Advanced VLSI Design (ECE 695KR)

Kaushik Roy Professor of ECE Purdue University

Kaushik Roy

Outline

- Transistors channel having few energy states
- Energy band diagram
- Current flow & I-V Characteristics
- Subthreshold Leakage
- Generalization to larger transistors

Acknowledgement: Professor Supriyo Datta

Transistors

Kaushik Roy

VERSIT

Gate Bias

Kaushik Roy

- NRL

Simple Energy Level Scenario

an applied V_G bias

Kaushik Roy

Transistors: Key Concepts

- Key concepts: V_D, V_G, empty and full energy levels, V_T, E_F
- Fermi function is centered at \emptyset $f_0(E) = 1/(e^{E/kT}+1)$
- To get it centered at E_F , shift it $f_0(E-E_F) = 1/(e^{(E-EF)/kT}+1)$

Kaushik Roy

Application of Drain Bias

• Total energy difference between μ_1 and μ_2 is $qV_D = 1Vxq = 1eV=1.6x10^{-19} J$

Kaushik Roy

N₁: Avg. # of electrons that the left contact would like to see = 2f₁(ε) = 2f₀(ε - μ₁)
 N₂: N₂ = 2f₂(ε) = 2f₀(ε - μ₂)

- N: Actual # of electrons at steady state in the channel
- $I_1: q(\gamma_1/\hbar)(N_1-N)$
- I_2 : $q(\gamma_2/\hbar)(N-N_2)$

- γ/\hbar : rate at which electrons cross (escape rate)
- $\hbar = h/2\pi = 1.06 \times 10^{-34}$ J.sec
- γ_1 and γ_2 are in units of Joule Ex: γ_1 =1meV $\gamma_1/\hbar = 1.6x10^{-19}/1.06x10^{-34}= 10^{-12}$ /sec
- = 1psec for electron to escape into the channel

At steady state,
$$I_1 = I_2$$

 $\Rightarrow N = (N_1\gamma_1 + N_2\gamma_2)/(\gamma_1 + \gamma_2)$
 $I = I_1 = I_2 = (q/\hbar) (\gamma_1\gamma_2/\gamma_1 + \gamma_2) (N_1 - N_2)$
 $= (2q/\hbar) (\gamma_1\gamma_2/\gamma_1 + \gamma_2) [f_1(\varepsilon) - f_2(\varepsilon)]$

IVERSITY

N type conduction: go thru level that is empty at equilibrium P type conduction: go thru level that is full at equilibrium

At small voltages (use Taylor series expansion) $f_{1}(\varepsilon)=f_{0}(\varepsilon-\mu_{1}), f_{2}(\varepsilon)=f_{0}(\varepsilon-\mu_{2})$ $f_{1}-f_{2}=(\delta f_{0}/\delta E)(\mu_{2}-\mu_{1})=-(\delta f_{0}/\delta E)qV_{D}$ Therefore, $I=(2q/\hbar) (\gamma_{1}\gamma_{2}/\gamma_{1}+\gamma_{2})[f_{1}(\varepsilon)-f_{2}(\varepsilon)]$ $= V(2q^{2}/\hbar) (\gamma_{1}\gamma_{2}/\gamma_{1}+\gamma_{2})[-\delta f_{0}/\delta E]$

Use $E = \varepsilon - E_F$ Since $\mu_1 = E_F + qV_D/2$, $\mu_2 = E_F - qV_D/2$ 2q²/ħ : dimension of conductance $\gamma_1\gamma_2/\gamma_1 + \gamma_2$: dimension of energy $\delta f_0/\delta E$: dimension of inverse energy

Kaushik Roy

Broadening

- Each electronic level has a wavefunction Ψ associated with it
 - With no coupling, $\Psi \alpha e^{-i\varepsilon t/\hbar} \rightarrow time domain$
 - Energy domain (Fourier transform) we get an impulse response
- Ψ^2 : probability of finding the electron at a point
 - $|\Psi|$ is 1 for the above expression of Ψ^2 .
- After coupling the waveform gets modified
 - $\Psi \alpha e^{-i\varepsilon t/\hbar}e^{-t/2\zeta}$: lifetime associated with electron
 - ζ : lifetime --- the probability of finding the electron in the channel
 - Fourier transform of new Ψ gives the density of states D(E) = ($\gamma/2\pi$)/((E- ε)²+ ($\gamma/2$)²), $\gamma = \gamma_1 + \gamma_2 = \hbar/2\zeta$

Broadening

But the channel potential gets modulated by the drain voltage!

