The Inverter

References:

Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey, Prentice Hall © UCB Principles of CMOS VLSI Design: A Systems Perspective, N. H. E. Weste, K. Eshraghian, Addison Wesley

Regions of Operation

	Cutoff	Non-saturated	Saturated
p-device	$\begin{aligned} & V_{\mathrm{gsp}}>\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\mathrm{in}}>\mathrm{V}_{\mathrm{tp}}+\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {gsp }}<\mathrm{V}_{\text {tp }} \\ & \mathrm{V}_{\text {in }}<\mathrm{V}_{\text {tp }}+\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {dsp }}>\mathrm{V}_{\text {gsp }}-\mathrm{V}_{\text {tp }} \\ & \mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {tp }} \end{aligned}$	$\begin{aligned} & V_{\text {gsp }}=V_{\text {tp }} \\ & V_{\text {in }}<V_{\text {tp }}+V_{D D} \\ & V_{\text {dsp }}<V_{\text {gsp }}-V_{\text {tp }} \\ & V_{\text {out }}<V_{\text {in }}-V_{\text {tp }} \end{aligned}$
n-device	$\begin{aligned} & V_{\mathrm{gsn}}<\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{tn}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{gss}}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{dsn}}<\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {out }}<\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {tn }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{gsn}}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{dsn}}>\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tn}} \end{aligned}$

Digital Gates
 Fundamental Parameters

- Area and Complexity
- Robustness and Reliability
- Performance
- Power Consumption

Noise in digital Integrated Circuits

unwanted variations of voltages and currents at the logic nodes
$i(t)$

(a) Inductive coupling
(b) Capacitive coupling
(c) Power and ground noise

DC Operation:
 Voltage Transfer Characteristic (VTC)

Mapping between analog and digital signals

Undefined Region
(Transition width TW)

Definitaion of Noise Margins

The Regenerative Property

Conditions for Regeneration

(a) Regenerative gate

(b) Non-regenerative gate

Fan-in and Fan-out

(b) Fan-in M

The Ideal Gate

Delay Definitions

Ring Oscillator

$$
\begin{aligned}
& \mathrm{T}=2 \times \mathrm{t}_{\mathrm{p}} \times \mathrm{N} \\
& 2 \mathrm{Nt}_{\mathrm{p}} \gg \mathrm{t}_{\mathrm{f}}+\mathrm{t}_{\mathrm{r}}
\end{aligned}
$$

Power Dissipation

$$
\begin{gathered}
\mathrm{P}(\mathrm{t})=\text { instantaneous power } \\
\mathrm{P}_{\text {peak }}=\mathrm{i}_{\text {peak }} \mathrm{V}_{\text {supply }}=\max (\mathrm{p}(\mathrm{t})) \\
P_{a v}=\frac{1}{T} \int_{0}^{T} p(t) d t=\frac{V_{\text {sup } p l y}}{T} \int_{0}^{T} i_{\text {sup ply }}(t) d t \\
\text { Power-Delay Product } \\
\mathrm{PDP}=\mathrm{t}_{\mathrm{p}} \times \mathrm{P}_{\mathrm{av}} \\
=\text { Energy dissipated per operation }
\end{gathered}
$$

Static Load MOS Inverters

Static Load MOS Inverters

- $\mathrm{V}_{\text {in }}<\mathrm{V}_{\text {th }}$; NMOS off; $\mathrm{V}_{\text {out }}$ pulled to V_{DD}
- $\mathrm{V}_{\text {in }}>\mathrm{V}_{\text {th }}$; NMOS on, current flows through R to ground
- If R is sufficiently large, $\mathrm{V}_{\text {out }}$ could be pulled down well below $\mathrm{V}_{\text {th }}$;

Static Load MOS INverter

(b)

VTC of Resistive Load

(c)

Resistive Load Device

Sizing for V_{OL}

$$
R=\frac{\left(V_{d d}-V_{o l}\right)}{\beta \cdot\left(\left(V_{d d}-V_{t}\right) V_{o l}-0.5 V_{o l}{ }^{2}\right)}
$$

Assume

$$
\begin{aligned}
& V_{d d}=5.0 \mathrm{~V} \\
& V_{t}=1.0 \mathrm{~V} \\
& \beta
\end{aligned}=10^{-4} \mathrm{~A} / \mathrm{V} .
$$

Proper design: $\mathrm{V}_{\mathrm{ol}}<\mathrm{V}_{\mathrm{t}}$
Let: $\quad V_{o l}=0.5 \mathrm{~V}$
$\mathrm{R}=24 \mathrm{k} \Omega$

Resistor and Current-Source Loads

- Resistance/length of minimum-width lines of various connecting elements is far less than effective resistance of the switched on MOSFET
- In some memory processes, resistors are implemented by highly resistive undoped polysilicon
- Normally use transistors in CMOS to implement resistor and current-source loads
- If biased for use as a resistor, called an unsaturated load inverter
- If load transistor operates in saturation as a constant current source, called a saturated load inverter

Pseudo NMOS Inverter

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\text {dsp }}=\mathrm{V}_{\text {out }} \\
& \Rightarrow \mathrm{V}_{\text {dsp }}=\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{DD}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{dsp}}=\mathrm{V}_{\text {out }}+\mathrm{V}_{\text {gsp }} \\
& \therefore \mathrm{V}_{\text {dsp }}>\mathrm{V}_{\text {gsp }}-\mathrm{V}_{\text {tp }} \text { or } \mathrm{V}_{\text {out }}>-\mathrm{V}_{\text {tp }} \\
& \Rightarrow \text { Non-saturated region }
\end{aligned}
$$

DC Transfer Characteristics

Pseudo-NMOS Inverter

- DC current flows when the inverter is turned on unlike CMOS inverter
- CMOS is great for low power unlike this circuit (e.g. watch needs low power lap-tops etc)
- Need to be turned off during IDDQ (V_{DD} Supply Current Quiescent) testing

