Sequential Logic

References:

Adapted from: *Digital Integrated Circuits: A Design Perspective*, J. Rabaey, Prentice Hall © UCB *Principles of CMOS VLSI Design: A Systems Perspective*, N. H. E. Weste, K. Eshraghian, Addison Wesley

Clocked Systems: Finite State Machines

Registers serve as storage element to store past history

Clocked Systems: Pipelined Systems

Clock

Registers serve as storage element to capture the output of each processing stage

Storage Mechanisms

- Positive feedback
 - Connect one or more output signals back to the input
 - Regenerative, signal can be held indefinitely, static
- Charge-based
 - Use charge storage to store signal value
 - Need refreshing to overcome charge leakage, dynamic

Positive Feedback: Two Cascaded Inverters

Bi-Stability and Meta-Stability

Gain larger than 1 amplifies the deviation from C

Gain less than 1 reduces the deviation from A

SR-Flip Flop

• NOR-based SR flip-flop, positive logic

NAND-based SR flip-flop, negative logic

Forbidden state

Schematic

Logic Symbol

Characteristic table

JK- Flip Flop

- Clock input φ to synchronize changes in the output logic states of flip-flops
- Forbidden state is eliminated,
- But repeated toggling when J = K = 1, need to keep clock pulse small < propagation delay of FF

Other Flip-Flops

Toggle or T flip-flop

Delay or D flip-flop

Race Problem

• A flip-flop is a latch if the gate is transparent while the clock is high (low)

- Signal can raise around when ϕ is high
- Solutions:
 - Reduce the pulse width of ϕ
 - Master-slave and edge-triggered FFs

Master-Slave Flip-Flop

- Either master or slave FF is in the hold mode
- Pulse lengths of clock must be longer than
 propagation delay of latches
- Asynchronous or synchronous inputs to initialize the flip-flop states

One-Catching or Level-Sensitive

Propagation Delay Based Edge-Triggered

 Depend only on the value of In just before the clock transition

Edge Triggered Flip-Flop

Flip-Flop: Timing Definitions

Maximum Clock Frequency

 $t_{pFF} + t_{p,comb} + t_{setup} < T$

Timing Metrics in Sequential Circuits

> Setup Time (t_{su}) is the time that the data inputs must be valid **before** the clock transition

Hold Time (t_{hold}) is the time that the data inputs must be valid after the clock transition

➢ Propagation delays ($t_{reg,max}$, $t_{reg,min}$) − D input is copied to Q

Setup Time, Hold Time, and Propagation Delay

Multiplexer Based Latches

□ A latch is a **level-sensitive** device

NMOS-only MUX based Latch

□ Load of only 2 transistors to clock signals

 \square Passes a degraded high voltage of V_{DD} - V_{Tn}

Master Slave Edge-Triggered Register

A register is an **edge-triggered** storage element

□ A Flip-Flop is any **bistable** component formed by the **cross-coupling** of gates

Slave

Master Slave Edge-Triggered Register

□ Setup Time: $3^*t_{inv} + t_{tx}$ $(I_1 \rightarrow T_1 \rightarrow I_3 \rightarrow I_2)$

□ Propagation Delay: $t_{tx} + t_{inv}$ (T₃→ I₆)

Hold Time: 0

CMOS Clocked SR Flip-Flop

Transistor Sizing of SR Flip-Flop

- Assume transistors of inverters are sized so that V_M is $V_{DD}/2,$ mobility ratio $\mu_n/\mu_p=3$

$$-$$
 (W/L)_{M1} = (W/L)_{M3} = 1.8/1.2

$$-$$
 (W/L)_{M2} = (W/L)_{M4} = 5.4/1.2

• To bring Q from 1 to 0, need to properly ratio the sizes of pseudo-NMOS inverter (M7-M8)-M4

$$V_{\text{OL}}$$
 must be lower than $V_{\text{DD}}/2$

$$k_{n,M78} \left(\Psi_{DD} - V_{tn} \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8} \right) = k_{p,M4} \left(\Psi_{DD} - |V_{tp}| \frac{V_{DD}}{2} - \frac{V_{DD}^2}{8} \right)$$
$$(W/L)_{M78} \ge \frac{\mu_p}{\mu_n} (W/L)_{M4} = (W/L)_{M3}$$

$$(W/L)_{M7} = 2(W/L)_{M78} \ge 2(W/L)_{M3} = (3.6/1.2)$$

Flip-Flop: Transistor Sizing

Propagation Delay

Complementary CMOS SR Flip-Flop

Eliminates pseudo-NMOS inverters \Rightarrow Faster switching and smaller transient current

6-Transistor SR Flip-Flop

CMOS D Flip-Flop

Master-Slave D Flip-Flop

Negative-Level Sensitive D Flip-Flop

Master-Slave D Flip-Flop

CVSL-Style Master-Slave D-FF

Charge-Based Storage

Pseudo-static Latch

Layout of a D Flip-Flop

Master-Slave Flip-Flop

2 Phase Non-Overlapping Clocks

Asynchronous Setting

Dynamic Edge-Triggered Register

2-phase Dynamic Flip-Flop

Flip-flop Insensitive to Clock Overlap

C²MOS Latch or Clocked CMOS Latch

C²MOS Latch Avoids Race Conditions

- Cascaded inverters: needs one pull-up followed by one pull-down, or vice versa to propagate signal
- (1-1) overlap: Only the pull-down networks are active, input signal cannot propagate to the output
- (0-0) overlap: only the pull-up networks are active

