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Abstract

Testing is a difficult process that becomes more difficult with
scaling. With smaller and faster devices, tolerance for errors
shrinks and devices may act correctly under certain condition and
not under others. As such, hard errors may exist but are only exer-
cised by very specific machine state and signal pathways. Target-
ing these errors is difficult, and creating test cases that cover all
machine states and pathways is not possible. In addition, new
complications during burn-in may mean latent hard errors are not
exposed in the fab and reach the customer before becoming active.

To address this problem, we propose an architecture we call
BlackJack that allows hard errors to be detected using redundant
threads running on a single SMT core. This technique provides a
safety-net that catches hard errors that were either latent during
test or just not covered by the test cases at all.

Like SRT, our technique works by executing redundant copies
and verifying that their resulting machine states agree. Unlike
SRT, BlackJack is able to achieve high hard error instruction cov-
erage by executing redundant threads on different front and back-
end resources in the pipeline. We show that for a 15%
performance penalty over SRT, BlackJack achieves 97% hard
error instruction coverage compared to SRT's 35%.

1 Introduction

Technology scaling has yielded smaller and faster transistors
which have enabled higher performance. Unfortunately, scaled
devices are more susceptible to hard errors (i.e., permanent errors)
because each device has smaller margins for correct operation. For
instance, a small charge trapped in the gate oxide can permanently
damage the transistor. In addition, because margins are small,
other (hard to quantify) variables can cause devices to operate cor-
rectly in some cases and incorrectly in others. These variables
arise from normal operating conditions such as signal paths,
machine state, or localized temperatures and supply-voltage
droops. With correct operation being dependent on such variables,
testing becomes difficult. For good coverage, it is not enough to
test a transistor under one operating condition, but every transistor
must be tested considering intractably many signal paths and
machine states.

The increasingly-difficult problem of latent defects compli-
cates the testing process even more. CPU lifetime can be
described best by a bathtub-shaped curve, where some chips have
short lifetimes, a few have intermediate lifetimes, and most have
long (acceptable) lifetimes. The lifetime is determined by how
long it takes for a latent defect to worsen and become active. CPU
manufacturers weed out the short-lifetime chips from the produc-
tion flow by a process called burn-in. In burn-in, chips are run at
high voltage and temperature to cause large amounts of wear-and-
tear over a short amount of time. Burn-in causes chips with short
lifetimes to fail before leaving the fab, so that chips that reach the
customer can be expected to have a long (acceptable) lifetime.

Burn-in has long been relied upon but its continued feasibility and
coverage are now coming into question. As devices get smaller,
they incur more wear-and-tear in burn-in causing even the long-
lifetime chips to fail. In addition, an effect called thermal run-
away is becoming a problem. In thermal run-away, devices under-
going burn-in get hotter increasing leakage which in turn increases
the temperature, creating a positive feedback loop. If thermal-run-
away is not controlled, even the good chips are destroyed [13]. If
controlled, the coverage of burnin comes into question [8]. Have
all devices been exercised long enough at high-enough tempera-
tures so that all latent faults are exposed?

These two worsening difficulties attack two basic assumptions
of testing for hard errors. The first difficulty implies that test cases
cannot be created for every possible defect. The second difficulty
implies that even if one could, some of the latent defects would
remain unexposed by burn-in. Even today, not only is 100% cov-
erage not achieved but even quantifying what has been covered is
only an approximation [7].

Despite these difficulties, testing will not disappear, but will
only become more important. However, hard errors will get by
and will be exposed in the field, despite most valiant attempts.
This paper proposes a technique which is a safety net, not a
replacement, for testing. Our technique allows defects that are
missed in the testing process (either because the error was never
tested, or the error was latent at testing time) to be detected in the
field, preventing hard errors from corrupting data. It may seem
that continual testing throughout the lifetime of the chip would
achieve our target. However, injecting test inputs into the chip
requires testers, which are expensive, specialized machines, and
are not available in the field.

We make the key observation that instead of testing for an inor-
dinately large number of potential defects we can instead test only
for the defects that are exercised by a program when the program
runs. One such way is to redundantly execute the program and
compare program state. Because redundant execution is the stan-
dard approach to handling soft errors, our observation implies that
soft-error schemes can be applied to hard errors to allow previ-
ously untested or latent defects to be detected at run time.

Despite this implication, soft-error schemes can not be applied
as is to hard errors. Because soft-error techniques rely on the
errors being transient, the techniques exploit temporal redundancy.
For instance, a Simultaneously and Redundantly Threaded proces-
sor (SRT [10]) executes two copies of a program, called leading
and trailing threads, on one SMT core assuming that a soft error
would affect only one copy. Because hard errors are permanent,
temporal redundancy alone will not suffice. Because both copies
of an instruction run on the same core, they may encounter the
same hard error which would then elude detection. To ensure
proper detection, each instruction copy must use different hard-
ware. That is, the redundant executions must be spatially diverse.

Ensuring spatial diversity is the key challenge in using SRT for



hard-error detection. We address this challenge in our microarchi-
tecture called BlackJack. Spatial diversity does not occur naturally
in SRT because the trailing thread is mostly-identical to the lead-
ing thread, resulting in the same resources being used by most
leading-trailing instruction pairs. A naive approach would be to
shuffle SRT’s trailing instructions that are issued together in one
cycle, so that each trailing instruction goes to a different execution
way than the corresponding leading instruction. However, as we
explain later, there is no convenient point in the pipeline to shuffle
the trailing instructions. Shuffling before rename violates program
correctness due to lack of dependence information; shuffling after
rename does not cover the frontend and severely complicates issue
which is already timing-critical.
To avoid these difficulties, we make the key observation that
the leading thread determines dependencies well before the trail-
ing thread executes. Accordingly, our novel idea is that we borrow
dependence information from the leading thread which allows us
to shuffle the instructions before they are fetched by the trailing
thread. The dependence information ensures that the shuffling pre-
serves program correctness. Specifically, we shuffle the leading
instructions that were co-issued in the same cycle, called a packet.
Our shuffling is not random and is specifically designed to ensure
that the leading and trailing executions are spatially diverse. We
call this scheme safe-shuffle which allows us to cover both the
frontend and backend. Because we perform the shuffling at the
leading thread commit which is off the critical path, we do not
affect timing-critical components.
Finally, there may be a marketing concern as to what happens
when a defect is detected. We have not changed the marketing
model. The key point is that the defect exists with or without
BlackJack, and both cases will result in the chip being returned to
the manufacturer. Without BlackJack, the user will return the chip
after the defect causes data corruption. BlackJack prevents this
corruption.
In summary, the main contributions of BlackJack are:
® We show that shuffling the trailing thread allows SRT, a soft-
error technique, to detect hard errors as well.
® We propose safe-shuffle; a novel scheme which allows us to
shuffle instructions before they enter the trailing thread while
still ensuring correctness. Thus safe-shuffle allows coverage of
hard-errors in both the pipeline frontend and backend.

