Combinational Logic Gates in CMOS

References:

Adapted from: *Digital Integrated Circuits: A Design Perspective*, J. Rabaey, Prentice Hall © UCB *Principles of CMOS VLSI Design: A Systems Perspective*, N. H. E. Weste, K. Eshraghian, Addison Wesley Adapted from: EE216A Lecture Notes by Prof. K. Bult © UCLA

Design Techniques for Large Fan-In

- Transistor Sizing
- Progressive Transistor Sizing
- Transistor Ordering
- Logic Design to reduce the gate fan-in

Progressive Sizing

- When parasitic capacitance is significant (e.g., when fanin is large), needs to consider distributed RC effect
- Increasing the size of M1 has the largest impact in terms of delay reduction

•
$$M_1 > M_2 > M_3 > ... > M_N$$

Delay Optimization by Transistor Ordering

Critical signal next to supply

Critical signal next to output

Improved Logic Design

Reduce the fan-in to each gate

Example: F = ((A + B + C).D)

Example: F = ((A+B+C).D)

If minimum-size: $t_{dr} \approx 7 \times t_{df.inv}$

this approach is advantageous if driving larger load

Design of an 8-Input AND

3-input NAND Gate with Parasitic Capacitors

Macro Modeling for Worst Case Analysis

$$t_{df} = [R_{N1}C_{a}] + [(R_{N1}+R_{N2})C_{b}] + [(R_{N1}+R_{N2}+R_{N3})C_{c}] + \frac{[(R_{N1}+R_{N2}+R_{N3})C_{load}]}{[(R_{N1}+R_{N2}+R_{N3})C_{load}]}$$

Internal delay
$$t_{c} = T_{c} + 2 \times C_{c}$$

$$t_d = T_{d, \text{ internal}} + \lambda \times C_{load}$$

Macro Modeling

$$t_{df} = \frac{m^2 + m}{2} R_N C_j + \frac{mR_N}{n} (mpC_j + C_L)$$

m: fan-in n: sizing factor of NMOS transistors p: sizing factor of PMOS transistors

 $C_{\text{inv,min}} = \text{total gate capacitance of minimum size inverter}$ $k = \text{"fan-out" corresponding to C_L}$ $C_j = r C_{\text{inv,min}}$ $t_{df} = R_N \left(\frac{(m^2 + m)C_j}{2} + \frac{m^2 pC_j}{n} + \frac{mkC_{\text{inv,min}}}{n} \right)$

Keep m² and m²p/n and mk/n reasonable

Macro Modeling for NOR Gate

$$t_{dr,NOR} = R_{P} \left(\frac{(m^{2} + m)C_{j}}{2} + \frac{m^{2}nC_{j}}{p} + \frac{mkC_{inv,min}}{p} \right)$$

Keep m² and m²n/p and mk/p reasonable
$$t_{df,NOR} = R_{N} \left(mC_{j} + \frac{mpC_{j}}{n} + \frac{kC_{inv,min}}{n} \right)$$

Keep n as small as possible to minimize the impact on rise-delay

Design Strategy

- Use minimum sized transistors
- Analyze critical path (slowest, maybe more than 1)
- Look at alternative implementations (substitute NOR's ?)
- Compare and choose best
- Analyze critical path(s) and optimize transistor sizing

Complementary Logic

- 2n transistors
- Complicated wiring
- No functional sizing required

Ratioed Logic

Ratioed Logic

Reduce the number of devices over complementary logic

Ratioed Logic

- Use PDN to implement the function (which is the negation of the network)
- Total number of devices: n for the input, 1 for the static load
- Minimum load is 1 unit-gate load
- Functional sizing is required to optimize noise margin

Functional Sizing in Ratioed Logic

(a) Resistive load

N transistors

•
$$V_{OH} = V_{DD}$$

•
$$V_{OL} = \frac{R_{PDN}}{R_{PDN} + R_L} V_{DD}$$

- Asymmetrical response
- Static power consumption
- $t_{pLH} = 0.69 R_L C_L$
- $t_{pHL} = 0.69 (R_L || R_{PDN}) C_L$

Current Source as the Static Load

$$t_{pLH} = \frac{C_L V_{swing} / 2}{I_{ave}}$$

 If current source equals V_{DD}/R_L
 = initial charging current from the resistive load

$$t_{pLH} = \frac{C_L R_L}{2}$$

• More than 25% reduction compared to resistive load

Load Lines of Ratioed Gates

NMOS Depletion Load

Use depletion mode NMOS transistor as pull-up

 V_{tdep} of depletion transistor is < 0 V

The depletion mode transistor is always ON: gate and source connected $\Rightarrow V_{qs} = 0$

 V_{in} = 0 \Rightarrow transistor pull down is off \Rightarrow V_{out} is high

⁽b) Depletion load NMOS

Voltage Output Low

Driver is in linear region with input high Load is in saturation region

$$\beta_{driver} \left((V_{DD} - V_{tn}) V_{OL} - \frac{V_{OL}^2}{2} \right) = \frac{\beta_{load}}{2} (-V_{tdep})^2$$