PMOST Load with Constant V_{GS}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{oh}}=5.0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{ol}}=? ? ? \\
& \mathrm{I}=0.5 \beta_{\mathrm{p}} \cdot\left(\mathrm{~V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{tp}}\right)^{2} \\
& \mathrm{I}=\beta_{\mathrm{n}} \cdot\left(\left(\mathrm{~V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{tn}}\right) \mathrm{V}_{\mathrm{ol}}-0.5 \mathrm{~V}_{\mathrm{ol}}^{2}\right) \\
& \frac{\beta_{\mathrm{n}}}{\beta_{p}}=\frac{0.5\left(V_{d d}-V_{t p}\right)^{2}}{\left(\left(V_{d d}-V_{t n}\right) V_{o l}-0.5 V_{o l}^{2}\right)}
\end{aligned}
$$

Sizing for V_{OL}

$$
\frac{\beta_{n}}{\beta_{p}}=\frac{0.5\left(V_{d d}-V_{t p}\right)^{2}}{\left(\left(V_{d d}-V_{t n}\right) V_{o l}-0.5 V_{o l}{ }^{2}\right)}
$$

Assume: $\quad \mathrm{V}_{\mathrm{dd}}=5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{tn}}=\mathrm{V}_{\mathrm{tp}}=1.0 \mathrm{~V}$
Proper design: $\mathrm{V}_{\mathrm{ol}}<\mathrm{V}_{\mathrm{th}}$
Let:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{ol}} & =0.5 \mathrm{~V} \\
\frac{\beta_{n}}{\beta_{p}} & =4.26
\end{aligned}
$$

Sizing for Gate Threshold Voltage (Trip Point)

N -device: saturated $\left(V_{\text {out }}>V_{\text {in }}-V_{\text {tr }}\right)$

$$
I_{d s n}=\frac{\beta_{n}}{2}\left(V_{i n}-V_{t n}\right)^{2}
$$

P-device: non-saturated

$$
\begin{aligned}
& V_{\text {gsp }}=-V_{D D} \\
& I_{\text {dsp }}=\beta_{p}\left[\left(-V_{D D}-V_{\text {tp }}\right)\left(V_{\text {out }}-V_{D D}\right)-\frac{\left(V_{\text {out }}-V_{D D}\right)^{2}}{2}\right]
\end{aligned}
$$

Equating the two currents we obtain,

$$
\frac{\beta_{n}}{2}\left(V_{\text {in }}-V_{\text {t }}\right)^{2}=-\beta_{p}\left[\left(-V_{D D}-V_{\text {tp }}\right)\left(V_{\text {out }}-V_{D D}\right)-\frac{\left(V_{\text {out }}-V_{D D}\right)^{2}}{2}\right]
$$

Sizing for Gate Threshold Voltage

Solving for $\mathrm{V}_{\text {out }}$

$$
V_{\text {out }}=-V_{t p}+\sqrt{\left(V_{D D}+V_{t p}\right)^{2}-C}
$$

Where $\mathrm{C}=\mathrm{k}\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tn}}\right)^{2}$

$$
k=\frac{\beta_{n}}{\beta_{p}}
$$

Also, $\frac{\beta_{n}}{\beta_{p}}=\frac{\left(V_{D D}+V_{\text {tp }}\right)^{2}-\left(V_{\text {out }}+V_{\text {tp }}\right)^{2}}{\left(V_{\text {in }}-V_{\text {tt }}\right)^{2}}$
To make gate threshold voltage $=0.5 \mathrm{~V}_{\mathrm{DD}}$

$$
\frac{\beta_{n}}{\beta_{p}}=6.11
$$

Noise Margin

$\beta_{\mathrm{n}} / \beta_{\mathrm{p}}$	V_{IL}	V_{IH}	V_{OL}	V_{OH}	NM_{L}	NM_{H}
2	3.4	4.5	1.4	5	2.0	0.5
4	1.8	3.3	0.6	5	1.2	2.7
6	1.4	2.8	0.35	5	1.05	3.2
8	1.1	2.4	0.24	5	0.86	3.6
100	0.5	1.1	0.00	5	0.5	3.9

VTC of Pseudo-NMOS Inverter

Unsaturated Load Inverter

- High is n threshold down from V_{DD}
- Used when depletion mode transistors were not available
- Low noise margin
- Might be used in I/O structures where p-transistors were not wanted

VTC of Unsaturated Load Inverters

Current Source Load

Saturated Load Inverter

- $\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {tn }} \Rightarrow$ driver transistor in saturation
- When $V_{\text {in }}$ is small
- Load transistor permanently in saturation
$-\mathrm{V}_{\text {dsp }}=\mathrm{V}_{\text {gsp }}$
$-\therefore \mathrm{V}_{\mathrm{dsp}}<\mathrm{V}_{\mathrm{gsp}}-\mathrm{V}_{\mathrm{tp}}$ or $0<-\mathrm{V}_{\mathrm{tp}} \Rightarrow$ Saturated region

When $\mathrm{V}_{\text {in }}$ is Small

$$
I_{d s, d r i v e r}=\frac{\beta_{\text {driver }}}{2}\left(V_{i n}-V_{t n}\right)^{2}
$$

Load in saturation:

$$
I_{d s, \text { load }}=-\frac{\beta_{\text {load }}}{2}\left(V_{\text {out }}-V_{D D}-V_{t p}\right)^{2}
$$

Equating the currents:

$$
V_{o u t}=V_{D D}+V_{t p}+\sqrt{k}\left(V_{i n}-V_{t n}\right)
$$

where $k=\frac{\beta_{\text {driven }}}{\beta_{\text {load }}}$

VTC of Saturated Load Inverter

NMOS Inverter

Use depletion mode transistor as pull-up
$\mathrm{V}_{\text {tdep }}$ transistor is $<0 \mathrm{~V}$

The depletion mode transistor is always ON : gate and source connected $\Rightarrow \mathrm{V}_{\mathrm{gs}}=0$
$\mathrm{V}_{\text {in }}=0 \Rightarrow$ transistor pull down is off $\Rightarrow \mathrm{V}_{\text {out }}$ is high

$\mathrm{V}_{\text {out }}$ vs $\mathrm{V}_{\text {in }}$ using Graphical Method

Gate Threshold Voltage

Gate threshold voltage $=V_{\text {inv }}$

$$
=\text { Input voltage at which } \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}
$$