® We show that for a 15% performance degradation over SRT,
BlackJack is able to achieve 97% hard error instruction cover-
age while SRT achieves 34%.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 provides background on SRT.
Section 4 describes BlackJack. Section 5 describes our experimen-
tal methodology, and Section 6 presents our results. We conclude
in Section 7.

2 Related Work

There is a large body of past work [12] on error checking logic
and error correcting codes (ECC). Although applicable to some
modern microarchitectural structures (mostly array memory struc-
tures and some data path components) and implemented in some
modern processors [2], these techniques cannot cover much of the
faster and more complex control-dominated modern microarchi-

tectures. For example, it is hard to build checker logic that checks
the issue queue operation every cycle and correctly responds to
wakeup and select actions without significantly degrading cycle
time.

Because of such deficiencies in error checking logic for mod-
ern processors, there has been extensive work in architectural
redundancy techniques for soft errors. SRT with recovery (SRTR)
[17] extends SRT to detect and recover from soft errors, but still
would not provide good hard-error instruction coverage because of
lack of spatial diversity. Though primarily targeting soft errors,
Redundant Multithreading (RMT) [9] proposes using redundant
threads for hard errors. Using a clustered microarchitecture, RMT
achieves spatial diversity by executing the redundant threads on
different clusters. However, because the frontend of the pipeline is
not clustered, the technique does not provide coverage for the
frontend, ensuring spatial diversity only after rename. Moreover,
RMT can provide backend coverage only because the issue queue
is statically segmented among the clusters at design time, so that
the leading and trailing instructions can be dispatched to different
issue-queue segments. However, a segmented issue queue would
incur substantial performance loss in an SMT compared to a con-
ventional unified issue queue. A unified issue queue allows both
threads to occupy as much of the issue queue as needed whereas as
a segmented issue queue artificially limits each thread to its own
segment. Such segmentation defeats SMT’s purpose of improving
throughput by flexibly sharing the pipeline resources (one of the
most important of which is the issue queue) among the threads.

Chip-level redundant threading with recovery (CRTR) [6] pro-
poses a CMP-based solution for soft-error detection and recovery.
Despite being designed for soft-error recovery, CRTR would natu-
rally provide good spatial diversity by running the redundant
threads on two different cores. However,CRTR requires many val-
ues (every load and store value and address) to be sent at high rates
between the cores. As such, satisfying such high bandwidth
demand may not be realistic as it would require deeply-pipelining
long, wide buses by introducing numerous latches and buffers
which are power-hungry and increase chip area. Furthermore,
CRTR forces running one copy each of two different programs on
one core (limiting one core to run one copy of only one program
would halve execution throughput and is not an option). The two
programs may thrash in the core’s i-cache, and may contend for
pipeline resources increasing the complexity of the OS in ensuring
that each program gets its due share of resources. The contented
resources may not be visible to the OS, which would amount to
not just worse complexity but more uncertainty in the OS. In con-
trast, SRT runs both copies on the same core, containing each pro-
gram to one core and avoiding these OS complexity and
uncertainty problems.

A recent paper on lifetime reliability [16] discusses the effect
on reliability of detecting and disabling defective resources, but
provides no such techniques to support such features.

DIVA[1], although intended to catch design bugs, not fabrica-
tion bugs, can catch some hard errors. DIVA uses an additional
simple pipeline that checks committed instructions. A recent work,
[3], uses multiple DIVA checkers to provide on-line diagnosis of
failures. Online diagnosis may not be advantageous to the user
beyond detection, if degraded operation is not acceptable and
defective chips are still to be returned. As proposed in [3], the mul-
tiple DIVA checkers and additional area overhead may increase



the likelihood of the chip having a failure. Furthermore, [3] relies
on randomization logic in the timing-critical select-map logic for
spatial diversity. Finally, to keep DIVA checkers simple, [3] can
not cover hard errors in large parts of the pipeline such as the reg-
ister file.

A recent paper, [5], proposes defect-tolerance techniques for
CMP interconnect switches. This work is orthogonal to ours
because we target defects in the processor pipeline.

another recent work [18] proposes using standard SMT to run
test case applications in the background and evaluates perfor-
mance overhead. [18] does not rely on redundancy and therefore
its coverage depends on the quality, number and frequency of test
cases being ran.

Finally, Rescue [11] proposes architectures that allow detected
hard errors to be isolated at test time and avoided at run time, but
provides no support for hard errors missed at test time.

3 SRT Background

SRT [10] provides a hardware technique for detecting soft
errors. SRT uses SMT hardware to allow two copies of a single
program, called leading and trailing threads, to be executed con-
currently on one SMT core. SRT detects soft errors whenever the
corresponding stores in the leading and trailing threads disagree in
address or data. Specifically, the leading store waits in the store
buffer for the trailing store. Upon successful checking, SRT com-
mits the store to the memory hierarchy. SRT commits register
writes, however, in the respective threads without any checking.
Because incorrect values propagate through computations and are
eventually consumed by stores, checking only stores suffices for
soft-error detection.