Kaushik Roy

Channel Potential

The effect of U (potential in the channel) is to move the density of states up or down depending on the sign of U

$$I = -(q/\hbar) \int D(E-U) dE(\gamma_1 \gamma_2 / \gamma_1 + \gamma_2)$$

$$N = \int D(E-U) dE(\gamma_1 f_1 + \gamma_2 f_2 / \gamma_1 + \gamma_2)$$

In order to find U in general, we need to solve Poisson's equation $d^2V/dx^2 = -(q)\Delta n/\epsilon$ (assume U is the same all over the channel)

Channel Potential

Amount of charge in channel = $-q\Delta n = C_S V + C_G (V - V_G) + C_D (V - V_D)$ With V_S grounded, $V = (C_G V_G + C_D V_D) / (C_S + C_G + C_D) + (-q\Delta n) / (C_S + C_G + C_D)$ U = -qV = -q(....) $U = U_L + q^2 / C_E \Delta n;$ $C_E = C_S + C_G + C_D$ Single electron charging energy

Small devices, C_E is small and q²/C_E is large → can change a lot of things

Kaushik Roy

Channel Potential

Good transistors: stop DOS sliding in channel. Make U_L as large as possible (C_G) to make effect of V_D negligible!

18

Kaushik Roy

Good Transistor

 \bullet Increase C_{G} to make the effect of V_{D} negligible

$$U_{L} = -q(C_{G}V_{G} + C_{D}V_{D})/(C_{S} + C_{G} + C_{D})$$

- Gate as close as possible to the channel
 - If L=500A, then gate should be as close as 20A to the channel. If L is smaller, gate should be even closer, but gate leakage...

Current

$$I = -(q/\hbar) \int D(E-U) dE(\gamma_1 \gamma_2 / \gamma_1 + \gamma_2) (f_1 - f_2)$$

$$N = \int D(E-U)dE(\gamma_1 f_1 + \gamma_2 f_2 / \gamma_1 + \gamma_2)$$

Need to be solved self-consistently

$$U = U_{L} + U_{0} \Delta N$$

$$U_0 = q^2/C_E$$

$$C_E = C_S + C_G + C_D$$

$$U_L = [C_G(-qV_G) + C_D(-qV_D)]/C_E$$

- NRL

Single Electron Charging Energy

Kaushik Roy

Example

≈14meV ~ order of kT

For small devices U_0 will be larger $U = U_L + U_0(N - N_0)$ Big devices, U_0 is smaller, but (N-N_0) is large

 $U_0 >> kT + \gamma \rightarrow$ Coulomb blockage charging energy U_0 exceeds broadening γ .

Kaushik Roy

Conductance (Revisited)

I= $-(q/\hbar) \int D(E-U) dE(\gamma_1 \gamma_2 / \gamma_1 + \gamma_2)(f_1 - f_2)$ For small applied voltage I= $-(q/\hbar) D(E) (\gamma_1 \gamma_2 / \gamma_1 + \gamma_2) qV_D$

Ohm's law: G α A/L

- More states, more current & larger devices have more states. D α WL→ contradicts Ohm's law??
 - γ decreases as 1/L; $\rightarrow \gamma_1 \gamma_2 / \gamma_1 + \gamma_2 \alpha 1/L$
 - L cancels out!

Conductance independent of L! Ballistic device

Bottom-up view leads to $(\gamma_1 = \gamma_2 \text{ and } U = 0)$ I= $(q \gamma_1/\hbar) \int D(E) dE (f_1(E)-f_2(E))$

For small applied voltage Usual top down view yields an expression

$$I = -(S/L)n\mu(\mu_1 - \mu_2)$$

- S: cross sectional area; (1/L): inverse of length; n: electron density; $\overline{\mu}$: mobility
- Relate broadening to diffusion instant D, $\gamma_1=2\hbar D/L^2$
- Fermi fn approximated by Boltzmann fn ("nondegenerate" assumption) f₁(E)-f₂(E))=e^{(E-μ1)/kT}(μ₁ - μ₂)/kT
- D/ $\overline{\mu}$ = kT/q (Einstein's relation) and nSL = $\int D(E)dEe^{(E-\mu 1)/kT}$

Subthreshold

Superthreshold