Assume that both driver and load are in saturation with input $\mathrm{V}_{\text {inv }}$

$$
\begin{aligned}
& I_{D S(s a t)}=\frac{\beta_{\text {driver }}}{2}\left(V_{g s}-V_{t}\right)^{2} \\
& \therefore \frac{\beta_{\text {driver }}}{2}\left(V_{i n v}-V_{t}\right)^{2}=\frac{\beta_{\text {load }}}{2}\left(-V_{d e p}\right)^{2}
\end{aligned}
$$

Hence, $\quad V_{\text {inv }}=V_{t}-V_{\text {dep }} \sqrt{\frac{\beta_{\text {load }}}{\beta_{\text {driver }}}}$
If $\beta_{\text {driver }}$ is increased relative to $\beta_{\text {load }}$ then, $V_{\text {inv }}$ decreases

VTC of NMOS inverter

CMOS INVERTER

CMOS Inverters

The CMOS Inverter: A First Glance

Switch Model of MOS Transistor

CMOS Inverter: Steady State Response

PMOS Load Lines

Construction Of Inverter Curves

Construction Of Inverter Curves

Construction Of Inverter Curves

CMOS Inverter Load Characteristics

CMOS Inverter VTC

Inverter Supply Current

Small Signal Model for an MOS Transistor

- $\mathrm{V}_{\mathrm{sb}}=0$
- voltage-controlled current source $\left(g_{m}\right)$
- output conductance (g_{ds})
- interelectrode capacitance

Output Conductance

- By differentiating I_{ds} w.r.t. V_{ds}
- In linear region

$$
\begin{aligned}
& I_{d s}=\beta\left[\left(V_{g s}-V_{t}\right) V_{d s}-\frac{V_{d s}^{2}}{2}\right] \\
& g_{d s}=\beta\left[\left(V_{g s}-V_{t}\right)-V_{d s}\right] \quad R_{\text {linear }}=\frac{1}{\beta\left(V_{g s}-V_{t}-V_{d s}\right)}
\end{aligned}
$$

- In saturation, device behaves like a current source: the current being almost independent of V_{ds}

$$
\begin{aligned}
& I_{d s}=\left[\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2}\right] \\
& \frac{d I_{d s}}{d V_{d s}}=\frac{d\left[\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2}\right]}{d V_{d s}}=0
\end{aligned}
$$

- In reality, secondary effects result in a slope

$$
g_{d s}=I_{d s} \lambda
$$

Transconductance

- Expresses relationship between output current and input voltage

$$
\left.g_{m}=\frac{d I_{d s}}{d V_{g s}} \right\rvert\, V_{d s}=\text { constant }
$$

$$
g_{m}(\text { linear })=\beta V_{d s}
$$

$$
g_{m}(s a t .)=\beta\left(V_{g s}-V_{t}\right)
$$

MOS Transistor Small Signal Model

	g_{m}	r_{0}
Linear	$\mathrm{k} V_{\mathrm{DS}}$	$\left[\mathrm{k}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\mathrm{V}_{\mathrm{DS}}\right)\right]^{-1}$
Saturation	$\mathrm{k}\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)$	$1 / \lambda \mathrm{I}_{\mathrm{D}}$

CMOS Inverter

Regions of Operation

	Cutoff	Non-saturated	Saturated
p-device	$\begin{aligned} & V_{\mathrm{gsp}}>\mathrm{V}_{\mathrm{tp}} \\ & \mathrm{~V}_{\mathrm{in}}>\mathrm{V}_{\mathrm{tp}}+\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {gsp }}<\mathrm{V}_{\text {tp }} \\ & \mathrm{V}_{\text {in }}<\mathrm{V}_{\text {tp }}+\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\text {dsp }}>\mathrm{V}_{\text {gsp }}-\mathrm{V}_{\text {tp }} \\ & \mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {tp }} \end{aligned}$	$\begin{aligned} & V_{\text {gsp }}=V_{\text {tp }} \\ & V_{\text {in }}<V_{\text {tp }}+V_{D D} \\ & V_{\text {dsp }}<V_{\text {gsp }}-V_{\text {tp }} \\ & V_{\text {out }}<V_{\text {in }}-V_{\text {tp }} \end{aligned}$
n-device	$\begin{aligned} & V_{\mathrm{gsn}}<\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{tn}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{gss}}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{dsn}}<\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {out }}<\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {tn }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{gsn}}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\mathrm{dsn}}>\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}} \\ & \mathrm{~V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tn}} \end{aligned}$

Inverter Operating Regions

A: nmost off pmost linear reg.

B: nmost saturated pmost linear reg.

C: nmost saturated pmost saturated

D: nmost linear reg. pmost saturated

E : nmost linear reg. pmost off

Inverter Operating Regions

Region A

($0 \leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {tn }}$)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dsn}}=0 \Rightarrow \begin{array}{l}
\mathrm{n} \text {-device is cut-off } \\
\mathrm{p} \text {-device in linear region } \\
\mathrm{I}_{\mathrm{dsn}}=-\mathrm{I}_{\mathrm{dsp}}=0 \text {, as } \mathrm{I}_{\mathrm{dsn}}=0 \\
\mathrm{~V}_{\mathrm{dsp}}=\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{DD}} \\
\text { With } \mathrm{V}_{\mathrm{dsp}}=0, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}
\end{array}, \begin{array}{l}
\mathrm{v}_{\mathrm{DD}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Region B } \\
& \left(V_{t n} \leq V_{i n} \leq \frac{V_{D D}}{2}\right)
\end{aligned}
$$

p-device in non-saturated region $\left(\mathrm{V}_{\mathrm{ds}} \neq 0\right)$ n-device is in saturation

$$
V_{\text {in }}=V_{g s n}
$$

Region B

$$
\begin{aligned}
& I_{\text {dsn }}=\beta_{n} \frac{\left[V_{\text {in }}-V_{\text {tn }}\right]^{2}}{2} ; \beta=\frac{\mu_{n} \varepsilon}{t_{\text {ox }}}\left(\frac{W_{n}}{L_{n}}\right) \\
& \mathrm{V}_{\mathrm{gsp}}=\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{DD}}\right) \& \mathrm{~V}_{\text {dsp }}=\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {DD }}\right) \\
& \therefore I_{\text {dsp }}=-\beta_{p}\left[\left(V_{\text {in }}-V_{D D}-V_{t p}\right)\left(V_{\text {out }}-V_{D D}\right)-\frac{\left(V_{\text {out }}-V_{D D}\right)^{2}}{2}\right] \\
& \beta_{p}=\frac{\mu_{p} t}{t_{\text {ox }}}\left(\frac{W_{p}}{L_{p}}\right)
\end{aligned}
$$