In SRT, the trailing thread executes behind the leading thread
by some specified amount of slack. This slack provides two
important performance advantages. First, the slack enables the
leading branches to be resolved well ahead of the trailing thread,
so that branch outcomes are passed to the trailing thread to be used
as the trailing thread’s prediction, allowing the trailing thread
never to mispredict (assuming fault-free operation). Second, the
slack enables leading load misses to be resolved well ahead of the
trailing thread, so that leading load values can be passed to the
trailing thread, allowing the trailing thread never to miss. Thus,
only the leading thread accesses the cache. The second advantage
also addresses a correctness issue: Duplicating cached loads is
problematic because memory locations may be modified by an
external agent (e.g., another processor) between the time the lead-
ing thread loads a value and the time the trailing thread tries to
load the same value. Then, the two threads may diverge if the
loads return different data, resulting in loss of redundancy.

Together these two advantages mean that the trailing thread
executes far fewer instructions than the leading thread and exe-
cutes the remaining (only non-speculative) instructions at high
IPC. By using SMT, SRT allows much of the trailing thread’s exe-
cution to be hidden during leading thread stalls. To implement the
passing of branch outcomes and load values from the leading
thread to the tailing thread, SRT uses a Branch Outcome Queue
(BOQ) and a Load Value Queue (LVQ).

4 Hard Error Detection with SMT

The key to detecting hard errors on SMT is ensuring spatial
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diversity — i.e., trailing instructions do not use the same pipeline
resources used by the corresponding leading instructions. We note
that in an out-of-order pipeline an instruction is processed in one
frontend way crossing over only at the issue queue to a backend
way which the instruction uses till write back. Figure 1 shows a
diagram of the instruction flow. Once in a frontend way or back-
end way, an instruction uses resources dedicated to that way. It
suffices to ensure that a trailing instruction uses a different fron-
tend way and a different backend way than the leading instruction
to ensure that the trailing instruction uses different pipeline
resources than the leading instruction. Spatial diversity does not
occur naturally in SRT because the trailing thread is an instruction
stream mostly-identical to the leading thread, resulting in the same
resources being used by most leading-trailing instruction pairs.

In Section 4.1, we first discuss the problems with a straight-for-
ward but naive approach to enforcing spatial diversity in the exe-
cution of the leading and trailing threads. We then continue on in
Section 4.2. to describe our safe-shuffle which shuffles leading
instructions, borrowing dependence information from the leading
thread, to produce trailing instructions so that spatial diversity is
enforced while maintaining program correctness in the trailing
thread. In Section 4.3, we describe execution of the trailing thread.
Finally, in Section 4.4, we discuss comparison of the leading and
trailing state, and how we verify the dependence information that
was passed from the leading thread to the trailing thread for safe-
shuffle. This verification is needed so that dependence information
corrupted by a hard error and propagated from the leading thread
to the trailing thread, does not result in the error going undetected.

4.1 A Naive Approach

A naive approach to forcing the trailing instructions to use dif-
ferent pipeline resources from their leading counterparts, would be
to perform some sort of shuffling on the trailing thread. However,
there is no convenient point in the pipeline at which the trailing
instructions can be shuffled. One option is to do the shuffling
before rename, but then the trailing thread will not preserve depen-
dencies and will diverge from the leading thread, resulting in loss
of redundancy. A second option, is to shuffle after rename but
before dispatch (i.e., insertion into the issue queue as done in [9]),
but this introduces two problems: (1) Because both leading and
trailing threads are fetched from the I-cache and the instruction
location within a cache block does not change in leading and trail-
ing threads, both leading and trailing instructions would exercise
the same pipeline-frontend way resulting in zero coverage of the
frontend. (2) The issue queue may undo the shuffling and map the
trailing instructions to the same execution way as the correspond-
ing leading instruction. A third option is shuffling after issue but
this would require updating issue's data structures to reflect the



modified pipeline resource usage (some resources in use upon
issue may not be in use upon shuffle, and vice versa). In addition,
although there are enough resources to issue some instructions,
spatial diversity may sometimes require that fewer instructions be
issued and the excess be held back. The issue-queue updating and
excess handling would severely complicate the pipeline. The final
option is for shuffle to occur in the timing-critical issue. In this
option, the select logic has to ensure that there is no excess due to
shuffling, in addition to the usual constraints. And the mapping
logic has to ensure that spatial diversity is maintained, in addition
to the usual constraints. These additional requirements would
severely complicate issue.

The following sections contain descriptions in detail of how
instructions are fetched out-of-order, shuffled, and checked at
commit. This detail should not be misinterpreted as complexity.
Many common superscalar techniques (e.g., renaming) would
seem complex if described at such fine detail. In addition, Black-
Jack has been carefully designed that all new hardware is off the
critical path. Seemingly simpler options, which we describe
above, that can not be moved off the critical path will have severe
impact on performance.

4.2 Safe-Shuffle

Because we want to cover both the frontend and backend it is
necessary that shuffling be done before the fetch of the trailing
thread. Here we address the problem that instruction dependen-
cies, needed to guarantee the correctness of such shuffling, have
not yet been determined.

There seems to be a catch-22 that prevents us from covering
the frontend: we cannot shuffle the instructions without first
knowing the dependencies among the instructions to be shuffled,
but we cannot know the dependencies without fetching the instruc-
tions in the original program order, yet we cannot fetch the instruc-
tions in program order if we want to cover the frontend. We make
the key observation that because we are executing the same pro-
gram redundantly in the leading and trailing threads and because
there is a slack between the threads, the leading thread has already
determined the dependencies before the trailing execution begins.
Accordingly, in safe-shuffle we borrow the dependence informa-
tion from the leading thread to allow shuffling before the trailing
thread is fetched.

We implement safe-shuffle in a two-phase process: In the first
phase, we collect information on the leading instructions’ indepen-
dence, rename maps (i.e., logical to physical register maps), and
pipeline-resource-usage. In the second phase, we use the indepen-
dence and resource-usage information to shuffle the leading
instructions for producing the trailing thread that is spatially
diverse from the leading thread. Shuffling produces the trailing
thread in the leading thread’s issue order. Though issue order pre-
serves true dependencies, it removes false dependencies and over-
laps multiple live ranges of the same logical register. Fortunately,
the leading rename maps correctly identify the live ranges, allow-
ing the trailing thread to maintain program correctness. We
describe the first phase in Section 4.2.1, and the second in
Section 4.2.2.

