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Semiconductor Memory Classification
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Memory Architecture: Decoders

Word 0

Word 1

Word 2

Word N 2 2

Word N 2 1

Storage
cell

M bits M bits

N
words

S0

S1

S2

SN 2 2

A 0

A 1

A K 2 1

K 5 log2N

SN 2 1

Word 0

Word 1

Word 2

Word N 2 2

Word N 2 1

Storage
cell

S0

Input-Output
(M bits)

Intuitive architecture for N x M memory

Too many select signals:

N words == N select signals
K = log2N

Decoder reduces the number of select signals

Input-Output
(M bits)

Decoder



Memories

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing to
rail-to-rail amplitude

Selects appropriate
word
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Hierarchical Memory Architecture

Advantages:

1. Shorter wires within blocks
2. Block address activates only 1 block => power savings
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Read-Only Memory Cells
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MOS OR ROM
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MOS NOR ROM
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MOS NOR ROM Layout

Programmming using the

Active Layer Only

Polysilicon

Metal1

Diffusion

Metal1 on Diffusion

Cell (9.5 x 7 )
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MOS NOR ROM Layout
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Programmming using
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MOS NAND ROM

All word lines high by default with exception of selected row
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Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary,
but clock driver becomes harder to design.
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Non-Volatile Memories

The Floating-gate transistor (FAMOS)
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Floating-Gate Transistor Programming
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FLOTOX EEPROM

Floating gate

Source

Substrate
p

Gate

Drain

n1 n1

FLOTOX transistor
Fowler-Nordheim 

I-V characteristic

20–30 nm

10 nm

-10 V

10 V

I

VGD



Memories

EEPROM Cell
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Flash EEPROM

Control gate

erasure

p-substrate

Floating gate

Thin tunneling oxide

n 1 source n1 drain
programming

Many other options …
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Characteristics of State-of-the-art NVM
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Read-Write Memories (RAM)

 STATIC (SRAM)

 DYNAMIC (DRAM)

Data stored as long as supply is applied

Large (6 transistors/cell)

Fast

Differential

Periodic refresh required

Small (1-3 transistors/cell)

Slower

Single Ended
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6-transistor CMOS SRAM Cell 
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CMOS SRAM Analysis (Read)
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CMOS SRAM Analysis (Read)
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CMOS SRAM Analysis (Write) 
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6T-SRAM — Layout 
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Resistance-load SRAM Cell

Static power dissipation -- Want R L large
Bit lines precharged to VDD to address tp problem
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RL RL
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SRAM Characteristics
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3-Transistor DRAM Cell

No constraints on device ratios

Reads are non-destructive

Value stored at node X when writing a “1” = VWWL-VTn
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3T-DRAM — Layout
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1-Transistor DRAM Cell

Write: CS is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

V BL VPRE– VBIT VPRE–
CS

CS CBL+
------------= =V
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DRAM Cell Observations
 1T DRAM requires a sense amplifier for each bit line, due  

to charge redistribution read-out.

 DRAM memory cells are single ended in contrast to 

SRAM cells.

The read-out of the 1T DRAM cell is destructive; read 

and  refresh operations are necessary for correct 

operation.

 Unlike 3T cell, 1T cell requires presence of an extra 

capacitance that must be explicitly included in the design.

When writing a “1” into a DRAM cell, a threshold voltage 

is lost. This charge loss can be circumvented by 

bootstrapping the word lines to a higher value than VDD
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Sense Amp Operation

D V(1)

V(1)

V(0)

t

VPRE

VBL

Sense amp activated
Word line activated
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1-T DRAM Cell

Uses Polysilicon-Diffusion Capacitance

Expensive in Area

M1 word
line

Diffused
bit line

Polysilicon
gate

Polysilicon
plate

Capacitor

Cross-section Layout

Metal word line

Poly
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Field Oxiden+ n+

Inversion layer
induced by
plate bias
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SEM of poly-diffusion capacitor 1T-DRAM
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Advanced 1T DRAM Cells

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plate
Word line

Insulating Layer

IsolationTransfer gate

Storage electrode
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Periphery

 Decoders

 Sense Amplifiers

 Input/Output Buffers

 Control / Timing Circuitry
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Row Decoders

Collection of 2M complex logic gates

Organized in regular and dense fashion

(N)AND Decoder

NOR Decoder
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Hierarchical Decoders

• • •

• • •
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Dynamic Decoders

Precharge devices
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4-input pass-transistor based column 

decoder

Advantages: speed (tpd does not add to overall memory access time)

Only one extra transistor in signal path

Disadvantage: Large transistor count

2-input NOR decoder

A0

S0

BL 0 BL 1 BL 2 BL 3

A1

S1

S2
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D
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4-to-1 tree based column decoder

Number of devices drastically reduced
Delay increases quadratically with # of sections; prohibitive for large decoders

buffers
progressive sizing
combination of tree and pass transistor approaches

Solutions: 

BL 0 BL 1 BL 2 BL 3

D

A 0

A 0

A1

A 1
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Decoder for circular shift-register
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Sense Amplifiers
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Differential Sense Amplifier

Directly applicable to

SRAMs

M 4

M 1

M 5

M 3

M 2

VDD

bitbit

SE

Outy
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Differential Sensing ― SRAM
VDD

VDD

VDD

VDD

BL

EQ

Diff.
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Amp

(a) SRAM sensing scheme (b) two stage differential amplifier
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Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQ

Once adequate voltage gap created, sense amp enabled with SE
Positive feedback quickly forces output to a stable operating point.

EQ

VDD

BL BL

SE

SE
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Reliability and Yield



Memories

Noise Sources in 1T DRam
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Open Bit-line Architecture —Cross Coupling
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Folded-Bitline Architecture
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Transposed-Bitline Architecture

SA

Ccross

(a) Straightforward bit-line routing

(b) Transposed bit-line architecture
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Alpha-particles (or Neutrons)

1 Particle ~ 1 Million Carriers
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Redundancy

Memory
Array

Column Decoder

Row Decoder

Redundant
rows

Redundant
columns

Row
Address

Column
Address

Fuse
Bank
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Error-Correcting Codes

Example: Hamming Codes

with

e.g. B3 Wrong

1

1

0

= 3
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Redundancy and Error Correction
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Sources of Power Dissipation in 

Memories

PERIPHERY

ROW
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From [Itoh00]
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Programmable Logic Array

GND GND GND GND
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Dynamic PLA
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Semiconductor Memory Trends

(updated)

From [Itoh01]
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Trends in Memory Cell Area

From [Itoh01]
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Semiconductor Memory Trends

Technology feature size for different SRAM generations


