Transistor - Current Flow

Kaushik Roy
Professor of ECE
Purdue University

Outline

- Transistors - channel having few energy states
- Energy band diagram
- Current flow \& I-V Characteristics
- Subthreshold Leakage
- Generalization to larger transistors

Acknowledgement: Professor Supriyo Datta

Transistors

Distribution of electrons over a range of allowed energy levels: $f(E)=1 /\left(e^{(E-E F) / k T}+1\right)$

Simple Energy Level Scenario

0 eV
 \qquad
 E_{5}
 \qquad

 - Peak occurs where E_{F} crosses an energy level due to

 an applied V_{G} biasTransistors: Key Concepts

- Key concepts: $\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{G}}$, empty and full energy levels, $\mathrm{V}_{\mathrm{T}}, \mathrm{E}_{\mathrm{F}}$
- Fermi function is centered at \varnothing
$\mathrm{f}_{0}(\mathrm{E})=1 /\left(\mathrm{e}^{\mathrm{E} / k T}+1\right)$
- To get it centered at E_{F}, shift it
$\mathrm{f}_{0}\left(\mathrm{E}-\mathrm{E}_{\mathrm{F}}\right)=1 /\left(\mathrm{e}^{(\mathrm{E}-\mathrm{EF}) / \mathrm{kT}}+1\right)$

Application of Drain Bias

- Total energy difference between μ_{1} and μ_{2} is $q V_{D}=1 V x q=1 e V=1.6 \times 10^{-19} \mathrm{~J}$

Current Flow

- N : Actual \# of electrons at steady state in the channel
- $\mathrm{I}_{1}: \mathrm{q}\left(\mathrm{Y}_{1} / \mathrm{h}\right)\left(\mathrm{N}_{1}-\mathrm{N}\right)$
- $\mathrm{I}_{2}: \mathrm{q}\left(\mathrm{y}_{2} / \mathrm{h}\right)\left(\mathrm{N}-\mathrm{N}_{2}\right)$

- y / \hbar : rate at which electrons cross (escape rate)
- $\hbar=\mathrm{h} / 2 \mathrm{~m}=1.06 \times 10^{-34} \mathrm{~J} . \mathrm{sec}$
- γ_{1} and γ_{2} are in units of Joule

Ex: $y_{1}=1 \mathrm{meV}$
$\gamma_{1} / \hbar=1.6 \times 10^{-19} / 1.06 \times 10^{-34}=10^{-12} / \mathrm{sec}$
$=1 \mathrm{psec}$ for electron to escape into the channel

Current Flow

At steady state, $\mathrm{I}_{1}=\mathrm{I}_{2}$
$\rightarrow \mathrm{N}=\left(\mathrm{N}_{1} \mathrm{Y}_{1}+\mathrm{N}_{2} \mathrm{Y}_{2}\right) /\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$

$$
I=I_{1}=I_{2}=(q / \hbar)\left(\gamma_{1} Y_{2} / \gamma_{1}+\gamma_{2}\right)\left(N_{1}-N_{2}\right)
$$

$$
=(2 q / \hbar)\left(\gamma_{1} \gamma_{2} / Y_{1}+\gamma_{2}\right)\left[f_{1}(\epsilon)-f_{2}(\epsilon)\right]
$$

N type conduction: go thru level that is empty at equilibrium P type conduction: go thru level that is full at equilibrium

At small voltages (use Taylor series expansion)
$\mathrm{f}_{1}(\epsilon)=\mathrm{f}_{0}\left(\epsilon-\mu_{1}\right), \mathrm{f}_{2}(\epsilon)=\mathrm{f}_{0}\left(\epsilon-\mu_{2}\right)$
$\mathrm{f}_{1}-\mathrm{f}_{2}=\left(\delta \mathrm{f}_{0} / \delta \mathrm{E}\right)\left(\mu_{2}-\mu_{1}\right)=-\left(\delta \mathrm{f}_{0} / \delta E\right) q \mathrm{~V}_{\mathrm{D}}$
Therefore,
$\mathrm{I}=(2 \mathrm{q} / \hbar)\left(\mathrm{Y}_{1} \mathrm{~V}_{2} / \mathrm{Y}_{1}+\gamma_{2}\right)\left[\mathrm{f}_{1}(\epsilon)-\mathrm{f}_{2}(\epsilon)\right]$
$=V\left(2 q^{2} / \hbar\right)\left(Y_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left[-\delta f_{0} / \delta E\right]$

Current Flow

Use $E=\epsilon-E_{F}$ Since $\mu_{1}=E_{F}+q V_{D} / 2, \mu_{2}=E_{F}-q V_{D} / 2$
$2 q^{2} / \hbar \quad$: dimension of conductance
$Y_{1} Y_{2} / Y_{1}+\gamma_{2}$: dimension of energy
$\delta f_{0} / \delta E \quad$: dimension of inverse energy

Kaushik Roy

Current Flow

$\left.\xrightarrow[\text { PURDUE }]{\mathrm{I}=(\mathrm{q} / \hbar)} \underset{\text { Broadening }}{\left(\mathrm{V}_{1} / 2\right)\left(\mathrm{q}_{\mathrm{D}} / 2 \gamma_{1}\right)}\right)=\mathrm{q}^{2} \mathrm{~V}_{\mathrm{D}} / 4 \hbar$ Kaushik Roy $_{\text {Only a fraction of levels }}^{\text {contribute to current }}{ }_{12}$