Equating $\mathrm{I}_{\mathrm{dsp}}=-\mathrm{I}_{\mathrm{dsn}}$

$$
V_{\text {out }}=\left(V_{\text {in }}-V_{t p}\right)+\sqrt{\left(V_{i n}-V_{t p}\right)^{2}-2\left(V_{i n}-\frac{V_{D D}}{2}-V_{t p}\right) V_{D D}-\frac{\beta_{n}}{\beta_{p}}\left(V_{i} n-V_{t c}\right)^{2}}
$$

Region D

$$
\left(\frac{V_{D D}}{2}<V_{i n} \leq V_{D D}-V_{t p}\right)
$$

p: saturation
n : non-saturated

$$
\begin{aligned}
& I_{\text {dsp }}=-\frac{1}{2} \beta_{p}\left(V_{\text {in }}-V_{D D}-V_{t p}\right)^{2} \\
& I_{\text {dsn }}=\beta_{n}\left[\left(V_{\text {in }}-V_{\text {tn }}\right) V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}\right]
\end{aligned}
$$

$$
I_{d s p}=-I_{d s n}
$$

$$
\therefore V_{\text {out }}=\left(V_{\text {in }}-V_{\text {tn }}\right)-\sqrt{\left(V_{\text {in }}-V_{\text {tn }}\right)^{2}-\frac{\beta_{p}}{\beta_{n}}\left(V_{\text {in }}-V_{D D}-V_{t p}\right)^{2}}
$$

Determining V_{IH} and V_{IL}

At $V_{I H}\left(V_{I L}\right): \quad \frac{\partial V_{\text {out }}}{\partial V_{\text {in }}}=-\mathbf{1}$
small-signal model of inverter

$g=\frac{v_{\text {out }}}{v_{\text {in }}}=-\left(g_{m n}+g_{m p}\right) \times\left(r_{o n} \| r_{o p}\right)=-1$

Region E
 $$
\left(V_{\text {in }}>=V_{D D}-V_{t p)}\right.
$$

p : cut-off $\mathrm{I}_{\mathrm{dsp}}=0$
n : linear mode
$\mathrm{V}_{\mathrm{gsp}}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{DD}} \rightarrow$ more positive than V_{tp}

$$
V_{\text {out }}=0
$$

Region C
 (Both devices in Saturation)

$$
\begin{aligned}
& I_{d s p}=-\frac{\beta_{p}}{2}\left(V_{i n}-V_{D D}-V_{t p}\right)^{2} \\
& I_{d s n}=\frac{\beta_{n}}{2}\left(V_{i n}-V_{t n}\right)^{2}
\end{aligned}
$$

Equating $I_{\mathrm{dsp}}=-I_{\mathrm{dsn}}$

$$
V_{i n}=\frac{V_{D D}+V_{t p}+V_{t n} \sqrt{\frac{\beta_{n}}{\beta_{p}}}}{1+\sqrt{\frac{\beta_{n}}{\beta_{p}}}}
$$

Gate Threshold Voltage

If $\beta_{\mathrm{n}}=\beta_{\mathrm{p}} \& \mathrm{~V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}$

$$
V_{i n}=\frac{V_{D D}}{2}
$$

Region C exists for one value of $\mathrm{V}_{\text {in }}$
Possible values of $\mathrm{V}_{\text {out }}$ in region C
$\left.\begin{array}{ll}\text { n-channel } & V_{\text {in }}-V_{\text {out }}<V_{\text {tn }} \\ \text { p-channel } & V_{\text {out }}>V_{\text {in }}-V_{\text {tn }} \\ & V_{\text {in }}-V_{\text {out }}>V_{\text {tp }} \\ & V_{\text {out }}<V_{\text {in }}-V_{\text {tp }}\end{array}\right\}$ saturation conditions
$V_{\text {in }}-V_{\text {tn }}<V_{\text {out }}<V_{\text {in }}-V_{\text {tp }}$
In reality, region C has a finite slope

- because in reality I_{ds} increases slightly with V_{ds} in saturation

Typical Parameter Values ($1 \mu \mathrm{~m}$ process)

$$
\begin{aligned}
\mu_{n} & =500 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec} \\
\varepsilon & =3.9 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \\
t_{o x} & =200 \AA \\
\beta_{n} & =\frac{\mu \varepsilon}{t_{o x}}\left(\frac{\mathrm{~W}}{L}\right) \\
& =\frac{500 \times 3.9 \times 8.85 \times 10^{-14}}{.2 \times 10^{-5}} \frac{\mathrm{~W}}{L} \\
& =88.5 \frac{\mathrm{~W}}{L} \mu \mathrm{~A} / \mathrm{V}^{2} \\
\mu_{p} & \approx 180 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec} \\
\therefore \beta_{p} & =31.9 \frac{\mathrm{~W}}{\mathrm{~L}} \mu \mathrm{~A} / \mathrm{V}^{2} \\
\frac{\beta_{n}}{\beta_{p}} & =2.8 \quad \text { (The ratio varies from 2-3) }
\end{aligned}
$$

$\beta_{\mathrm{n}} / \beta_{\mathrm{p}}$ Ratio

Effect of $\beta_{\mathrm{n}} / \beta_{\mathrm{p}}$ Ratio

V_{m} dependent on $\frac{\beta_{\mathrm{n}}}{\beta_{p}}$
with change in $\frac{\beta_{n}}{\beta_{p}}$ transition still remains sharp and hence switching performance does not deteriorate It is desirable to have

$$
\frac{\beta_{n}}{\beta_{p}}=1
$$

\Rightarrow allows capacitance load to change and discharge in equal times by providing equal current source \& sink capability

Gate Switching Threshold

Effect of Temperature

- Temperature similarly affects mobility of holes and electrons
- Temperature increases $\Rightarrow \mu$ decreases $\Rightarrow \beta$ decreases

$$
\beta \propto T^{-1.5}
$$

- Ratio $\beta_{\mathrm{n}} / \beta_{\mathrm{p}}$ is independent of temperature to a good approximation
- Temperature, however, reduces threshold voltages
- Extent of region A reduces and extent of region E increases
- VTC shifts to the left as the temperature increases

