## The Devices: MOS Transistors

References: Semiconductor Device Fundamentals, R. F. Pierret, Addison-Wesley Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey, Prentice Hall © UCB

# MOS Transistor (Metal-Oxide-Semiconductor)

## **NMOS** Transistor



**Bulk** Contact

#### **CROSS-SECTION** of NMOS Transistor

## Cross-Section of CMOS Technology



### MOS transistors - types and symbols



### **Threshold Voltage: Concept**



## **Threshold Voltage: Concept**

- Threshold voltage due to ideal MOS structure
  - Voltage to invert the character of the surface region from ntype to p-type and vice versa
  - Voltage drop due to gate oxide
- Threshold voltage due to non-ideal MOS structure
  - Difference in the work functions of metal and semiconductor
  - Charges in the gate oxide
  - Ion-implantation
  - Body effect

- ...

#### **Depletion Width and Electric Field**

Poisson's equation  $\frac{dE}{dx} = \frac{\rho}{K_s \varepsilon_0} \cong -\frac{qN_A}{K_s \varepsilon_0} \quad (0 \le x \le W)$ lacksquare $K_{\rm s}$ : dielectric constant  $\varepsilon_{0}$ : permitivity of free space • Electric Field  $E(x) = \frac{qN_A}{K_s \varepsilon_0} (W - x) \quad (0 \le x \le W)$ • Depletion width  $\phi(x) = \frac{qN_A}{2K_s\varepsilon_0}(W-x)^2$   $(0 \le x \le W)$  $\phi_{S} = \frac{qN_{A}}{2K_{S}\varepsilon_{0}}W^{2} \Leftrightarrow W = \left[\frac{2K_{S}\varepsilon_{0}}{qN_{A}}\phi_{S}\right]^{1/2}$ 

Threshold Adjustment by Ion Implantation

- Implant a relatively small, precisely controlled number of either boron or phosphorus ions into the nearsurface region of semiconductor
- Implantation of boron causes a positive shift in threshold voltage
- Implantation of phosphorus causes a negative shift
- Like placing additional "fixed" charges

$$\Delta V = -\frac{Q_I}{C_{ox}} \qquad Q_I = \pm q N_I$$
(+): donor (-): acceptor

## **Back Biasing or Body Effect**

- V<sub>SB</sub> is normally positive for n-channel devices, negative for p-channel devices
- Always increases the magnitude of the ideal device threshold voltage
- Inversion occurs at  $\phi_{S} = (2\phi_{F} + V_{SB})$
- Increases the charges stored in depletion region

$$Q_{B} = \sqrt{2qN_{A}\varepsilon_{si}(2\phi_{F} + V_{SB})}$$

### Threshold voltage



## The Threshold Voltage

$$V_{T} = \phi_{MS} + 2\phi_{F} + \frac{Q_{B}}{C_{ox}} - \frac{Q_{I}}{C_{ox}} - \frac{Q_{M}\gamma_{M}}{C_{ox}} - \frac{Q_{F}}{C_{ox}} - \frac{Q_{IT}(2\phi_{F})}{C_{ox}}$$
  
• In general  $V_{FB} = \phi_{MS} - \frac{Q_{I}}{C_{ox}} - \frac{Q_{M}\gamma_{M}}{C_{ox}} - \frac{Q_{F}}{C_{ox}} - \frac{Q_{IT}(0)}{C_{ox}}$   
 $V_{T} = V_{FB} + V_{B} + V_{ox}$   
 $V_{B} = 2\phi_{F}$ 

• NMOS:  $V_{SB} > 0$ , PMOS:  $V_{SB} < 0$ 

$$V_{ox} = \frac{K_s}{K_0} x_0 \sqrt{\frac{2qN_A}{K_s \varepsilon_0} (2\phi_F + V_{SB})} \quad \text{for NMOS}$$

$$V_{ox} = -\frac{K_s}{K_0} x_0 \sqrt{\frac{2qN_D}{K_s \varepsilon_0}} (-2\phi_F - V_{SB}) \text{ for PMOS}$$

### **Current-Voltage Relations**



At x, the gate to channel voltage equals  $V_{\text{GS}}$  - V(x)