4.2.1 Collecting Independence Information

Our technique relies on the observation that instructions co-
issued in the same cycle are independent and can be shuffled with-

out causing correctness problems. As such we use the execution of
the leading thread to record co-issued instructions, called a packet,
and also the pipeline resources used by the instructions and their
rename maps. We collect this information in a simple queue called
the Dependence Trace Queue (DTQ). Each entry contains infor-
mation for one issued leading instruction and the entries are allo-
cated for all issued leading instructions in issue order. The order
that entries are allocated within a packet can be arbitrary. The
instructions collect information during execution and record infor-
mation at commit.

Leading instructions in a packet are allocated consecutive
entries, and the last instruction in the packet has a bit set to demar-
cate the end of the packet. Because the allocation of DTQ entries
need be completed only before writeback, the allocation need not
be done in the timing-sensitive select and map logic. When lead-
ing instructions are in the pipeline they record, and carry with
them until commit, two IDs to identify the pipeline resources that
the instructions used. One ID specifies the frontend-way, and the
other specifies the backend-way. The instructions also carry the
logical to physical register maps for their source and destination
operands. Upon commit, the leading instruction records its unde-
coded instruction, its rename maps, and its frontend and backend
IDs in its DTQ entry. Because the DTQ holds only the committed
leading instructions (albeit in issue order) which are shuffled to
produce the trailing thread, our trailing thread does not execute
any misspeculated instructions, as is the case in SRT.

While the leading thread’s issue order helps us implement safe-
shuffle, we also need the leading thread’s program order to keep
trailing loads and stores in program order in the load/store queue
of the trailing thread’s context, and to commit the trailing thread.
Because the trailing thread is fetched from the DTQ, which is in
issue order and not program order, we also need to record the lead-
ing thread’s program order. One method for recording this order-
ing would be to actually allocate trailing thread active list and
load/store queue entries in the trailing thread context when each
leading instruction commits, which is well before the correspond-
ing trailing instruction is fetched. Such early allocation would
mean that idle instructions in the slack would be consuming trail-
ing thread resources and consequently, slack would be limited by
the size of the trailing context load/store queue (which is the
smaller of active list and load/store queue). Instead, we allocate
virtual active list and load/store queue entries at leading thread
commit to record the ordering without requiring that instructions
in the slack are actually assigned to any trailing thread resources.
We store these allocations in the DTQ as well.

Thus, we have borrowed the leading thread’s issue order,
rename maps, and program order. Later we will describe how we
verify the correctness of this borrowed data to ensure that a single
error that corrupts both threads identically is still caught.

4.2.2 Using Independence to Shuffle

While the leading thread places its packets in the DTQ, shuffle
waits for the packets to reach commit and then shuffles the instruc-
tions within a packet, one packet at a time, producing shuffled
packets that will be fetched by the trailing thread.

To enforce spatial diversity, Shuffle must satisfy the following
two constraints. First, when the packet is fetched by the trailing
thread, each instruction in the packet must map to a different fron-
tend than was used by the corresponding leading instruction. Sec-



ond, if a/l the instructions in the packet are co-issued together in
the same cycle in the trailing thread and no other (leading or trail-
ing) instruction is co-issued (Section 4.3.2 describes why these
conditions may not be met and what happens then), each trailing
instruction must be issued to a different backend than was used by
the corresponding leading instruction. Therefore, shuffle cannot be
random, must be aware of the policies used by both fetch and
instruction map, but can work with any policy as long as the policy
is deterministic.

We assume the following policies, which afford the most
straightforward implementation and are consequently the most-
commonly used: direct mapping policy for fetch where the first
instruction in fetch order goes to first frontend way, the second
instruction to the second frontend way and so on, and oldest-first
mapping policy for instruction select and map, where the oldest
instruction goes to the first free backend way that matches the
instructions’ type (e.g., ALU, memory, or branch type), the second
oldest instruction to the second matching backend way and so on.

With the above policies, if shuffle produces a (shuftled) packet
whose instructions are fetched and co-issued meeting the second
constraint’s conditions, then the packet’s first instruction is guar-
anteed to use the first frontend way and the first matching backend
way, the second instruction is guaranteed to use the second fron-
tend way and the first of the remaining matching backend ways
and so on. Consequently, to meet the above two constraints for
spatial diversity, Shuffle need only determine an ordering so that
each trailing instruction in a packet uses a different frontend way
and different backend way than the ways used by the correspond-
ing leading instruction.

To prevent issue and fetch from undoing our shuffle when there
are fewer instructions in a packet than the issue width, we allow
shuffle to insert NOPs. We require that the NOPs remain in the
pipeline through writeback (i.e., each NOP occupies a frontend
and backend way and an issue-queue slot).

We use the following simple, greedy algorithm which works
well in most cases. The algorithm shuffles an input packet into an
output packet. Each instruction in the input packet (in any arbi-
trary order) grabs the first free output-packet slot that is spatially
diverse from the corresponding leading instruction (i.e., does not
map to either the frontend or backend way used by the correspond-
ing leading instruction). At a given output-packet slot, the instruc-
tion’s new frontend way is easy to determine whereas the backend
way is a little more involved: The instruction’s new frontend way
is the output-packet slot number, and the new backend way is the
number of instructions in the packet that have already been allo-
cated to lower slot numbers and use the same type of backend way.
The given output-packet slot is acceptable if the new ways are spa-
tially diverse from the leading instructions. If allocation of an
instruction passes over an empty output-packet slot that the
instruction cannot use because the slot maps to the corresponding
leading instruction’s frontend or backend way, the instruction puts
an NOP in the slot and marks the slot with the instruction’s type.

The process continues with each instruction in the input packet
attempting to grab a free output-packet slot. If an instruction finds
an acceptable slot containing a NOP marked with a matching
instruction type, the instruction can claim the slot and replace the
NOP. This replacement is what allows two instructions of the same
type to swap backend ways as depicted in Figure 2. NOPs created
by one type cannot be replaced by an instruction of another type

_ slot #
inst A Front 0 Back O‘ ‘ ‘ NOP ‘ ‘ 0
\ ‘ inst A Front 0 Back 0‘ ‘ 1
2
| 3

|inst BFront 1 Back 1| ‘ 0
inst A Front 0 Back 1 | ‘ 1
| 2
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FIGURE 2: Safe-shuffle swapping resource
allocations of two like instructions.