Switching Characteristics

- Switching speed - limited by time taken to charge and discharge, C_{L}
- Rise time, t_{r} : waveform to rise from 10% to 90% of its steady state value
- Fall time, $\mathrm{t}_{\mathrm{f}}: 90 \%$ to 10% of steady state value
- Delay time, t_{d} : time difference between input transition (50\%) and 50\% output level

CMOS Inverter: Transient Response

CMOS Inverter Propagation Delay

Inverter Propagation Delay

- Assume n-device still in saturation at $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}} / 2$

$$
\begin{aligned}
I_{a v} & =\frac{\beta_{n}}{2}\left(V_{D D}-V_{t n}\right)^{2} \\
t_{p H L} & =\frac{C_{L} V_{D D}}{\beta_{n}\left(V_{D D}-V_{t n}\right)^{2}} \\
& \approx \frac{C_{L}}{\beta_{n} V_{D D}} \\
t_{p L H} & \approx \frac{C_{L}}{\beta_{p} V_{D D}} \\
t_{p} & \approx \frac{C_{L}}{2 V_{D D}}\left(\frac{1}{\beta_{p}}+\frac{1}{\beta_{n}}\right)
\end{aligned}
$$

Analysis of Fall Time

Components of Fall Time

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f} 1}+\mathrm{t}_{\mathrm{f} 2} \longrightarrow \mathrm{~V}_{\text {out }} \text { drops from } \mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{t}} \text { to } 0.1 \mathrm{~V}_{\mathrm{DD}} \\
& \mathrm{~V}_{\text {out }} \text { drops from } 0.9 \mathrm{~V}_{\text {dd }} \text { to } \mathrm{V}_{\text {dd }}-\mathrm{V}_{\mathrm{t}}
\end{aligned}
$$

Fall Time for Saturated Region

Saturated, $\mathrm{V}_{\text {out }} \geq \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}$

Integrating from $t=t_{1}$ (corresponding to $\mathrm{V}_{\text {out }}=0.9 \mathrm{~V}_{\mathrm{DD}}$) to $\mathrm{t}=\mathrm{t}_{2}$ (corresponding to $\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {tn }}\right)$)

$$
\begin{aligned}
t_{f 1} & =2 \frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{\text {tn }}\right)^{2}} \int_{V_{D D}-V_{t n}}^{0.9 V_{D D}} d V_{\text {out }} \\
& =\frac{2 C_{L}\left(V_{t n}-0.1 V_{D D}\right)}{\beta_{n}\left(V_{D D}-V_{t n}\right)^{2}}
\end{aligned}
$$

Fall Time for Non-Saturated Region

Non-saturated : $0 \leq \mathrm{V}_{\text {out }} \leq \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {tn }}$

$$
\begin{aligned}
& C_{L} \frac{d V_{\text {out }}}{d t}+\beta_{n}\left[\left(V_{D D}-V_{\text {tn }}\right) \cdot V_{\text {out }}-\frac{V_{\text {out }}^{2}}{2}\right]=0 \\
& t_{f 2}=\frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{\text {tn }}\right)} \int_{V_{D D}-V_{\text {tn }}}^{0.1 V_{D D}} \frac{d V_{\text {out }}}{\frac{V_{\text {out }}^{2}}{2\left(V_{D D}-V_{\text {tn }}\right)}-V_{\text {out }}}
\end{aligned}
$$

Fall Time for Non-Saturated Region

$$
\begin{aligned}
& t_{f 2}=\frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{t n}\right)} \int_{V_{D D}-V_{t n}}^{0.1 V_{D D}} \frac{d V_{\text {out }}}{\frac{V^{2}}{2\left(V_{D D}-V_{\text {tn }}\right)}-V_{\text {out }}} \\
& =\frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{t n}\right)} \ln \left(\frac{19 V_{D D}-20 V_{t n}}{V_{D D}}\right) \\
& =\frac{C_{L}}{\beta_{n} V_{D D}(1-n)} \ln (19-20 n) \\
& \text { where } \mathrm{n}=\frac{V_{m}}{V_{D D}}
\end{aligned}
$$

Fall Time Computation

$$
\begin{aligned}
t_{f} & =t_{f 1}+t_{f 2} \\
& =2 \frac{C_{L}}{\beta_{n} V_{D D}(1-n)}\left[\frac{(n-0.1)}{(1-n)}+\frac{1}{2} \ln (19-20 n)\right] \\
t_{f} & \approx k \frac{C_{L}}{\beta_{n} V_{D D}} \\
k & =3 \sim 4 \text { for } V_{D D}=3 \sim 5 \mathrm{~V} \text { and } V_{t n}=0.5 \sim 1 \mathrm{~V}
\end{aligned}
$$

Rise Time

$$
t_{r}=2 \frac{C_{L}}{\beta_{p} V_{D D}(1-p)}\left[\frac{(p-0.1)}{(1-p)}+\frac{1}{2} \ln (19-20 p)\right]
$$

with $p=\frac{\left|V_{t p}\right|}{V_{D D}}$

$$
t_{r} \approx k \frac{C_{L}}{\beta_{p} V_{D D}}
$$

For equally sized n - and p transistors

$$
\beta_{\mathrm{n}} \approx 2 \beta_{\mathrm{p}}
$$

$$
t_{f} \approx \frac{t_{r}}{2}
$$

Sizing for Identical Rise/Fall Time

For same t_{f} and t_{r}

$$
\frac{\beta_{n}}{\beta_{p}}=1
$$

Increase the width of p-device to

$$
W_{p} \approx 2-3 W_{n}
$$

Delay Time: First Order Approximation

- Gate delay is dominated by the output rise and fall time

$$
\begin{aligned}
& t_{d r}=\frac{t_{r}}{2} \\
& t_{d f}=\frac{t_{f}}{2}
\end{aligned}
$$

