

Digital Integrated Circuits A Design Perspective

Semiconductor Memories

Chapter Overview

Memory Classification Memory Architectures □ The Memory Core Periphery Reliability **Case Studies**

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	IFO FLASH IFO Register AM	

Memory Architecture: Decoders

Intuitive architecture for N x M memory Too many select signals: N words == N select signals

Decoder reduces the number of select signals $K = log_2 N$

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Hierarchical Memory Architecture

Advantages:

- **1. Shorter wires within blocks**
- 2. Block address activates only 1 block => power savings

Read-Only Memory Cells

Diode ROM

MOS ROM 1

MOS ROM 2

MOS OR ROM

MOS NOR ROM

MOS NOR ROM Layout

MOS NAND ROM

All word lines high by default with exception of selected row

Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

Non-Volatile Memories The Floating-gate transistor (FAMOS)

Device cross-section

Schematic symbol

Floating-Gate Transistor Programming

Avalanche injection

Removing programming voltage leaves charge trapped

Programming results in higher V_T .

FLOTOX EEPROM

FLOTOX transistor

Fowler-Nordheim *I-V* characteristic

EEPROM Cell

Absolute threshold control is hard Unprogrammed transistor might be depletion ⇒ 2 transistor cell

Flash EEPROM

Many other options ...

Characteristics of State-of-the-art NVM

Table 12-1 Comparison between nonvolatile memories ([Itoh01]). $V_{DD} = 3.3 \text{ or } 5 \text{ V}; V_{PP} = 12 \text{ or } 12.5 \text{ V}.$

	Coll	Cell Area	Mechanism		External Power Supply		- Brogrom/
	Nr. of Transistors	(ratio wrt EPROM)	Erase	Write	Write	Read	Erase Cycles
MASK ROM	1 T (NAND)	0.35–5	_	_	_	V_{DD}	0
EPROM	1 T	1	UV Exposure	Hot electrons	V_{PP}	V_{DD}	~100
EEPROM	2 T	3–5	FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$
Flash	1 T	1-2	FN Tunneling	Hot electrons	V_{PP}	V_{DD}	$10^4 - 10^5$
Memory			FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$

Read-Write Memories (RAM)

□ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell) Fast Differential

DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

$$k_{n,M5} \left((V_{DD} - \Delta V - V_{Tn}) V_{DSATn} - \frac{V_{DSATn}^2}{2} \right) = k_{n,M1} \left((V_{DD} - V_{Tn}) \Delta V - \frac{\Delta V^2}{2} \right)$$
$$\Delta V = \frac{V_{DSATn} + CR(V_{DD} - V_{Tn}) - \sqrt{V_{DSATn}^2 (1 + CR) + CR^2 (V_{DD} - V_{Tn})^2}}{CR}$$

CMOS SRAM Analysis (Read)

CMOS SRAM Analysis (Write)

6T-SRAM — Layout

Resistance-load SRAM Cell

Static power dissipation -- Want R $_L$ large Bit lines precharged to V $_{DD}$ to address t $_p$ problem

SRAM Characteristics

 Table 12-2
 Comparison of CMOS SRAM cells used in 1-Mbit memory (from [Takada91])

	Complementary CMOS	Resistive Load	TFT Cell
Number of transistors	6	4	4 (+2 TFT)
Cell size	58.2 μm ² (0.7-μm rule)	40.8 μm ² (0.7-μm rule)	41.1 μm ² (0.8-μm rule)
Standby current (per cell)	10 ⁻¹⁵ A	10 ⁻¹² A	10 ⁻¹³ A

3-Transistor DRAM Cell

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL}-V_{Tn}

3T-DRAM — Layout

1-Transistor DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL. Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

DRAM Cell Observations

- □ 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- □ DRAM memory cells are single ended in contrast to SRAM cells.
- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- □ Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- □ When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

Sense Amp Operation

1-T DRAM Cell

Cross-section

Layout

Uses Polysilicon-Diffusion Capacitance Expensive in Area

SEM of poly-diffusion capacitor 1T-DRAM

Advanced 1T DRAM Cells

Stacked-capacitor Cell

Trench Cell

Decoders Sense Amplifiers Input/Output Buffers Control / Timing Circuitry

Row Decoders

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_{0} = A_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$
$$WL_{511} = \bar{A}_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$

NOR Decoder

$$WL_{0} = \overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6} + A_{7} + A_{8} + A_{9}}$$
$$WL_{511} = \overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6} + A_{7} + A_{8} + A_{9}}$$

Hierarchical Decoders

Multi-stage implementation improves performance

 WL_3 바 V_{DD} WL_2 마 $V_{\underline{D}}$ WL₁ 마 V_{DD} WL₀ ۰ŀ \overline{A}_0 \overline{A}_1 A₁

 V_{DD}

2-input NOR decoder

2-input NAND decoder

A

4-input pass-transistor based column decoder

Advantages: speed (t_{pd} does not add to overall memory access time) Only one extra transistor in signal path Disadvantage: Large transistor count

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders Solutions: buffers

> progressive sizing combination of tree and pass transistor approaches

Decoder for circular shift-register

Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sense Amplifier

Differential Sensing – SRAM

Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQ

Once adequate voltage gap created, sense amp enabled with SE Positive feedback quickly forces output to a stable operating point.

Reliability and Yield

• Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

High Density and Large Die size cause Yield Problems

Y = 100 $\frac{Number"" of""Good"" Chips"" on"" Wafer}{Number"" of"" Chips"" on"" Wafer$

$$\boldsymbol{Y} = \left[\frac{1-e^{-AD}}{AD}\right]^2$$

Increase Yield using Error Correction and Redundancy

Noise Sources in 1T DRam

Open Bit-line Architecture — Cross Coupling

Folded-Bitline Architecture

Transposed-Bitline Architecture

(a) Straightforward bit-line routing

(b) Transposed bit-line architecture

1 Particle ~ 1 Million Carriers

Redundancy

Memories

Error-Correcting Codes

Example: Hamming Codes

$P_1 P_2 B_3 P_4 B_5 B_6 B_7$	e.g. B3 Wrong		
with			
$P_1 \oplus B_3 \oplus B_5 \oplus B_7 = 0$	1		
$P_2 \oplus B_3 \oplus B_6 \oplus B_7 = 0$	1	= 3	
$P_4 \oplus B_5 \oplus B_6 \oplus B_7 = 0$	0		

Redundancy and Error Correction

Sources of Power Dissipation in Memories

From [Itoh00]

Programmable Logic Array *Pseudo-NMOS PLA*

AND-plane

OR-plane

Semiconductor Memory Trends (updated)

Trends in Memory Cell Area

From [Itoh01]

Semiconductor Memory Trends

Technology feature size for different SRAM generations