‘inst BFront 1 Back 1 /

because doing so may require correcting (decrementing, to be pre-
cise) the backend mappings of some previously-allocated instruc-
tions (those whose backend way is larger than that of the NOP
being replaced). Such correction would not fit the greedy nature of
the algorithm and would complicate the algorithm. There will
never be fewer output-packet slots than instructions if the issue
width matches the frontend width. However, there may be slots
with NOPs that cannot be replaced by later instructions either
because the slot is not spatially diverse from the corresponding
leading instruction or because the NOPs are allocated by a differ-
ent instruction type. If an instruction cannot find a slot, the output
packet is ended and the remaining instructions of the input packet
start a new output packet (the input packet gets broken into two or
more output packets). Breaking an input packet reduces parallel-
ism and its impact on performance is discussed in Section 6.

Because of SRT’s long slack, there are many cycles between
commit of the leading thread and fetch by the trailing thread. Con-
sequently, there is ample time to perform the shuffling, which, if
needed, may be pipelined over multiple cycles.

The output packets are placed in the trailing thread’s fetch
queue. Because the input packets come from the DTQ and shuf-
fling shuffles only the instructions within an input packet, the fetch
queue inherits DTQ’s leading-thread issue order across packets.

4.3 Trailing Thread Execution

4.3.1 Frontend

The trailing thread fetches the shuffled packets from its fetch
queue according to SRT’s slack (Section3) as depicted in
Figure 3. When given fetch bandwidth, the trailing thread fetches
one packet each cycle. Because of the direct mapping of instruc-
tion fetch to frontend ways, each instruction maps to the frontend
way as intended by safe-shuffle and continues on to be decoded on
different hardware than was used to decode the corresponding
leading instruction.

It is important to note that the trailing-thread fetch is limited to
fetch only one packet per cycle even if the packet is smaller than
the fetch width of the pipeline. If multiple packets were fetched in
one cycle, then the mapping of the packets’ instructions to the
frontend ways may be different than that intended by safe-shuftle,
resulting in loss of spatial diversity. While this restriction ensures
frontend spatial diversity, it potentially lowers the trailing thread’s
fetch bandwidth, degrading performance.

The trailing thread is fetched in leading thread’s issue order,
which while preserving true dependencies removes false depen-
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dencies and overlaps multiple live ranges of the same logical reg-
ister. Because of this overlap, the trailing thread renamer cannot
correctly connect consumers to their producers by looking only at
the logical registers of the instructions. Fortunately, leading thread
rename maps can make this connection. Accordingly, the trailing
thread renamer uses the leading thread’s physical registers
(sources and destination) as input, instead of the usual logical reg-
isters. That is, the trailing thread renamer renames the renamed
leading instructions! Though this double renaming allows us to
cover the frontend while preserving program correctness, the
downside is that our rename tables have more rows because there
are more physical registers than logical registers.

While there is also an issue with determining in rename which
physical register each instruction should free, the actual freeing is
done at commit, and we address the issue there.

Because the trailing thread fetches from its fetch queue without
any branch prediction, the fact that branches appear in issue order
(i.e., out of program order) in the trailing thread does not matter.
Branches simply flow through the pipeline and execute. We use
their execution to verify the trailing-thread program order which is
borrowed from the leading thread.

Once decoded we use the virtual active list and load/store
queue specifiers in the DTQ (Section 4.2.1) to allocate corre-
sponding physical entries for each fetched instruction. We trans-
late these virtual specifiers to physical load/store queue and active
list entries by keeping the virtual to physical mapping for the head
of the physical structures as a reference. Any virtual index which
is j greater than the head’s virtual index is allocated a physical
index j away from the head. Ifj is larger than the size of the struc-
ture, then the frontend is stalled till there is space in the structure.
Combined with out-of-order fetch, this allocation means that
instructions that are fetched earlier than their commit order will
allocate physical entries leaving the appropriate number of empty
slots ahead of them.

4.3.2 Dispatch/Issue

After rename, register tags correctly encode instruction depen-
dencies and instructions move on to be dispatched into the issue
queue. Ideally, the constraints assumed by shuffle will be main-
tained at issue. Instruction packets will issue complete and alone,
and each trailing thread instruction will issue to a different back-
end than it used in the leading thread.

Because we leave the issue queue and issue policy unmodified,
the issue queue may undo our shuffling by breaking up the shuf-
fled packets in the trailing stream and introducing unrelated lead-

ing and trailing instructions into the packets. Doing so would
violate the conditions of safe-shuffle’s second constraint, specified
in Section 4.2.2, that the trailing packet should co-issue as a whole
and no other unrelated instructions should co-issue with the
packet, and may result in loss of spatial diversity and reduced cov-
erage. The undoing occurs due to two types of interference, lead-
ing-trailing interference and trailing-trailing interference.
However, because trailing thread is fetched in leading thread’s
issue order, both types of interference are rare. We explain the
details next.

Leading-trailing interference occurs when leading instructions
co-issue in the same cycle with trailing instructions. Leading
instructions issuing with trailing instructions causes trailing pack-
ets to break apart, some parts of the packets issuing with leading
instructions, and some issuing alone (or with other trailing-thread
instructions). Fortunately, in SRT and BlackJack, dependencies
naturally cause issue from each thread to be bursty, either only
leading instructions or only trailing instructions are issued in most
cycles though both threads are present in the issue queue. We
quantify this bursty behavior in Section 6. While this bursty issue
behavior makes leading-trailing interference rare, another reason
makes the interference even rarer. The trailing thread is a high-IPC
thread fetched in dependence order with no branch mispredictions
or cache misses (see Section 3), while the leading-thread is a
lower-IPC thread fetched in program order and the issue policy is
oldest-first. Consequently, the trailing instructions issue out of the
issue queue almost as soon as they are inserted, while the leading
instructions take multiple cycles to issue. This difference in occu-
pancy means that a trailing instruction has a slim chance of
becoming older than any leading instruction in the issue queue. As
such, the trailing instructions almost always have lower priority
than any leading instructions that are ready. Therefore, trailing
instructions cannot disturb the leading instructions ready to issue.