General Delay Time Computation

- Similar to the computation of rise/fall times
- Saturation region from $t=t_{1}$ (corresponding to $V_{\text {out }}=V_{D D}$) to t $=\mathrm{t}_{2}\left(\right.$ corresponding to $\left.\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)\right)$
- Linear region from $t=t_{2}$ (corresponding to $\mathrm{V}_{\text {out }}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)$) to $t=t_{3}$

$$
\begin{aligned}
t_{2}-t_{1} & =2 \frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{t n}\right)^{2}} \int_{V_{D D}-V_{\text {t }}}^{V_{D D}} d V_{\text {out }} \\
& =\frac{2 C_{L}\left(V_{\text {tn }}\right)}{\beta_{n}\left(V_{D D}-V_{t n}\right)^{2}}
\end{aligned}
$$

Delay Time Computation

$$
\begin{aligned}
\begin{aligned}
t_{3}-t_{2} & = \\
\beta_{n}\left(V_{D D}-V_{\text {tt }}\right) & \int_{V_{\text {ou }}-V_{\text {m }}}^{V_{n}} \frac{d V_{\text {out }}^{\prime}}{\frac{V_{\text {out }}^{2}}{2\left(V_{D D}-V_{\text {tn }}\right)}-V_{\text {out }}^{\prime}} \\
& =\frac{C_{L}}{\beta_{n}\left(V_{D D}-V_{\text {tn }}\right)} \ln \left(\frac{2 V_{D D}-2 V_{\text {tn }}-V_{\text {out }}}{V_{\text {out }}}\right) \\
& =\frac{C_{L}}{\beta_{n} V_{D D}(1-n)} \ln \left(\frac{2(1-n)-V_{o}}{V_{O}}\right)
\end{aligned} \\
\text { where } n=\frac{V_{\text {tn }}}{V_{D D}}, V_{O}=\frac{V_{\text {out }}}{V_{D D}}
\end{aligned}
$$

Delay Time

$$
t_{D n}=t_{3}-t_{1}=A_{n} \frac{C_{L}}{\beta_{n} V_{D D}}
$$

Delay $\propto C_{L}$ (optimize C_{L} to decrease delay)

$$
\begin{aligned}
& \propto \frac{1}{V_{D D}} \text { (decrease } \mathrm{V}_{\mathrm{DD}} \text { increases delay) } \\
& \propto \frac{1}{\beta} \quad \text { (if } \mathrm{W} \uparrow \text { or } \mathrm{L} \downarrow, \text { delay decreases) }
\end{aligned}
$$

Three major parameters for optimizing speed of CMOS

Components of C_{L}

$$
\mathrm{C}_{\mathrm{g}}=\text { gate capacitance }=\mathrm{C}_{\mathrm{ox}} \mathrm{WL}
$$

Miller Effect

- Effective voltage change over the gate-drain capacitor is actually twice the output voltage swing
- Contribution of gate-drain capacitor should be counted twice

Junction Capacitance

- Non-linear capacitor modeled by linear capacitor with the same change in charge for the voltage range of interest

$$
\begin{aligned}
& C_{e q}=K_{e q} C_{j 0} \\
& K_{\text {eq }}=\frac{-\phi_{0}^{m}}{\left(V_{\text {high }}-V_{\text {low }}\right)(1-m)}\left[\left(\phi_{0}-V_{\text {high }}\right)^{1-m}-\left(\phi_{0}-V_{\text {low }}\right)^{1-m}\right]
\end{aligned}
$$

- Linearize over the interval $\{5 \mathrm{~V}, 2.5 \mathrm{~V}\}$ for the high-tolow transition and $\{0,2.5 \mathrm{~V}\}$ for the low-to-high transition
- Correspond to $\left\{\mathrm{V}_{\text {high }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {low }}=-2.5 \mathrm{~V}\right\}$ and $\left\{\mathrm{V}_{\text {high }}=0\right.$, $V_{\text {low }}=-2.5 \mathrm{~V}$ \} for NMOS

Delay in function of $V_{D D}$

Sizing of Inverter Loaded by an Identical Gate

Load cap. of first gate:

$$
C_{L}=\left(C_{d p 1}+C_{d n 1}\right)+\left(C_{g p 2}+C_{g n 2}\right)+C_{w}
$$

where

$$
\mathrm{C}_{\mathrm{dp} 1}, \mathrm{C}_{\mathrm{dn} 1} \rightarrow \text { diffusion capacitance of first gate }
$$

$\mathrm{C}_{\mathrm{gp} 2}, \mathrm{C}_{\mathrm{gn} 2} \rightarrow$ gate capacitance of second gate $\mathrm{C}_{\mathrm{w}} \rightarrow$ wiring capacitance

If PMOS devices are α times larger than the NMOS ones,

$$
\alpha=(W / L)_{p} /(W / L)_{n}
$$

all transistor capacitances will scale in approximately the same way

Sizing of Inverter

$$
\begin{aligned}
& C_{d p 1} \approx \alpha C_{d n 1} \\
& C_{g p 2} \approx \alpha C_{g n 2} \\
& \begin{aligned}
& \therefore C_{L}=(1+\alpha)\left(C_{d n 1}+C_{g n 2}\right)+C_{w} \\
& t_{p}=\frac{t_{r}+t_{f}}{2}=\frac{C_{L}}{2 V_{D D}}\left(\frac{A_{n}}{\beta_{n}}+\frac{A_{p}}{\beta_{p}}\right) \\
&=\frac{C_{L}}{2 V_{D D} \cdot \beta_{n}}\left(A_{n}+\frac{A_{p} \beta_{n}}{\beta_{p}}\right) \\
&=\frac{C_{L}}{2 V_{D D} \cdot \beta_{n}}\left(A_{n}+\frac{A_{p} \mu_{n}}{\mu_{p}} \cdot \frac{(W / L)_{n}}{(W / L)_{p}}\right) \\
&=\frac{C_{L}}{2 V_{D D} \cdot \beta_{n}}\left(A_{n}+\frac{A_{p} \mu_{n}}{\mu_{p} \alpha}\right)
\end{aligned}
\end{aligned}
$$

Sizing of Inverter

$$
\begin{aligned}
t_{p} & =\frac{C_{L}}{2 V_{D D} \cdot \beta_{n}}\left(A_{n}+\frac{A_{p} \mu_{n}}{\mu_{p} \alpha}\right) \\
& =\frac{(1+\alpha)\left(C_{d n 1}+C_{g n 2}\right)+C_{W}}{2 V_{D D} \cdot \beta_{n}}\left(A_{n}+\frac{A_{p} \mu_{n}}{\mu_{p} \cdot \alpha}\right)
\end{aligned}
$$