Assume:

$$V_{DD} = 5.0V$$

 $V_{tn} = 1.0V = -V_{tdep}$

Proper design: $V_{ol} < V_{tn}$

Let: $V_{ol} = 0.5V$

$$\frac{\beta_{driver}}{\beta_{load}} = 0.267$$

Gate Threshold Voltage

Gate threshold voltage = V_{inv} = Input voltage at which $V_{in} = V_{out}$

Assume that both driver and load are in saturation with input V_{inv}

$$I_{DS(sat)} = \frac{\beta_{driver}}{2} (V_{gs} - V_{t})^{2}$$
$$\therefore \frac{\beta_{driver}}{2} (V_{inv} - V_{t})^{2} = \frac{\beta_{load}}{2} (-V_{dep})^{2}$$
Hence, $V_{inv} = V_{t} - V_{dep} \sqrt{\frac{\beta_{load}}{\beta_{driver}}}$

If β_{driver} is increased relative to β_{load} then, V_{inv} decreases

PMOST Load with Constant V_{GS}

Sizing for V_{OL}

$$\frac{\beta_n}{\beta_p} = \frac{0.5(V_{dd} - V_{tp})^2}{((V_{dd} - V_{tn})V_{ol} - 0.5V_{ol}^2)}$$

Assume:
$$V_{dd} = 5.0V$$

 $V_{tn} = V_{tp} = 1.0V$

Proper design: $V_{ol} < V_{th}$

Let: $V_{ol} = 0.5V$

$$\frac{\beta_n}{\beta_p} = 4.26$$

Sizing for Gate Threshold Voltage

N-device: saturated $(V_{out} > V_{in} - V_{m})$

$$I_{dsn} = \frac{\beta_n}{2} (V_{in} - V_m)^2$$

P-device: non-saturated

$$V_{gsp} = -V_{DD}$$

$$I_{dsp} = \beta_{p} [(-V_{DD} - V_{tp})(V_{out} - V_{DD}) - \frac{(V_{out} - V_{DD})^{2}}{2}]$$

Equating the two currents we obtain,

$$\frac{\beta_n}{2} (V_{in} - V_{in})^2 = -\beta_p [(-V_{DD} - V_{ip})(V_{out} - V_{DD}) - \frac{(V_{out} - V_{DD})^2}{2}]$$

Sizing for Gate Threshold Voltage

Solving for V_{out}

$$V_{out} = -V_{tp} + \sqrt{(V_{DD} + V_{tp})^2 - C}$$

Where $C = k (V_{in} - V_{tn})^2$

$$k = \frac{\beta_n}{\beta_p}$$

Also,
$$\frac{\beta_n}{\beta_p} = \frac{(V_{DD} + V_{tp})^2 - (V_{out} + V_{tp})^2}{(V_{in} - V_{tn})^2}$$

To make gate threshold voltage = $0.5V_{DD}$

$$\frac{\beta_n}{\beta_p} = 6.11$$

Forcing the Voltage Output Low

Propagation Delay of Pseudo-NMOS Inverter

• Use average current

$$I_{av}(L \to H) = \frac{1}{2} \left[\frac{\beta_{p}}{2} (-V_{DD} - V_{tp})^{2} + \beta_{p} (-V_{DD} - V_{tp}) (\frac{-V_{DD}}{2}) - (\frac{V_{DD}^{2}}{8}) \right]$$

$$I_{av}(H \to L) = \frac{1}{2} \left[\frac{\beta_{N}}{2} (V_{DD} - V_{m})^{2} + \beta_{N} (V_{DD} - V_{m}) - \beta_{P} (V_{DD} + V_{m}) \frac{-V_{DD}}{2} + (\beta_{N} - \beta_{P}) \frac{V_{DD}^{2}}{8} \right]$$

• Propagation delay

$$t_p = \frac{C_L (V_{DD} / 2)}{I_{av}}$$

Power Consumption

• Consume power when the output is low

$$I_{av,low} = \frac{\beta_{P}}{2} (-V_{DD} - V_{tp})^{2}$$
$$P_{av,low} = V_{DD} I_{av,low} = \frac{\beta_{P}}{2} V_{DD} (V_{DD} + V_{tp})^{2}$$

Trade-offs to be Considered

- To reduce static power, I_{Load} should be low
- To obtain a reasonable NM_L, $V_{OL} = I_{Load}R_{PDN}$ should be low
- To reduce $t_{pLH} \approx C_L V_{DD} / (2I_{Load})$, I_{Load} should be high
- To reduce $t_{pHL}\approx 0.69~R_{PDN}C_L,~R_{PDN}$ should be kept small

Pseudo-NMOS NOR Gate

- Fan-in of N inputs requires only N+1 transistors, smaller parasitic capacitance and area
- Smaller load to preceding gate
- Static power consumption at output low
- Pseudo-NMOS gates can be used effectively when speed is importance and majority of the output is high

Pseudo-NMOS NAND Gate

Improved Loads (2)

Dual Cascode Voltage Switch Logic (DCVSL)

Example

XOR-NXOR gate