The lack of leading-trailing interference results in two distinct
benefits: (1) Leading instructions rarely interfere with trailing
packets. (2) Conversely, trailing instructions rarely interfere with
leading instructions. If this converse were not true, the leading
thread’s backend resource usage information collected by safe-
shuffle could be due to the leading thread either issuing in isola-
tion or co-issuing with some trailing instructions. While the first
case causes no problems for safe-shuffle, the second case implies
that the leading packets are narrower than the issue width. Narrow
leading packets force safe-shuffle either to put many NOPS in the
shuffled packets to ensure spatial diversity or to use a shuftling
algorithm more complicated than our simple, greedy one to try to
combine multiple leading packets into one trailing packet.

Similar to leading-trailing interference, trailing-trailing inter-
ference is also rare. Trailing-trailing interference occurs when one
packet co-issues with instructions from another packet. It may
seem that it would be difficult to prevent trailing-trailing interfer-
ence especially if the issue queue is to remain unmodified. How-
ever, the fact that the trailing stream is ordered in dependence
order reduces trailing-trailing interference. As mentioned before,
this order implies that trailing instructions enter and leave the
issue queue without much delay. This quick departure combined
with the fact that the trailing thread fetches only one packet per
cycle (Section 4.3.1) implies that most often only one trailing
packet resides in the issue queue at any given time, giving little
opportunity for the issue queue to introduce trailing-trailing inter-



ference.

Nevertheless, the issue queue may occasionally have more than
one co-resident trailing packet due either to long-latency trailing
instructions backing up in the issue queue or to leading-trailing
interference. In such cases, the issue queue may wake up later
packets in an order different than the trailing dispatch order (which
is the same as the leading issue order). This different order occurs
because the leading issue order is based on the latencies seen by
the leading thread which are different from those seen by the trail-
ing thread. The leading thread sees cache miss latencies which are
hidden completely from the trailing thread due to the slack (see
Section 3). Trailing loads access only the LVQ and not the cache
hierarchy, and as such, may complete earlier than the dispatch
order expects, creating opportunity for instructions in later packets
to be woken up earlier and to be co-issued with earlier packets.

Both types of interference being rare implies that most often
the trailing packets are co-issued as a whole and not co-issued
with unrelated leading or trailing instructions. Consequently, the
conditions of safe-shuffle’s second constraint, specified in
Section 4.2.2, are met, and spatial diversity is maintained in the
common case.

This way of maintaining spatial diversity without modifying
the issue queue does come at the price of some performance loss.
Leading-trailing interference is reduced by trailing thread’s issue-
order fetch which does not negatively impact performance. How-
ever, preventing trailing-trailing interference relies on fetching one
packet per cycle which limits trailing thread’s fetch bandwidth and
negatively impacts performance, as discussed in Section 4.3.1.

4.4 Commit and Correctness Check

After passing through the remainder of the backend pipeline,
trailing thread instructions complete and wait for commit in pro-
gram order. Because register dependencies are preserved, commit
is in program order, and both threads maintain the ordering in the
load/store queue, the result of each trailing instruction and its lead-
ing counterpart will be in agreement when there are no errors.

BlackJack checks for agreement by comparing the trailing
stores against corresponding leading stores waiting in the store
buffer in the same way as SRT (Section 3). However, safe-shuffle
borrows dependence information from the leading thread to pro-
duce the trailing thread. Therefore, we must perform additional
checks so that corruption of this information due to a hard error
does not cause identical mistakes in the two threads, allowing the
error to go undetected. We note that this additional check is in the
same vein as SRT’s branch outcomes. SRT passes leading branch
outcomes to the trailing thread which uses the outcomes as predic-
tion and not as result. Trailing branch execution validates the pre-
diction which forms a separate check for the correctness of the
outcomes.

The borrowed information includes dependence information in
the form of leading issue order and leading rename maps, and
leading program order.

To check the dependence information, we observe that we need
to ensure that the trailing thread maintains the dependencies in the
original program. To implement this check, we use a second
rename table at trailing commit, in a slightly different fashion than
normal which is described below.

As trailing instructions commit in program order, they use their
logical source registers to look up their physical source registers in

the second table. While normally a new physical register is allo-
cated for the destination operand, the trailing instructions already
have their physical destination register which they use to update
the table as the new mapping for the logical destination register.
We compare the looked-up physical source registers against the
physical source registers that were provided by the first trailing
rename and used by the instructions in trailing execution. A dis-
agreement signifies either a leading-thread error that propagated to
the trailing thread through safe-shuffle, or a trailing-thread error
(including this dependence check). Because the second rename
table is used only by the trailing thread and never by the leading
thread, we maintain spatial diversity.

Because the first trailing rename is done out of program order,
we do not free physical registers as determined by the first
renamer (Section 4.3.1). Instead, we free the physical register that
the second renamer reports as the previous mapping of the destina-
tion register because the second rename is in program order. Using
the second renamer ensures that freeing reflects program order, not
dependence order.

Finally, the trailing thread does not fetch its own instructions
but obtains the instructions committed by the leading thread.
Therefore, program-order errors in the leading thread could cause
incorrect instructions to be fetched, instructions to be dropped or
instructions to be added, and the trailing thread will duplicate
these errors. To check for this kind of error we require an addi-
tional simple check at commit that checks that the program
counters of the committed instructions are correct. If a committed
instruction is a taken branch, the program counter of the next com-
mitted instruction should be the branch target; otherwise the pro-
gram counter of the next instruction should be the program
counter of the previous instruction plus the size of an instruction.

4.5 Coverage

While BlackJack ensures spatial diversity in the combinational
logic present in the frontend and backend, spatial diversity in
memory structures, specifically rename tables, load/store queue,
active list, and the issue queue, need some explanation.

Because each SMT context has its own rename tables, load/
store queue and active list, spatial diversity in these structures is
inherent. An error in the leading thread’s program order (e.g.,
omitted instructions) propagating to the trailing thread despite this
spatial diversity is caught by our program-order checks as
described in Section 4.4. Spatial diversity from having per-context
structures ensures that any remaining errors are caught by dis-
agreeing results of the two threads.