Let $\frac{\partial t_{p}}{\partial \alpha}=0$ to get optimal α

$$
\alpha_{o p t}=\sqrt{\frac{\mu_{n}}{\mu_{p}} \frac{A_{p}}{A_{n}}\left(1+\frac{C_{W}}{C_{d n 1}+C_{g n 2}}\right)}
$$

If $\mathrm{C}_{\mathrm{w}} \ll \mathrm{C}_{\mathrm{dn} 1}+\mathrm{C}_{\mathrm{gn} 2}, \mathrm{~A}_{\mathrm{p}}=\mathrm{A}_{\mathrm{n}}$
$\alpha_{\text {opt }} \approx \sqrt{\frac{\mu_{n}}{\mu_{p}}} \approx 1.73 \longrightarrow \begin{aligned} & \text { Contrast to } 3 \text { which is normally used } \\ & \text { in the non-cascaded case }\end{aligned}$

Impact of Rise Time on Delay

Minimum-size inverter with fanout of a single gate

Velocity Saturation

- Under long channel model, saturation current $\propto \mathrm{V}_{\mathrm{DD}}{ }^{2}$
- In small-geometry devices, this no longer holds: $\mathrm{I}_{\mathrm{av}} \propto \mathrm{V}_{\mathrm{DD}}$
- Therefore, for $\mathrm{V}_{\mathrm{DD}} \gg \mathrm{V}_{\mathrm{T}}$ we have,

$$
t_{p} \approx \frac{C_{L}}{2}\left(\frac{1}{k_{p}}+\frac{1}{k_{n}}\right) \quad k_{n, p}=\kappa v_{S A T} C_{o x} W_{n, p}
$$

- Running velocity saturated devices at high $V_{D D}$ is not beneficial
- Lowering V_{DD} below $2 \mathrm{~V}_{\mathrm{T}}$ sharply increases delay

Source/Drain Resistance

- In small-geometry devices, source and drain resistance affects switching currents
- Source of the transistor is no longer grounded, body effect increases threshold voltage
- V_{gs} is also reduced
- Current is reduced

Power Consumption

- Static Power
- Leakage current
- Sub-threshold conductance
- Dynamic Power
- Capacitive Power due to charging/discharging of capacitive load
- Short-circuit power due to direct path currents when there is a temporary connection between power and ground

Static Power Consumption

Static Consumption

- Leakage current through the reverse biased diode junctions
- For typical devices it is between 0.1nA - 0.5nA at room temperature
- For a die with 1 million devices operated at 5 V , this results in 0.5 mW power consumption \rightarrow not much
- Junction leakage current is caused by thermally generated carriers $->$ therefore is a strong function of temperature
- More important is sub-threshold leakage when threshold voltage is close to 0

Dynamic Consumption due to C_{L}

- low-to-high transition
- Assume 0 rise and fall times

Dynamic Power due to C_{L}

Define:
$\mathrm{E}_{\text {VDD }}$: energy taken from supply during a transition E_{C} : energy stored on capacitor at the end of transition

Energy Consumed and Stored

$$
\begin{aligned}
E_{V_{D D}} & =\int_{0}^{\infty} i_{V D D}(t) V_{D D} d t=V_{D D} \int_{0}^{\infty} C_{L} \frac{d V_{\text {out }}}{d t} \cdot d t \\
& =C_{L} V_{D D} \int_{0}^{V_{D D}} d V_{\text {out }} \\
& =C_{L} V_{D D}^{2}\left(=Q V_{D D}\right) \\
E_{C}= & \int_{0}^{\infty} i_{\text {VDD }}(t) V_{\text {out }} d t=\int_{0}^{\infty} C_{L} \frac{d V_{\text {out }}}{d t} V_{\text {out }} d t \\
= & C_{L} V_{D D} \int_{0}^{V_{D D}} V_{\text {out }} d V_{\text {out }} \\
= & \frac{C_{L} \cdot V_{D D}^{2}}{2}
\end{aligned}
$$

Half the energy is stored in Capacitor! Other half is dissipated in the PMOS transistor !!
For each switching cycle ($\mathrm{L} \rightarrow \mathrm{H} \& \mathrm{H} \rightarrow \mathrm{L}$), amount of energy dissipated in $\mathrm{C}_{\mathrm{L}} \cdot \mathrm{V}_{\mathrm{DD}}{ }^{2}$

$$
P_{\text {dynamic }}=C_{L} \cdot V_{D D}^{2} \cdot f
$$

- Example
- 1.2μ CMOS chip
- 100 MHz clock rate
- Average load capacitance of $30 \mathrm{fF} / \mathrm{gate}$
- 5V power supply
- Power consumption/gate $=75 \mu \mathrm{~W}$
- Design with 200,000 gates: 15W !
- Pessimistic evaluation: not all gates switch at the full rate
- Have to consider the activity factor α : Effective switching capacitance $=\alpha \mathrm{C}_{\mathrm{L}}$
- Reducing V_{DD} has a quadratic effect on $\mathrm{P}_{\text {dynamic }}$

Direct Path Current

- inputs have finite rise and fall times
- Direct current path from V_{DD} to GND while PMOS and NMOS are ON simultaneously for a short period

Symmetrical Inverter Without Load

$$
I_{\text {mean }}=2\left[\frac{1}{T} \int_{t_{1}}^{t_{2}} I(t) d t+\frac{1}{T} \int_{t_{2}}^{t_{3}} I(t) d t\right]
$$

If $\mathrm{V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}=\mathrm{V}_{\mathrm{T}}$ and $\beta_{\mathrm{n}}=\beta_{\mathrm{p}}=\beta$
and that the behavior around t_{2} is symmetrical

$$
\begin{aligned}
& I_{\text {mean }}=2 \times \frac{2}{T} \int_{t_{1}}^{t_{2}} \frac{\beta}{2}\left(V_{\text {in }}(t)-V_{t}\right)^{2} d t \\
& \text { with } \quad V_{\text {in }}(t)=\frac{V_{D D}}{t_{r}} t \\
& t_{1}=\frac{V_{t}}{V_{D D}} \cdot t_{r} \\
& t_{2}=\frac{t_{r}}{2} \\
& t_{r}=t_{f}=t_{r f}
\end{aligned}
$$