C²MOS Latch Avoids Race Conditions

 C²MOS latch is insensitive to overlap, as long a the rise and fall times of clock edges are sufficiently small

Clocked CMOS Logic

 Replace the inverter in a C²MOS latch with a complementary CMOS logic

• Divide the computation into stages: Pipelining

Pipelining

$$T_{\min} = t_{p,reg} + t_{p,logic} + t_{setup,reg}$$

$$T_{\min, pipe} = t_{p, reg} + \max(t_{p, adder}, t_{p, abs}, t_{p, \log}) + t_{setup, reg}$$

Clock Period	Adder	Absolute Value	Logarithm
1	$a_1 + b_1$		
2	$a_2 + b_2$	$ a_1 + b_1 $	
3	$a_3 + b_3$	$ a_2 + b_2 $	$\log(a_1 + b_1)$
4	a_4+b_4	$ a_3 + b_3 $	$\log(a_2 + b_2)$
5	<i>a</i> ₅ + <i>b</i> ₅	$ a_4 + b_4 $	$\log(a_3 + b_3)$

Pipelined Logic using C²MOS

NORA CMOS (NO-RAce logic)

Race free as long as all the logic functions F and G between the latches are non-inverting

Example

Number of static inversion should be even

NORA CMOS ϕ -module

NORA CMOS $\overline{\phi}$ -module

	Logic	Latch
φ = 0	Evaluate	Evaluate
$\phi = 1$	Precharge	Hold

NORA Logic

- NORA data path consists of a chain of alternating ϕ and $\overline{\phi}$ modules
- Dynamic-logic rule: single 0 → 1 (1 → 0) transition for dynamic \u03c6n-block (\u03c6p-block)
- C²MOS rule:
 - If dynamic blocks are present, even number of static inversions between a latch and a dynamic block
 - Otherwise, even number of static inversions between latches
- Static logic may glitch, best to keep all of them after dynamic blocks

Doubled C²MOS Latches

Doubled n-C²MOS latch

Doubled p-C²MOS latch

TSPC - True Single Phase Clock Logic

Simplified TSPC Latches

A and A' do not have full logic swing

Master-Slave Flip-flops

Positive-edge triggered D-FF

Negative-edge triggered D-FF

Master-Slave Simplified TSPC Flip-Flops

- Positive edge-triggered D flip-flops
- Reduces clock load

Further Simplication

Schmitt Trigger

- VTC with hysteresis
- Restores signal slopes

Noise Suppression using Schmitt Trigger

Sharp low-to-high transition

CMOS Schmitt Trigger

Moves switching threshold of first inverter

Sizing of M3 and M4

•
$$V_{M+} = 3.5V$$

- M1 and M2 are in saturation; M4 is in triode region

$$\frac{k_{1}}{2} \langle \!\! \langle \!\! \langle \!\! \rangle_{M+} - V_{tn} \rangle \!\!\! \rangle = \frac{k_{2}}{2} \langle \!\! \langle \!\! \langle \!\! \rangle_{DD} - V_{M+} - |V_{tp}| \rangle \!\!\! \rangle \!\! + k_{4} \left(\langle \!\! \langle \!\! \langle \!\! \rangle_{DD} - |V_{tp}| \rangle \!\!\! \rangle_{DD} - V_{M+} \rangle \!\!\! - \frac{\langle \!\! \langle \!\! \rangle_{DD} - V_{M+} \rangle \!\!\! \rangle}{2} \right)$$

• V_{M-} = 1.5V

- M1 and M2 are in saturation; M3 is in triode region

Schmitt Trigger: Simulated VTC

CMOS Schmitt Trigger

- In = 0, at steady state, $V_{Out} = V_{DD}$, $V_X = V_{DD} V_{tn}$
- In makes a $0 \rightarrow 1$ transition
 - Saturated load inverter M1-M5 discharges
 X
 - M2 inactive until $V_X = V_{in} V_{tn}$
 - Use V_{in} to approximate V_{M-}
 - M1-M5 in saturation

$$\frac{k_1}{2} \mathbf{V}_{M-} - V_{tn} = \frac{k_5}{2} \mathbf{V}_{DD} - V_{M-}$$

Multivibrator Circuits

Bistable Multivibrator flip-flop, Schmitt Trigger

Monostable Multivibrator one-shot

Astable Multivibrator oscillator

Transition-Triggered Monostable

Detects changes in the input signal produces a pulse to initialize subsequent circuitry e.g., address transition detection in static memories

Monostable Trigger (RC-based)

Astable Multivibrators (Oscillators)

Voltage Controller Oscillator (VCO)

Relaxation Oscillator

 $T = 2 \times (In 3) \times RC$