation must have set in. To investigate this point, we

compare the number of compute cycles to memory laten
as well as bus occupancy.

4.3.1  Prefetching
To compare compute cycles versus memory latency,

count the number of processor cycles required to encryp
cache line of input, and present the counts in Table 2. W
see that for all the ciphers the compute cycles required
encrypt a cache line is large enough to hide typical memo
latencies (e.g., 100 processor cycles) by prefetching the n
cache line while the current cache line is being encrypte
Although all the processors issue prefetch requests to me
ory, these requests go to different banks in the interleav
memory (interleaved at cache line granularity) and do n
queue up at memory. If memory latency or contention
more, then prefetch would have to be initiated earlier (e.
two Iblocks ahead). As mentioned in Section 3.2, o
prefetching is accurate in that every block prefetched
actually accessed and no unnecessary memory traffic is g
erated.

Cipher

3DES 7364

RC6 2804

IDEA 4768

RC4 2208

Mars 2614

Rijndael 1906

Blowfish 1998

Twofish 1926

TABLE 2. CPU Cycles to
encrypt a cache line.

CPUs

1 20

2 40

4 80

8 160

16 320

TABLE 3. Number of
CPU cycles occupied on
the (unloaded) bus to
fetch a cache line per
processor from main
memory.

Cipher

fraction of
serial code (f
* 100)

Barrier overhead
(on/T * 100) MaxSpeedup Actual Speedup

(n = 4) (n = 16) (n = 4) (n = 16)  (n = 4) (n =16)

3DES 1.15 0.20 0.48 3.84 12.79 3.65 11.41

RC6 0.32 0.35 0.84 3.91 13.52 3.66 12.90

IDEA 0.19 0.21 0.50 3.94 14.42 3.90 14.40

RC4 0.77 0.15 0.35 3.89 13.66 3.63 11.82

MARS 0.99 0.37 0.89 3.83 12.39 3.62 11.26

Rijndael 1.60 0.88 2.11 3.69 10.14 3.48 9.22

Blowfish 3.25 0.47 1.11 3.58 9.59 3.16 8.46

Twofish 1.36 1.17 2.79 3.68 9.69 3.35 7.38

TABLE 2. Percent serial code and maxspeedup for 16 Kbytes input.
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Next, we isolate the effect of prefetching by comparing
execution times with and without prefetching. In Figure 4,
we show improvement as execution time with prefetching
relative to execution time without prefetching for the same
number of processors. The left graph shows 4 processors
and the right graph shows 16 processors. To project the
impact of higher processor speeds in the future, we vary
processor clock speeds as 1, 2, and 4 GHz, and commensu-
rately decrease memory latency as 100, 80, and 65 ns (i.e.,
the processor improves by a factor of 2 every step, and
memory improves by approximately 20%).

Most improvements are modest because memory cycles
are much fewer than compute cycles, so hiding memory
cycles is not much opportunity to start with. Going from 1
to 4 GHz decreases compute time, increasing the relative
contribution of memory latency and making prefetching
increasingly important. Many improvements are so small
that they fall within simulation error, and are not reliable to
identify any trends. 3DES achieves the least improvements
because this cipher has the most compute cycles, as per
Table 2.

One would expect that from 4 to 16 processors,
improvement will increase because memory is more of a
bottleneck. Improvements actually decrease a little, and
there are two reasons. First, on going from 4 to 16 proces-
sors for the non-prefetching case, memory’s contribution to
total execution time decreases due to increased overlap
among memory requests (all 16 processors simultaneously
issue memory requests, as opposed to just 4). Second, the
non-parallel portion of execution including serial initializa-
tion and barriers does not decrease from 4 to 16 processors,
limiting improvements from prefetching. Consequently,
improvements due to prefetching decreases from 4 to 16

processors.

4.3.2  Bus occupancy
We consider the effect of increasing number of proce

sors on the bus. Through experimentation, we found that
ciphers incur few cache misses on the internal data str
tures. These structures fit within our L1 cache, and are o
read-shared after initialization. Therefore, the bus traffic
due almost entirely to misses (or prefetches) on the inp
Iblocks. Although our simulator accounts for queuing at th
bus and memory, and accurately models bus occupancy
tracking the timing of bus transactions in the split-transa
tion bus, we present a simple model of bus occupancy
gain understanding. We compute the number of cycles
bus remains occupied transferring input Iblocks as follow

(EQ 2)

wheren is the number of processors, BCPT is the num
ber of bus cycles per transaction, block size is the cac
block size, and ClkRatio is the bus to CPU clock ratio. F
our experiments, we assumed 5 bus cycles per transac
(when there is no queuing), cache block size to bus wid
ratio is 1, and the bus to processor clock ratio is 4.

Using EQ 2, we list the values for the bus occupancy
Table 3. We see that for all the ciphers there are enou
compute cycles per cache line (see Table 2) for the bus
prefetch all the processors’ next cache line, even in the 1
processor case. Therefore, bus occupancy does not l
overall performance in any significant manner.