Symmetrical Inverter Without Load

$$
\begin{aligned}
I_{\text {mean }} & =\frac{2 \beta}{T} \int_{t_{t} V_{T} / V_{D D}}^{t_{D} / 2}\left(\frac{V_{D D}}{t_{r f}} \cdot t-V_{t}\right)^{2} d t \\
& =\frac{2 \beta}{T}\left[\frac{t_{t r}}{3 V_{D D}}\left(\frac{V_{D D}}{t_{r f}} \cdot t-V_{t}\right)^{3}\right]_{t_{t} V_{T} / V_{D D}}^{t_{t} / 2} \\
& =\frac{2 t_{r f}}{3 T} \cdot \frac{\beta}{V_{D D}}\left(\frac{V_{D D}}{2}-V_{t}\right)^{3} \\
& =\frac{t_{r f}}{12 T} \cdot \frac{\beta}{V_{D D}}\left(V_{D D}-2 V_{t}\right)^{3} \\
P_{s c} & =\frac{\beta}{12}\left(V_{D D}-2 V_{t}\right)^{3} \frac{t_{r f}}{T}
\end{aligned}
$$

Short Circuit Current with Loads

Output Transitions under Different Loads

C_{L} Power vs. SC Power under Different Loads

C_{L} Power vs. SC Power under Different Inputs

Impact of Load Capacitance on SC Current

- Large capacitance
- Fast input transition, slow output transition
- Input moves through the transient region before output begins to change
- Short-circuit current close to zero
- Small capacitance
- Relatively slower input transition, fast output transition
- Both devices in saturation during most of the transition
- Maximum short-circuit current
- [Veendrick84]: rise/fall times of all signals should be kept constant within a range to keep SC power minimal, $10 \% \sim 20 \%$ of total dynamic power

Technology Evolution

Year of Introduction	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 7}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 9}$
Channel length $(\mu \mathrm{m})$	0.4	0.3	0.25	0.18	0.13	0.1
Gate oxide (nm)	12	7	6	4.5	4	4
$V_{D D}(\mathrm{~V})$	3.3	2.2	2.2	1.5	1.5	1.5
$V_{T}(\mathrm{~V})$	0.7	0.7	0.7	0.6	0.6	0.6
$\mathrm{NMOS} I_{D a t}(\mathrm{~mA} / \mu \mathrm{m})$ $\left.(@) V_{G S}=V_{D D}\right)$	0.35	0.27	0.31	0.21	0.29	0.33
PMOS $I_{D s a t}(\mathrm{~mA} / \mu \mathrm{m})$ $\left.(@) V_{G S}=V_{D D}\right)$	0.16	0.11	0.14	0.09	0.13	0.16

Technology Scaling (1)

Minimum Feature Size

Technology Scaling

Number of components per chip

Propagation Delay Scaling

Technology Scaling Models

- Full Scaling (Constant Electrical Field)
ideal model - dimensions and voltage scale together by the same factor S
- Fixed Voltage Scaling
most common model until recently only dimensions scale, voltages remain constant
- General Scaling
most realistic for todays situation voltages and dimensions scale with different factors

Scaling Relationships for Long channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
$\mathbf{W}, \mathbf{L}, \mathrm{t}_{\text {ox }}$		1/S	1/S	1/S
$\mathbf{V}_{\text {DD }}, \mathbf{V}_{T}$		1/S	1/U	1
$\mathbf{N}_{\text {SUB }}$	$\mathrm{V} / \mathrm{W}_{\text {dept }}{ }^{2}$	S	S^{2} / U	S^{2}
Area/Device	WL	1/S ${ }^{2}$	1/S ${ }^{2}$	1/S ${ }^{2}$
$\mathrm{C}_{\text {ox }}$	1/t ${ }_{\text {ox }}$	S	S	S
C_{L}	$\mathrm{C}_{\text {ox }} \mathrm{WL}^{\text {L }}$	1/S	1/S	1/S
k_{n}, k_{p}	$\mathrm{Cox}_{\mathrm{ox}} \mathrm{W} / \mathrm{L}$	S	S	S
$\mathrm{I}_{\text {av }}$	$\mathrm{k}_{\mathrm{n}, \mathrm{p}} \mathrm{V}^{\mathbf{2}}$	1/S	$\mathrm{S} / \mathrm{U}^{2}$	S
t_{p} (intrinsic)	$C_{L} V / I_{\text {av }}$	1/S	$\mathrm{U} / \mathrm{S}^{2}$	1/S ${ }^{2}$
$\mathrm{Pav}_{\text {av }}$	$\mathrm{C}_{\mathrm{L}} \mathrm{V}^{2} / \mathrm{t}_{\mathrm{p}}$	$1 / \mathrm{S}^{2}$	S/U ${ }^{3}$	S
PDP	$\mathrm{C}_{\mathrm{L}} \mathrm{V}^{2}$	1/S ${ }^{3}$	$1 / \mathrm{SU}^{2}$	1/S

Scaling of Short Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
I_{av}	$\mathrm{C}_{\mathrm{ox}} \mathrm{WV}$	$1 / \mathrm{S}$	$1 / \mathrm{U}$	1
$\mathrm{~J}_{\mathrm{av}}$	$\mathrm{I}_{\mathrm{av}} / \mathrm{Area}$	S	$\mathrm{S}^{2} / \mathrm{U}$	S^{2}
$\mathrm{t}_{\mathrm{p}}($ intrin- sic $)$	$\mathrm{C}_{\mathrm{L}} \mathrm{V} / \mathrm{I}_{\mathrm{av}}$	$1 / \mathrm{S}$	$1 / \mathrm{S}$	$1 / \mathrm{S}$
P_{av}	$\mathrm{C}_{\mathrm{L}} \mathrm{V}^{2} / \mathrm{t}_{\mathrm{p}}$	$1 / \mathrm{S}^{2}$	$1 / \mathrm{U}^{2}$	1

Homework Problem (due next Thursday)

- Design a static CMOS inverter with 0.4 pF load capacitance. Make sure that you have equal rise and fall times. Layout the inverter using the Mentor tools, extract parasitics, and simulate the extracted circuit on HSPICE to make sure that your design conforms to the specification.
- Do the same analysis for a three input NAND gate.