### **Transistor in Linear Region**

- Assume that the voltage exceeds  $V_T$  all along the channel
- Induced charge/area at point x

$$Q_i(x) = -C_{ox}[V_{GS} - V(x) - V_T]$$

• Current 
$$I_D = -v_n(x) \cdot Q_i(x) \cdot W$$
  
 $v_n(x)$ : drift velocity  $v_n = -\mu_n E(x) = \mu_n \frac{dV}{dx}$ 

$$\therefore I_d dx = \mu_n . C_{ox} . W(V_{GS} - V - V_T) dV$$

• Integrating over the length of the channel L

$$I_{D} = K'_{n} \frac{W}{L} ((V_{GS} - V_{T}) \cdot V_{DS} - \frac{V_{DS}^{2}}{2})$$
$$K'_{n} = \mu_{n} C_{ox} = \mu_{n} \frac{C_{ox}}{T_{ox}}$$

### **Transistor In Saturation**



### **Transistor in Saturation**

- If drain-source voltage increases, the assumption that the channel voltage is larger than V<sub>T</sub> all along the channel ceases to hold.
- When  $V_{GS}$   $V(x) < V_T$  pinch-off occurs
- Pinch-off condition

$$V_{GS} - V_{DS} \le V_T$$

## Saturation Current

- The voltage difference over the induced channel (from pinch-off to the source) remains fixed at  $V_{GS}$   $V_T$  and hence, the current remains constant.
- Replacing  $V_{DS}$  by  $V_{GS}$ - $V_T$  in equation for  $I_D$  yields

$$I_{D} = \frac{K'_{n}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2}$$

 Effective length of the conductive channel is modulated by applied V<sub>DS</sub> - Channel Length Modulation

### **Current-Voltage Relations**

Cut-off:  $V_{GS} \le V_T$ ,  $I_{DS} \approx 0$ Linear Region:  $V_{DS} < V_{GS} - V_T$   $I_D = k'_n \frac{W}{L} \left( (V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right)$   $k'_n = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{t_{ox}}$  Process Transconductance Parameter

Saturation Mode:  $V_{DS} \ge V_{GS} - V_T$   $I_D = \frac{k'_n}{2} \frac{W}{L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$ Channel Length Modulation

#### **I-V Relations**

Linear:  $V_{DS} < V_{GS} - V_{T}$  $V_{DS} = V_{GS} V_T$ ν<sub>GS</sub> = 5V Square Dependence 0.020 2 Triode Saturation Linear ÷∛Ъ  $V_{GS} = 4V$ (Pm) <sup>1</sup> 0.010 Subthreshold Current  $V_{GS} = \beta V$  $V_{GS} = 2V$  $\nabla_{GS} = 1V$ 0.0 2.0 3.0 0. <del>|</del>\_V 3.0 5.0 0.0 1.0 2.0 4.0  $V_{GS}(V)$  $V_{DS}(V)$ (b)  $\sqrt{I_D}$  as a function (a) ID as a function of VDS of  $V_{GS}$  (for  $V_{DS} = 5V$ )

NMOS Enhancement Transistor: W = 100  $\mu m$  ,L = 20  $\mu m$ 

## Dynamic Behavior of MOS Transistor



- channel charge
- depletion region of resource bias p-n junctions

## The Gate Capacitance



Can be decomposed into a number of elements each with a different behavior

Parasitic capacitance between gate and source (drain) called **Overlap Capacitance** (linear)

$$C_{gsO} = C_{gdO} = C_{ox} \cdot x_d \cdot W = C_o \cdot W$$

Channel Capacitance:  $C_{gs}$ ,  $C_{gd}$ , and  $C_{gb}$ 

**Cut-Off**: no channel, total capacitance =  $C_{ox}WL_{eff}$ appears between gate and bulk

**Triode Region**: Inversion layer - acts as conductor  $\therefore C_{gb} = 0$ 

Symmetry dictates  $C_{gs} \approx C_{gd} \approx \frac{C_{ox}WL_{eff}}{2}$ Saturation: Pinch off,  $\therefore C_{gd} \approx 0, C_{gb} = 0$ 

 $C_{gs}$  averages (2/3) $C_{ox}WL_{eff}$ 

## Diffusion Capacitance (Junction Capacitance)



Reverse biased source-bulk and drain-bulk pn junctions

- Bottom plate

$$C_{bottom} = C_j WL_s,$$

- Side-wall junctions - formed by source (N<sub>D</sub>) and P<sup>+</sup> channel stop (N<sub>A</sub><sup>+</sup>)

