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EE559: MOS VLSI Design

I t t K RInstructors: K. Roy
Email: kaushik@ecn.purdue.edu
URL1:  www.ece.purdue.edu/~kaushik
Office: MSEE 232
Telephone: 494-2361
Office Hours: Tuesday/Thursday 11am-12noon

b i t tor by appointments

Grading Policy

• Mid-terms + quizzes + hw will account for 75% of the grade
– 3 mid-terms
– Mandatory and has to be taken on the scheduled day of the exam.

• Project will account for 25% of the grade. Late projects will not be 
accepted.

• You are guaranteed an A if your weighted average score over 
exams, quizzes, and projects is 90 or above.

• Any form of cheating will be heavily penalized and reported to the 
Dean of students and may result in a failing grade.y g g

• Instructor reserves right to change project requirements. 
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Text and References

• Text:Text:
– Digital Integrated Circuits: A Design Perspective,                

J. Rabaey, Prentice Hall, Second edition

• References:
– Principles of CMOS VLSI Design: A Systems Perspective, 

2nd Ed.,                                                                                
N. H. E. Weste and K. Eshraghian, Addison Wesley

– Circuits, Interconnects, and Packaging for VLSI,                 
H. Bakoglu, Addison Wesley

• Class Notes:
– http://www.ece.purdue.edu/~vlsi/ee559/20001

Conferences & Journals

• IEEE Transactions on VLSI Systems
• IEEE Transactions on CAD of IC’sIEEE Transactions on CAD of IC s
• IEEE Journal of Solid State Circuits
• IEEE VLSI Circuits Symposium
• Journal of Electronic Testing
• ACM Design Automation Conference
• IEEE International Conference on CAD
• IEEE Solid State Circuits Conference
• International symposium on Low-Power Electronics & Design
• IEEE Conference on Computer Design
• IEEE International Test Conference
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Course Outline

• Introduction: Historical perspective and Future Trend
• Semiconductor Devices

CMOS Logic Layout techniques• CMOS Logic, Layout techniques
• MOS devices, SPICE models
• Inverters: transfer characteristics, static and dynamic 

behavior, power and energy consumption of static 
MOS inverters

• Designing combinational logic gates in CMOS
– Static CMOS design: Complementary CMOS, ratioed logic, 

pass-transistor logic
– Dynamic CMOS logic

Course Outline (Cont’d)

• Designing combinational logic gates (Cont’d)
– Power consumption in CMOS gatesp g
– Low-power design

• Designing sequential circuits
• Interconnect and timing issues
• Designing memory and array structures
• Designing arithmetic building blocks

S f• VLSI testing and verification
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VLSI CAD Lab and TA

• VLSI CAD Lab located in 360 Potter Engineering 
Center
– SUN workstations running Mentor Graphics tools
– Courtesy key for after-hour access can be obtained from 

front desk in Potter Engineering Library
– Additional workstations in MSEE 186

• Lab TA: Kuntal Roy (royk@purdue.edu)
– Facilitates the use of lab design tools. 
– Office hours: TBA
– Lab Orientation will be held in the second week

• Lab URL
– http://min.ecn.purdue.edu/~mgcdevel/ee559_lab.html

Course Project

• Complete design of a functional logic block or system
– Complexity of 1000+ transistors or novelty
– Design using the CADENCE tools and HSPICE

• Design your own library from scratch
– Functionality to be verified
– Critical path timing should be verified using HSPICE
– Project report due the last day of class
– Project presentation by each group in the last week of class
– Work in a group of 2 will be allowed in special cases
– Start early!Start early!
– Emphasis on new ideas, power dissipation, performance, 

reconfigurability, low voltage design
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Introduction:
A Historical Perspective and Future 

Trends

References: 
Adapted from: Digital Integrated Circuits: A Design Perspective, p g g g p ,

J. Rabaey © UCB
Principles of CMOS VLSI Design: A Systems Perspective, 

2nd Ed., N. H. E. Weste and K. Eshraghian

Digital Computation: Particle Location is an 
Indicator of State

1 1 0 0 1 0
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Physical Medium for Computation: 
Barrier Model

V=0 SOURCE DRAIN

GATE

Eb

V=Vmin=Ebmin

ToxLeff

Vg

Vd

1. Can we operate with Vmin ~ KBTln2 ?

2. Can we operate with Qmin = q ? 
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The First Computer

• The Babbage Differential g
Engine (1834)

• 25,000 mechanical parts
• Cost £17,470

Digital Electronic Computing

• Started with the introduction of vacuum tube
• ENIAC for computing artillery firing tables in 1946• ENIAC for computing artillery firing tables in 1946
• Integration density

– 80 feet long, 8.5 feet high, and several feet wide
– 18,000 vacuum tubes

• Reliability issues and excessive power consumption
• Did not go far until the invention of the transistor at 

Bell Lab in 1947
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HISTORY
• MOS field-effect transistor: Lilienfeld (1925), Heil (1935)

• Bipolar transistors: Bardeen (1947), Schockley (1949)

• First Bipolar digital logic: Harris (1956)First Bipolar digital logic: Harris (1956)
– IC Logic family:

• Transistor-Transistor Logic (TTL) (1962)

• Emitter-Coupled Logic (ECL) (1971)

• Integrated Injection Logic (I2L) (1972)

• PMOS and NMOS transistors on the same substrate: Weimer 
(1962), Wanlass (1965)( ), ( )

• PMOS-only logic until 1971 when NMOS technology emerged
• NMOS-only logic until late 1970s, when CMOS technology took 

over
• Later developments: BiCMOS, GaAs, low-temperator CMOS, 

super-conducting technologies, Nano-electronic

Exponential Increase in Leakage 
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Technology Trend
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Variation in Process Parameters
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Scaling & Ion/Ioff
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Nano-Scaled Si Devices
Si Fin
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Evolution in Complexity

Processor Trends
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Processor Trends (cont’d)
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A21164-300 HP PA8000

35

40

PP-66

A21064A

MIPS R4400

SuperSparc2-90
PPC 604-120

PPro-150

PP166
MIPS R5000

MIPS R10000

PPro200
UltraSparc-167

HP PA7200

15

20

25

30

35

P
ow

er
(W

)

[Source: Microprocessor Report]

486-66
DX4 100

PP-100
MIPS R4400

PP-133

PPC603e-100

PP166
PPC 601-80

i386C-33
i486C-33

i3860

5

10

'91 '93 '94 '95'94 '96

2x Performance  Increase ==> 2x power increase



EE559 MOS VLSI Design

Prepared by CK & KR 15

• Chips fail when they get hot
• Need compact and cost-effective cooling solns

Heat Dissipation

p g

CPU Thermal Soln Cost

486/33mhz HeatSink $0.50
486DX2 66mhz Heatsink $1.00
Pentium 66mhz Larger Heatsink $2.00

System Fan  $4.00

• Cooling Solns will become more exotic/expensive
– Extruded Heatsinks, Heatpipes, Blowers, Noise....

• Every Watt impacts System Cost, esp. for HVM

Where is the Power Going? (Mobile PC)
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• CPU Power increasing (Predicted in 1994 Low power workshop)

• Graphics & Chipset Power  increasing faster than 
predicted

p g g

Power reduction is not only a CPU problem
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Intel 4004 Microprocessor

Intel Pentium (II) Microprocessor
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Dunnington is the first IA (Intel Architecture) processor with 6-cores, 
is based on the 45nm high-k process technology, and has large shared caches.

Tukwila, 4-cores, world's first 2 billion transistor microprocessor
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T h l ( ) 0 25 0 18 0 13 0 10 0 07

National Technology Roadmap for 
Semiconductor (NTRS)

Technology (um) 0.25 0.18 0.13 0.10 0.07
Year 1998 2001 2004 2007 2010

# transistors 28M 64M 150M 350M 800M
On-Chip Clock (MHz) 450 600 800 1000 1100

Area (mm2) 300 360 430 520 620
Wiring Levels 5 5-6 6 6-7 7-8

Interconnect Performance Trend

Technology (um) 0.25 0.18 0.15 0.13 0.10 0.07
2cm line delay (ns) 2.589 2.480 2.650 2.620 3.730 4.670

1mm line delay (ns) 0.059 0.049 0.051 0.044 0.052 0.042

Intrinsic gate delay (ns) 0.071 0.051 0.049 0.045 0.039 0.022
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Interconnect Complexity

Technology (um) 0.25 0.18 0.13 0.10 0.07
Length (m) 820 1,480 2,840 5,140 10,000

6 6 8 8 9Wiring Levels 6 6-7 7 7-8 8-9
Opt. # buffers per net few many

Opt. # wiresizes per net few many
Opt. # buffers per chip 5K 25K 54K 230K 797K

• Performance

• Signal reliability

• Electromigration

Distributions of Wire lengths
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Technology Scaling

Technology scaling improves:

Transistor & interconnect performance
Transistor density
Energy consumed per switching transition

0.7X scaling factor (30% scaling) results in:

30% t d l d ti (43% f ↑ )30% gate delay reduction (43% freq. ↑ ) 
2X transistor density increase (49% area ↓ )
Energy per transition reduction

Technology Scaling

• Speed & Performance
High drive current and low parasitics– High drive current and low parasitics

– Low gate delay and high frequency

• Density & Area
– Small feature size

• Power & Reliability
– Low power supply voltage

L ff t t l k– Low off-state leakage
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Technology Generation Scaling
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Constant Voltage vs Field Scaling 

• Recently: constant e-
field scaling, aka 
voltage scaling 4

5
VCC

5
voltage scaling

• VCC ⌫ 1V

• VCC & modest VT

scaling
• Loss in gate overdrive 
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Voltage scaling is good for controlling IC’s active power, 
but it requires aggressive VT scaling for high performance

Barriers to Voltage Scaling 

Voltage Scaling = Constant Electric Field Scaling

Voltage scaling is good for IC’s active power, but degrades gate over 

Leakage power
Short-channel effects
Special circuit functionality, noise

drive. Requires VT scaling.