Broadening

- Each electronic level has a wavefunction Ψ associated with it
- With no coupling, $\Psi a \mathrm{e}^{-\mathrm{e} t \mathrm{th}} \rightarrow$ time domain
- Energy domain (Fourier transform) we get an impulse response
- Ψ^{2} : probability of finding the electron at a point
- $|\Psi|$ is 1 for the above expression of Ψ^{2}.
- After coupling the waveform gets modified
- $\Psi \alpha \mathrm{e}^{-\mathrm{e} t / \mathrm{t}} \mathrm{e}^{-\mathrm{t} / 2 \zeta}$: lifetime associated with electron
- ζ : lifetime --- the probability of finding the electron in the channel
- Fourier transform of new Ψ gives the density of states $D(E)=(\gamma / 2 \pi) /\left((E-\epsilon)^{2}+(\gamma / 2)^{2}\right), \gamma=\gamma_{1}+\gamma_{2}=\hbar / 2 \zeta$
PURDUE

Broadening

$I=(q / \hbar)\left(y_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left[f_{1}-f_{2}\right]$
$=\operatorname{dED}(E)(q / \hbar)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left[f_{1}-f_{2}\right]$
$N=\int D(E) d E\left(\gamma_{1} f_{1}+\gamma_{2} f_{2} / \gamma_{1}+\gamma_{2}\right)$

If $f_{1}-f_{2}=1$,
$\int D(E) d E=1$
$I=-(q / \hbar)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right) \int D(E) d E$

But the channel potential gets modulated by the drain voltage!

Channel Potential

The effect of U (potential in the channel) is to move the density of states up or down depending on the sign of U
$I=-(q / \hbar) \int D(E-U) d E\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)$ $N=\int D(E-U) d E\left(\gamma_{1} f_{1}+\gamma_{2} f_{2} / \gamma_{1}+\gamma_{2}\right)$

In order to find U in general, we
 need to solve Poisson's equation $d^{2} V / d x^{2}=-(q) \Delta n / \epsilon \quad$ (assume U is the same all over the channel)

Channel Potential

Amount of charge in channel $=-q \Delta n=C_{S} V+C_{G}\left(V-V_{G}\right)+$ $\mathrm{C}_{\mathrm{D}}\left(\mathrm{V}-\mathrm{V}_{\mathrm{D}}\right)$
With V_{S} grounded,
$V=\left(C_{G} V_{G}+C_{D} V_{D}\right) /\left(C_{S}+C_{G}+C_{D}\right)+(-q \Delta n) /\left(C_{S}+C_{G}+C_{D}\right)$
$U=-q V=-q(\ldots \ldots \ldots \ldots \ldots)$
$U=U_{L}+q^{2} / C_{E} \Delta n ; \quad C_{E}=C_{S}+C_{G}+C_{D}$
Single electron charging energy
Small devices, C_{E} is small and q^{2} / C_{E} is large \rightarrow can change a lot of things

Channel Potential

Good transistors: stop DOS sliding in channel. Make U_{L} as large as possible (C_{G}) to make effect of V_{D} negligible!

Good Transistor

- Increase C_{G} to make the effect of V_{D} negligible

$$
U_{L}=-q\left(C_{G} V_{G}+C_{D} V_{D}\right) /\left(C_{S}+C_{G}+C_{D}\right)
$$

- Gate as close as possible to the channel
- If $\mathrm{L}=500 \mathrm{~A}$, then gate should be as close as 20A to the channel. If L is smaller, gate should be even closer, but gate leakage...

Single Electron Charging Energy

$$
\left[\begin{array}{l}
\mathrm{N}=\int \mathrm{D}(\mathrm{E}-\mathrm{U}) \mathrm{dE}\left(\mathrm{Y}_{1} \mathrm{f}_{1}+\mathrm{Y}_{2} \mathrm{f}_{2} / \mathrm{Y}_{1}+\mathrm{Y}_{2}\right) \\
\mathrm{U}=\mathrm{U}_{\mathrm{L}}+\mathrm{U}_{0} \Delta \mathrm{n}
\end{array}\right]
$$

Because of term U_{0} in self-consistent solution, the level starts floating up as it gets filled with electrons \rightarrow making the filling up process slower!

Kaushik Roy

Conductance (Revisited)

$I=-(q / \hbar) \int D(E-U) d E\left(Y_{1} Y_{2} / Y_{1}+\gamma_{2}\right)\left(f_{1}-f_{2}\right)$
For small applied voltage
$\mathrm{I}=-(\mathrm{q} / \hbar) \mathrm{D}(\mathrm{E})\left(\mathrm{y}_{1} \mathrm{Y}_{2} / \mathrm{Y}_{1}+\mathrm{Y}_{2}\right) \mathrm{q} \mathrm{V}_{\mathrm{D}}$
Ohm's law: G a A/L

- More states, more current \& larger devices have more states. $\mathrm{D} \alpha \mathrm{WL} \rightarrow$ contradicts Ohm's law??
- y decreases as 1/L; $\rightarrow \gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2} \alpha 1 / L$
- L cancels out!
- Conductance independent of L! Ballistic device

Assumptions in the derivation

- Single energy level in the channel
- Model can be extended to multiple energy levels by integrating over energy
- Coupling with contacts ignored.
- No energy broadening
- ε not a function of x
- Effect of V_{ds} on ε ignored
- Flatband Voltage $=0$
- Equation can be easily corrected by using $\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{FB}}$ instead of $V_{g s}$
- Fermi function approximated by exponential function
- A reasonable assumption for sub-threshold region

Sub-threshold Swing

$I=I_{0} \exp \left(q V_{g s} / m k T\right)\left(1-\exp \left(-q V_{d s} / k T\right)\right)$
$S=\frac{\partial V_{g s}}{\partial \log _{10} I}$

Sub-threshold Swing is inverse of Sub-threshold slope

$S=\ln 10 m \frac{k T}{q}=2.303 m \frac{k T}{q}[\mathrm{mV} /$ decade $]$
For ideal MOSFETs $(m=1), S=60 \mathrm{mV} /$ decade