- graded junction (m=1/3)

$$\begin{split} C_{sw} &= C'_{jsw} x_j (w+2L_s) \\ &= C_{jsw} (W+2L_s) \\ C_{jsw} &= C'_{jsw} x_j \quad , \qquad x_j = \text{junction depth} \\ - C_{diff} &= C_{bottom} + C_{sw} \\ &= C_j * \text{Area} + C_{jsw} \text{ x Perimeter} \\ &= C_i L_s W + C_{isw} (2L_s + W) \end{split}$$

### **Junction Capacitance**



# The Sub-Micron MOS Transistor

- Threshold Variations (Manufacturing tech., V<sub>SB</sub>)
- Parasitic Resistances
- Velocity Saturation and Mobility Degradation
- Subthreshold Conduction
- Latchup

## **Threshold Variations**

- In derivation of  $V_T$  the following assumption were made:
  - charge beneath gate originates from MOS field effects
  - ignores depletion region the source and drain junctions (reverse biased)
- A part of the region below the gate is already depleted (by source & drain fields), a smaller V<sub>T</sub> suffices to cause strong inversion
- $V_T$  decreases with L
- Similar effect can be obtained by increasing  $V_{DS}$  or  $V_{DB}$  as it increases drain-junction depletion region



- $V_T$  can also drift over time (Hot-carrier effect)
  - Decreased device dimensions
  - Increase in electrical field
  - Increasing velocity of electrons, can leave Si surface and enter gate oxide
  - Electrons trapped in gate oxide change  $V_T$  (increases in NMOS, decreases in PMOS)
- For a electron to be hot, electric field of 10<sup>4</sup> V/cm is necessary
  - Condition easily met for sub-micron devices

#### **Parasitic Resistances**



Solutions: cover the diffusion regions with low-resistivity material such as titanium or tungsten, or make the transistor wider

### Velocity Saturation (1) short channel devices



### Velocity Saturation (2)



$$I_{DSAT} = v_{SAT} C_{ox} W (V_{GS} - V_{DSAT} - V_T)$$

Linear Dependence on  $V_{GS}$ 

independent on L  $\longleftarrow\,$  current drive cannot be improved by decreasing L



60mV/decade At T= 300°K

## Latchup



# Latchup

- Parasitic circuit effect
- Shorting of  $V_{DD}$  and  $V_{SS}$  lines resulting in chip self-destruction or system failure with requirements to power down
- To understand latchup consider: Silicon Controlled Rectifiers (SCRs)



### Latchup - cont.

 $\begin{array}{ccc} \text{If } I_g & \uparrow \Rightarrow & I_{c2} & \uparrow \\ I_{c2} \text{ is the base current } I_{b1} \text{ of the p-n-p transistor} \\ & \because & I_g & \uparrow \Rightarrow & I_{b1} & \uparrow \Rightarrow & I_{c1} & \uparrow \Rightarrow & I_{b2} & \uparrow \\ & & & & (\text{magnitude of current increases}) \end{array}$ 

If the gain of the transistor are  $\beta_1$  and  $\beta_2$ 

Then if  $\beta_1 \beta_2 \ge 1$ , the feedback action will turn device ON permanently and current will self destruct device.

# Latchup Triggering

- Parasitic n-p-n & pin-p has to be triggered and holding state to be maintained
- Can be triggered by transient currents
  - Voltages during power-up
  - Radiation pulses
  - Voltages or current beyond operating range

$$I_{ntrigger} \approx \frac{V_{pnp-on}}{\alpha_{npn}.R_{well}}$$
Lateral triggering *n-source*



 $\alpha_{npn}$ : Common base gain of n-p-n transistor

Similarly, vertical triggering  $\rightarrow$  due to the voltage drop across  $R_{substrate}$  as current is injected into the emitter

## Latchup Triggering - cont.

- Triggering occurs due to (mainly) I/O circuits where internal voltages meet external world and large currents can flow
  - When NMOS experiences undershoot by more than 0.7V, the drain is forward biased, which initiates latchup
  - When PMOS experiences overshoot by more than 0.7V, the drain is forward biased, which initiates latchup