60

Soft error
Parameter variation
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Barriers to Voltage Scaling
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Performance significantly degrades when VDD approaches 3VT.
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VT Scaling: VT and IOFF Trade-off

Performance vs Leakage:

VT ↓ IOFF ↑ ID(SAT) ↑ Low VT
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S
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As VT decreases, sub-threshold leakage increases
Leakage is a barrier to voltage scaling
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Future: Projected Leakage Trends
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Power Trends 

• Enable development of ultra low voltage circuits
• At lower Vt, 

– leakage becomes a problem

Vt Variation for optimum energy
2.5

g p
– Signal integrity and 

Noise margin

• Multiple on-chip Vt 0.5
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ed
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Decreasing Switching Power

Decreasing Leakage Power

Vdd =1.7V

f=20MHz

Vdd = 0..9V

Vdd = 0..5V

• Multiple on-chip Vt, 
dynamic Vt 

• Other challenges for low voltages ?  

0.5
0 0.2 0.4 0.6 0.8 1

Threshold Voltage (Vt)
[Source: A.Chandrakasan et.al. Proc of IEEE April’95]

Trends in Microelectronics

• Improvement in device technology
– Smaller circuits
– Faster circuitsFaster circuits
– More circuits on a chip

• Higher Integration
– More complex systems
– Lower cost of computation
– Higher reliability

• Limitations• Limitations
– Intrinsic device scaling limits
– Cost of fabrication
– Interconnect limitation
– Large scale design management
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Problems of Microelectronics
• Design Cost:

– design time
– fabrication time

i ibilit t i– impossibility to repair
– reduce design cost to be competitive in price

• Marketing Issues:
– use most recent technologies to stay competitive in 

performance
– volume production is inexpensive
– time-to-market is critical– time-to-market is critical
– evolving market

• Solution:
– Hierarchical and abstraction
– Different design styles
– Computer-Aided-Design

Circuit and System Representations
Complex digital system Component gates

+
Memory systems

• 3 design domains
– Behavioral

• specifies what a particular system does
– Structural

• how entities are connected together to effect the prescribed 
manner

Memory systems

manner
– Physical

• how to actually build a structure that has the required 
connectivity to implement the prescribed behavior
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Design Abstraction Levels

SYSTEM

+

CIRCUIT

GATE

MODULE

n+n+
S

G
D

DEVICE

CIRCUIT

For a Digital Design

• ArchitectureArchitecture
• Algorithm
• Module or Functional Block
• logical
• Switch
• Circuit
• Layout
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Behavioral Representation Domain

• Hardware description language
VHDL V il– VHDL, Verilog

• Boolean equation
• Within this domain, there are various level of 

abstraction
– Algorithm
– Register transfer level (communication between registers)

Acc Acc + R1 

CO = A.B + A.C + B.C 

carry

– Boolean equations

Behavioral Representation Domain - cont.

• Algorithm level (Verilog)

output co
input a, b, c

MODULE carry (co, a,b,c)

can include speed 
info assign co = (a&b)|(a&c)|(b&c);

ENDMODULE
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Structural Domain
• The levels of abstraction include

– module
– gate

input a, b, c;
output co;

MODULE carry (co, a, b, c) 

wire x, y, z

– switch
– circuit

, y,
AND g1 (x, a, b)
AND g2 (y, a, c)
AND g3 (z, b, c)
OR g4 (co, x, y, z);

ENDMODULE

Structural Domain- cont.

ba
b

a
c

x b
c

z

y x
y

co

g3g1

z
g4g2

z
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Transistor Level

input a, b, c;
MODULE carry (co, a, b, c) 

output co;
wire i1, i2, i3, i4, cn;

NMOS n1(i1, vss, a)
NMOS n2(i1, vss, b)

PMOS p1(i3, vdd, b);

...

ENDMODULE

p ( , , );
PMOS p2(cn, i3, a);

..

.

Physical Representation

Input a, b, c;
MODULE carry ;

p , , ;
output co;
boundary [0, 0, 100, 400]

port a aluminum width = 1 origin = [0,2]
port b aluminum width = 1 origin = [0,7]

.

.
port

.

ENDMODULE

Port ci polysilicon …….
.
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CMOS Logic
a a

b

s s

b

Consider them as switches

s = 0

a

b

s = 0

a b s = 0

a

b

a b

NMOS transistor PMOS transistor
b

s = 1

a

b

as = 1

a

b

s = 1
a b b

Inverter (A) 

VDD

BA

- Low power dissipation
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NAND (AB)

A
A

B

A

B
BA+

Out

1 1

1 0

0 1

0

1

A

B

A

B

BA.

NOR (A+B)

A

B

A

B

1 0

0 0

0 1

0

1

A

B

A . B

A + B
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A

CBADDCBAF +=++= )).((

DCBAF ).( ++=

Complex Gates 

B

C

D

D

A B C

VLSI Design is Inter-Disciplinary

• Breadth of field
– Semiconductor physics and technology
– Integrated electronics
– Systems design
– Testing
– Computer-Aided Design

• Depth of fieldp
– Complexity of fabrication technology
– Difficulty of design problems