FIGURE 4. Improvement due to prefetch for 4- and 16-processor SMPs.
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4.4  Effect of barrier implementation
Because software barriers, despite using efficient MCS

locks, impact performance significantly, we experiment
with hardware barrier similar to that in the Thinking
Machines CM-5. In Figure 4, we measure improvement as
execution time using hardware barriers relative to execution
time using software barriers for the same number of proces-
sors. We use a constant latency of 100 cycles for hardware
barriers.

There are two trends apparent in the graph. First,
Rijndael and Twofish achieve the most improvements with
hardware barriers, in accordance with the fact that these two
ciphers have the largest barrier overhead, as shown in
Table 2. Second, the 16-processor SMP achieves much
more improvement than the 4-processor SMPs because not
only does barrier cost increase (Table 2), but also computa-
tion time decreases with increasing number of processors.
This double effect results in large improvements for 16 pro-
cessors. On average, 16 processors achieve 6.2% improve-
ment compared to 3.8% and 2.1% achieved by 8 and 4
processors, respectively.

Note that the barrier overhead reported in Table 2 are
fraction of uniprocessor execution time, where as improve-
ments in Figure 4 compare the multiprocessor execution
times using software and hardware barriers. Therefore, the
numbers in Table 2 do not set a bound for the improvements
shown in this section.

4.5  Overall encryption rates
We present the overall encryption rates achieved by our

multithreaded implementation in Figure 6. In the X axis, we
show the ciphers and in the Y axis we show the encryption

rates in log2 scale achieved with a clock speed of 1GHz. Th
upper graph shows results for 16 Kbytes input and the low
graph shows results for 64 Kbytes input. We use prefetch
and software barriers in this experiment because both
these optimizations are software based, and can be im
mented in most of today’s SMPs.

We see that for the 16 Kbytes inputs, the ciphe
achieve about 9 Mbytes/s encryption rates on a uniproc
sor. On a 4-processor SMP, the ciphers achieve about
Mbytes/s rates, gaining a factor of 3.5 in performance. On
16-processor SMP, the ciphers achieve around 92 Mbyte
reaching a factor of almost 10 improvement over uniproce
sor. SMP encryption rates for 3DES is the lowest because
the large number of cycles taken to encrypt each cac
block of data, as shown in Table 3. Encryption rates for 6
Kbytes input are better (note the Y axis is logarithmic sca
than those for the 16 Kbytes input due to the amortization
the serial initialization over a larger input. This amortizatio
occurs in both uniprocessor and SMP systems. For t
larger input, many of the ciphers achieve over 128 Mbyte
encryption rates using 16 processors.

5  Related Work
In previous work [5, 32, 24], the authors propos

instruction-set support for cryptographic processing. Th
suggest extending the instruction set as well as hardw
implementation to provide instruction-level support t
accelerate encryption. Our proposal is orthogonal to the
previous proposals and, we would benefit from ISA suppo
because our multithreaded code would naturally exploit a
hardware support in the processor to execute individu
threads faster.

There have been several proposals for hardware pub
key encryption [17,26,25,11,4]. There are several hi
speed hardware implementations of DES and 3DES al
rithms [9,12], IDEA [15], Twofish [3], and RC6 [21]. These
are algorithm-specific hardware solutions, whereas our p
posal involves changing the software to a multithread
implementation.

6  Conclusion
To deliver high performance while maintaining high

level of security assurance in real systems, the cryptograp
community has proposedInterleaved Cipher Block Chain-
ing (ICBC) mode. In four-way interleaved chaining, the
first, fifth, and every fourth block thereafter are encrypted
CBC mode; the second, sixth, and every fourth block the
after are encrypted as another stream, and so on. Thus, in
leaved chaining loosens the recurrence imposed by CB
enabling the multiple encryption streams to be overlappe
The number of interleaved chains can be chosen to bala
performance and adequate chaining to get good data di
sion.

FIGURE 5. Improvement of hardware barrier over
software barrier
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While ICBC was originally proposed to improve hard-
ware encryption rates by employing multiple encryption
chips in parallel, this is the first paper to evaluate ICBC via
multithreading commonly-used ciphers on a symmetric
multiprocessor (SMP). Multithreading ciphers using ICBC
allows exploiting the full processing power of SMPs, which
spend many cycles in cryptographic processing as medium-
scale servers today, and will do so as chip-multiprocessor
clients in the future.

Using the Wisconsin Wind Tunnel II, we showed that
our multithreaded ciphers achieve encryption rates of 92
Mbytes/s on a 16-processor SMP at 1 GHz, reaching a fac-
tor of almost 10 improvement over a uniprocessor, which
achieves 9 Mbytes/s. We found that multithreading the
ciphers using ICBC makes them a good match for SMPs
because there is no data sharing and no communication
among the threads. The threads are naturally load balanced
and computationally intensive, spending hundreds of cycles
per cache line of input data brought from main memory. We
showed that the number of compute cycles per cache line of
input data is large enough both to hide prefetch of the next
cache line, and to allow the bus to service prefetch requests
from up to 16 processors. Serial initialization code, software
barrier costs, and bus utilization are the factors preventing
multithreaded ciphers from achieving perfect speedups on
SMPs.
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