### Latchup Prevention

Analysis of the circuit shows that for latchup to occur the following inequality has to be true

$$\beta_{npn}\beta_{pnp} > 1 + \frac{(\beta_{npn} + 1)(I_{Rsub} + I_{Rwell}.\beta_{pnp})}{I_{DD} - I_{Rsub}}$$
where  $I_{Rsub} = \frac{V_{benpn}}{R_{sub}}$ 
 $I_{Rwell} = \frac{V_{bepnp}}{R_{well}}$ 
 $I_{DD} = \text{total supply current}$ 

The feedback current flowing into n-p-n base is collector current offset by  $I_{Rsub}$ . To cause the feedback, this current must be greater than initial n-p-n base current,  $I_b$ .

## Prevention of latchup

- Reduce the resistor values (substrate & well) and reduce the gain of parasitic transistors
- Latchup resistant CMOS process
- Layout techniques

## **Process option**

## - that reduces gain of parasitic transistors

- Si starting material with a thin epitaxial layer on highly doped Substrate
  - decreases substrate resistance
  - provide a sink for collector current of vertical p-n-p transistor
- as epi layer is thinned latch-up improves
- retrograde well structure
  - highly doped area at the bottom of the well
  - top lightly doped
  - reduces well-resistance deep in the well without deteriorating performance of transistors

# How about $\beta_{npn}$ or $\beta_{pnp}$ ?

- Hard to reduce
- For 1  $\mu$  n-well process

$$\beta_{pnp} \sim 10 - 100$$
  
 $\beta_{npn} \sim 2 - 5$ 

# **Guard Ring**



to collect injected minority carriers

# **I/O Latchup Prevention**

- Reduce  $\beta$ 

  - area expensive
  - only used in special space-borne applications where radiation is important
  - mainly used in I/O circuits only
- I/O Rules
  - separate (physically) n and p transistors
  - p+ guard rings connected to  $V_{ss}$  around n-transistors
  - n+ guard rings connected to V<sub>DD</sub> around p-transistors



## Latchup Prevention Techniques

- Every well must have a substrate contact of the appropriate type
- Substrate contact directly to metal to Supply pad (no diffusion or poly underpasses in the supply rails)
- Substrate contact as close to Source reduces R<sub>well</sub> and R<sub>sub</sub>
  - Conservative rule: one supply contact for every supply connection
  - Less conservative: a substrate contact for every 5-10 transistors or every 25 to 100
- Layout n-transistors with packing of n-devices towards V\_{ss} & similarly for p-devices (V\_{DD})
  - avoid convoluted structures that intertwine n- and p-devices

## **Spice Models**

- Level 1: Long Channel Equations Very Simple
- Level 2: Physical Model Includes Velocity Saturation and Threshold Variations
- Level 3: Semi-Emperical Based on curve fitting to measured devices
- Level 4 (BSIM): Emperical-Simple and Popular

## Main MOS Spice Parameters

| Parameter Name                                  | Symbol       | SPICE<br>Name | Units       | Default<br>Value |
|-------------------------------------------------|--------------|---------------|-------------|------------------|
| SPICE Model Index                               |              | LEVEL         | -           | 1                |
| Zero-Bias Threshold Voltage                     | VTO          | VT O          | v           | 0                |
| Process Transconductance                        | k'           | КР            | A/V2        | 2.E-5            |
| Body-Bias Parameter                             | g            | CAMMA         | V0 <i>5</i> | 0                |
| Channel Modulation                              | 1            | LAMBDA        | 1/V         | 0                |
| Oxide Thickness                                 | tox          | T OX          | m           | 1.0E-7           |
| Lateral Diffusion                               | xod          | LD            | m           | 0                |
| Metallurgical Junction Depth                    | xj           | XJ            | m           | 0                |
| Surface Inversion Potential                     | 2  <b>fF</b> | PHI           | v           | 0.6              |
| Substrate Doping                                | NA,ND        | NSUB          | cm-3        | 0                |
| Surface State Density                           | Qss/q        | NSS           | cm-3        | 0                |
| Fast Surface State Density                      |              | NF S          | cm-3        | 0                |
| Total Channel Charge Coefficient                |              | NEFF          | -           | 1                |
| Type of Gate Material                           |              | TPG           | -           | 1                |
| Surface Mobility                                | m0           | UO            | cm2/V-sec   | 600              |
| Maximum Drift Velocity                          | umax         | VMAX          | m/s         | 0                |
| Mobility Critical Field                         | xcrit        | UCRIT         | V/cm        | 1.0E4            |
| Critical Field Exponent in Mobility Degradation |              | UEXP          | -           | 0                |
| Transverse Field Exponent (mobility)            |              | UTRA          | -           | 0                |