The issue queue may seem to be more of a problem because it
is shared by the two threads and can not be spatially diverse.
Because BlackJack ensures spatial diversity in the backend spatial
diversity ends up being maintained in most of the issue queue
hardware. Each backend way has a broadcast line to broadcast to
its dependents. As such, if the backend way is assured to be spa-
tially diverse so are the broadcast wires. Furthermore, each broad-
cast wire connects to a comparator in each entry. Therefore, by
using a different broadcast wire, a trailing instruction is woken up
by a different comparator than the corresponding leading instruc-
tion. The remaining concern is the spatial diversity of the issue
queue entries themselves. We point out here that the function of
the issue queue is simply to obey dependencies and find a valid
issue order. As such, any issue queue failure that causes an invalid



issue order (even if it affects the order of both threads in the same
way) is detected by the dependence check as described in
Section 4.4. Consequently, we do not need to ensure spatial diver-
sity in the issue queue entries.

There is a vulnerability in the issue queue’s payload RAM
which holds instruction payload while the instructions are in the
issue queue. It is possible that an entry in the payload RAM cor-
rupts bits in some deterministic way, and this entry is used by both
copies of an instruction leading to identical incorrect results in the
threads. There are many ways to address this vulnerability. We
could additionally consider payload entry allocation policy in safe-
shuffle, or insert NOPs at trailing dispatch if an allocation attempts
to violate spatial diversity. But because the payload RAM is just a
small RAM, having separate payload RAMs for the two threads is
probably the simplest solution. Two payload RAMs obviously pro-
vide sufficient spatial diversity.

Although safe-shuftle ensures spatial diversity in the backend,
including the register file ports, we do not explicitly cover the pos-
sibility that both copies of an instruction may be allocated the
same physical register. However, because the two threads maintain
their own register state and compete for free registers, allocation
of identical registers is unlikely and not directly tied to program
patterns and architectural policies and causes only a negligible loss
in coverage.

Finally, there may also be a concern that while BlackJack cov-
ers single hard errors much as SRT covers single soft errors, multi-
ple errors are more likely in the case of hard errors than soft errors.
BlackJack can be effective for multiple uncorrelated errors. It is
true that certain structures may be more prone than others to multi-
ple correlated errors, and in a highly-defective chip many like
structures (e.g., all RAM structures or all CAM structures) may be
defective. However, we do not target this class of defective chips.
Such chips will be eliminated early in the testing process. Our
technique is a run-time technique that catches hard errors that were
small enough to be missed during test or only became active in the
field. We target chips that seem error-free but silently corrupt data.

4.6 Complexity

Blackjack exploits pre-existing ordering information from the
leading thread issue order to permit shuffling and reordered fetch.
Because this ordering information is available from the leading
thread, it can be used far in advance of trailing thread fetch (within
the leading/trailing slack) thus clearly placing shuffle off the criti-
cal path with little chance of complicating current structures or
degrading cycle time.

5 Methodology

We modify SimpleScalar 3.2b[4] to simulate SRT and Black-
Jack. We use the parameters listed in Table 1. Note that we use two
integer multipliers and two integer dividers in both SRT and
BlackJack, because without two of each type of resource, spatial
diversity is not possible.

We evaluate the hard error instruction coverage of SRT and
BlackJack. SRT is not a hard-error technique but provides some
hard error coverage due to accidental spatial diversity. We use SRT
as a reference point.

We measure hard error instruction coverage as the fraction of
instruction pairs that execute on spatially diverse hardware multi-

Table 1: Processor Parameters

Out-of-order issue 4 instructions/cycle

Active list 512 entries (64-entry LSQ)

Issue queue 32-entries

Caches 64KB 4-way 2-cycle L1s (2
ports); 2M 8-way unified L2

Memory 350 cycles

Int ALUs 4 int ALUs, 2 int multipliers,

FP ALUs 2 FP ALUs, 2 FP multipliers

Store Buffer 64 entries

LVQ 128 entries

BOQ 96 entries

Slack 256 instructions

DTQ 1024 instructions

plied by the core area used by the pair. Because instruction pairs
can be spatially diverse for part of the execution, and use identical
resources in others, we allow for partial coverage of single instruc-
tions. We make the simplifying assumption that equal chip areas
have equal probability of hard error. We use the HotSpot [15] area
model to estimate the core area that remains vulnerable to hard
defects under redundant threading. We divide the area into three
classes: issue, frontend and backend. We give SRT the benefit of
assuming full coverage of hard errors in the issue queue although
SRT can cover hard errors in the issue queue only by chance.
BlackJack, on the other hand provides coverage as described in
Section 4.4. Of the remainder of the core, 34% is accessed by
instructions in the frontend pipeline stages. The remaining 66% is
accessed in the backend.

We run 16 SPEC2000 benchmarks, fast-forward to the early-
simpoint specified by [14], and then run 100 million instructions.

6 Results

In this section we present our results for coverage and perfor-
mance for SRT and BlackJack. First, we discuss the hard error
coverage provided by BlackJack and then move on to discuss the
performance impact.

6.1 Instruction Coverage

Figure 4a and b show hard error coverage achieved by SRT and
BlackJack. SRT is shown by white bars, and BlackJack by black
bars. Figure 4a shows hard error instruction coverage of the entire
processor, including frontend and backend. As described in
Section 4.1, execution in which frontend ways is determined
solely on the instruction’s cache block location and thus SRT has
zero frontend spatial diversity. Because BlackJack deterministi-
cally places instructions so they map to spatially diverse frontends
in the leading thread, BlackJack achieves 100% spatial diversity in
the frontend. Figure 4b shows instruction coverage only of the
backends which is dependent on timing and resource availability.

From Figure 4a, we see that SRT achieves limited spatial diver-
sity and hence provides modest coverage of hard errors. On aver-
age SRT provides 34% coverage of hard errors. SRT’s worst
coverage of 25% occurs in sixtrack and its best coverage in vortex
is at 41%. BlackJack on the other hand covers 97% of hard errors
on average, with its lowest of 94% occurring in bzip and its high-
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FIGURE 4: Instruction coverage of SRTand BlackJack in a) entire pipeline and b) backend only.

est occurring in vortex at 99%.

To help understand the program behaviors that reduce Black-
Jack’s coverage we breakdown the coverage-reducing interference
into leading-trailing and trailing-trailing (described in Section 4.3)
and present them in Figure 5. Training-trailing is represented by
white bars, and leading-trailing by black bars. The y-axis is the
percentage of issue cycles where the specified type of interference
causes instructions to violate spatial diversity. On average across
all benchmarks, 0.5% of issue cycles lose coverage due to trailing-
trailing interference, and 2.3% lose coverage due to leading-trail-
ing interference.

From Figure 5 we can see that one of the lowest covered
benchmarks, equake (95.6%), suffers from both trailing-trailing
interference (1.5%) and leading-trailing interference (2.5%). Its
trailing-trailing result is notable because it is three times greater
than the average across all benchmarks. This elevated trailing-
trailing interference is a consequence of equake’s low IPC; equake
is the slowest benchmark. Trailing-trailing interference is inherent
to the low IPC because with slow benchmarks, fetching of the
trailing thread outpaces issue and allows trailing instructions to
build up in the issue queue. With larger trailing thread issue queue
occupancy there is a greater chance for trailing instruction to issue
out of their fetch order and interfere with and lose diversity. In
fast-paced benchmarks, issue more closely matches fetch and
there is little opportunity for trailing interference. The difficulty of
interference (both leading-trailing and trailing-trailing) is made
worse because equake is an FP application. Because our machine
has only 2 FP ALUs, and 2 FP multipliers, once a leading instruc-
tion has issued, unless the trailing thread goes to the other equiva-
lent unit there will be loss of coverage. As such, benchmarks that
heavily use resources for which only a few copies exist are inher-
ently more susceptible to interference. Benchmarks that use
resources for which multiple copies exist are less sensitive. In
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FIGURE 5: Percent of issue cycles with trailing-
trailing and leading-trailing interference.

benchmarks heavily dependant on basic integer operations (such
as Vortex) trailing instructions must avoid only a single backend
way and the remaining three ways are spatially diverse. In such
cases, interference still has a good chance of sending the instruc-
tion to a favorable (although unintended) backend way.

To help explain the high leading-trailing interference in the
higher-IPC benchmarks, gzip, crafty, and bzip, (which are to the
right in Figure 5) we additionally provide Figure 6. Figure 6 plots
the percentage of issue cycles, in which only one context is issued
in. Recall from Section 4.3.2, that the bursty nature of instruction
issue prevents leading-trailing interference. Figure 6 quantifies
this burstiness. While the average across all benchmarks is 70%
gzip, crafty, and bzip range from 54% to 63%. In fact, gzip is the
lowest of all benchmarks at 54%. The fact that issue is more likely
to issue from both contexts in the same cycle naturally implies
there will be more interference and greater loss of coverage.
Figure 5 reinforces this fact, showing that both gzip and bzip have
the highest leading-trailing interference at 7.0% and 5.6% respec-
tively.

6.2 Performance

Figure 7 plots the performance of SRT and BlackJack with no
shuffle (BlackJack-NS), and BlackJack. As we explain later,
BlackJack-NS helps understand the components of BlackJack’s
performance. All are normalized to non-fault-tolerant single thread
performance. Benchmarks are plotted from left to right in the
order of increasing IPC. White bars represent SRT, gray bars
BlackJack-NS and black bars BlackJack. In general SRT and
therefore also BlackJack show larger performance degradation
with higher-IPC benchmarks, because there are less idle cycles to
hide the execution of the redundant thread. On average across all
benchmarks, compared to non-fault-tolerant single-thread, SRT
has a slowdown of 21%. and BlackJack has a slowdown of 33%.
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FIGURE 6: Percentage of issue cycles when all
instructions issued are from the same context.
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FIGURE 7: Performance of SRT, BlackJack with no
shuffle (BlackJack-NS) and Blackjack.

These slowdowns represent a 15% slowdown for BlackJack
beyond SRT.

The difference between BlackJack-NS and BlackJack repre-
sents the performance degradation due to the cases where safe-
shuffle’s greedy algorithm sometimes splits packets for high cov-
erage. BlackJack-NS never splits packets (and never shuffles) and
so it is able to issue a greater number of instructions per cycle (but
has low coverage). Averaged across all benchmarks, adding shuf-
fle in BlackJack results in a 5% slowdown over BlackJack-NS. If
BlackJack were to have an ideal shuffle algorithm that provided
good coverage without ever splitting packets, BlackJack would
incur a 10% slowdown over SRT. Better shuffle algorithms may be
able to approach this 10% slowdown.

This remaining difference between BlackJack-NS and SRT is
due to BlackJack’s policy of fetching only a single packet per
cycle. This policy prevents co-issue of multiple trailing packets.
This prevention is a simple method for reducing trailing-trailing
interference (as seen in Figure 5) but comes at the cost of perfor-
mance. Trailing-trailing interference is often good for perfor-
mance, allowing two or more small packets that took multiple
cycles to issue in the leading thread to be combined into one large
packet issuing in a single cycle. Combining two such packets
while maintaining spatial diversity requires that the packets are
known to be independent. For simplicity, BlackJack’s shuffle algo-
rithm and fetch policy assumes all leading instruction not co-
issued in the same cycle may have dependencies. It is important to
note that all information about the dependencies between packets
is available for shuffle to borrow from the leading thread. Hence it
is possible for a more complex shuffle algorithms to use this addi-
tional information to close the gap between BlackJack and SRT.

7 Conclusions

This paper presents BlackJack; a microarchitecture that
addresses the increasing difficulty of test. With smaller and faster
devices, tolerance for errors are shrinking and devices may act
correctly under certain condition and not under others. As such,
hard errors may exist but are only exercised by very specific
machine state and signal pathways. In addition new complications
with burn-in may mean that latent hard errors are not exposed in
the fab and reach the customer before becoming active.

BlackJack provides a safety net that detects hard errors (in
addition to soft errors) that are exposed by a program at runtime.

Averaged across all benchmarks, BlackJacks incurs a 15% per-
formance penalty when compared to SRT. In exchange for this
degradation, BlackJack provides 97% instruction coverage of
pipline hard errors compared to SRT’s 34%.
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