## **SPICE** Parameters for Parasitics

| Parameter Name                           | Symbol                | SPICE<br>Name | Units            | Default<br>Value |
|------------------------------------------|-----------------------|---------------|------------------|------------------|
| Source resistance                        | <b>R</b> <sub>S</sub> | RS            | Ω j              | 0                |
| Drain resistance                         | <b>R</b> <sub>D</sub> | RD            | Ω                | 0                |
| Sheet resistance (Source/Drain)          | R <sub>o</sub>        | RSH           | വ⁄ം              | 0                |
| Zero Bias Bulk Junction Cap              | C <sub>j0</sub>       | CJ            | F/m <sup>2</sup> | 0                |
| Bulk Junction Grading Coeff.             | m                     | MJ            | -                | 0.5              |
| Zero Bias Side Wall Junction Cap         | С <sub>ј sw 8</sub>   | CJSW          | F/m              | 0                |
| Side Wall Grading Coeff.                 | m <sub>sw</sub>       | MJSW          | -                | 0.3              |
| Gate-Bulk Overlap Capacitance            | CgbO                  | CGBO          | F/m              | 0                |
| Gate-Source Overlap Capacitance          | C <sub>gsO</sub>      | CGSO          | F/m              | 0                |
| Gate-Drain Overlap Capacitance           | C <sub>gdO</sub>      | CGDO          | F/m              | 0                |
| Bulk Junction Leakage Current            | I <sub>S</sub>        | IS            | A                | 0                |
| Bulk Junction Leakage Current<br>Density | J <sub>S</sub>        | JS            | A/m <sup>2</sup> | 1E-8             |
| Bulk Junction Potential                  | фо                    | PB            | V                | 0.8              |

## **SPICE** Transistor Parameters

| Parameter Name                     | Symbol | SPICE Name | Units | Default<br>Value |  |
|------------------------------------|--------|------------|-------|------------------|--|
| Drawn Length                       | L      | L          | m     | -                |  |
| Effective Width                    | W      | W          | m     | -                |  |
| Source Area                        | AREA   | AS         | m2    | 0                |  |
| Drain Area                         | AREA   | AD         | m2    | 0                |  |
| Source Perimeter                   | PERIM  | PS         | m     | 0                |  |
| Drain Perimeter                    | PERIM  | PD         | m     | 0                |  |
| <b>Squares of Source Diffusion</b> |        | NRS        | -     | 1                |  |
| <b>Squares of Drain Diffusion</b>  |        | NRD        | -     | 1                |  |

## Matching Manual and SPICE Models



# **Technology Evolution**

| Year of Introduction                              | 1994 | <b>199</b> 7 | 2000 | 2003 | 2006 | 2009 |
|---------------------------------------------------|------|--------------|------|------|------|------|
| Channel length (µm)                               | 0.4  | 0.3          | 0.25 | 0.18 | 0.13 | 0.1  |
| Gate oxide (nm)                                   | 12   | 7            | 6    | 4.5  | 4    | 4    |
| <i>V<sub>DD</sub></i> (V)                         | 3.3  | 2.2          | 2.2  | 1.5  | 1.5  | 1.5  |
| $V_T(\mathbf{V})$                                 | 0.7  | 0.7          | 0.7  | 0.6  | 0.6  | 0.6  |
| NMOS $I_{Dsat}$ (mA/µm)<br>(@ $V_{GS} = V_{DD}$ ) | 0.35 | 0.27         | 0.31 | 0.21 | 0.29 | 0.33 |
| PMOS $I_{Dsat}$ (mA/µm)<br>(@ $V_{GS} = V_{DD}$ ) | 0.16 | 0.11         | 0.14 | 0.09 | 0.13 | 0.16 |