Advanced VLSI Design (ECE 695KR)

Kaushik Roy
Professor of ECE
Purdue University

Outline

- Transistors - channel having few energy states
- Energy band diagram
- Current flow \& I-V Characteristics
- Subthreshold Leakage
- Generalization to larger transistors

Acknowledgement: Professor Supriyo Datta

Transistors

Distribution of electrons over a range of allowed energy levels: $f(E)=1 /\left(e^{(E-E F) k T}+1\right)$

Gate Bias

Simple Energy Level Scenario

Transistors: Key Concepts

- Key concepts: $\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{G}}$, empty and full energy levels, $\mathrm{V}_{\mathrm{T}}, \mathrm{E}_{\mathrm{F}}$
- Fermi function is centered at \varnothing

$$
f_{0}(E)=1 /\left(e^{E / k T}+1\right)
$$

- To get it centered at E_{E}, shift it $f_{0}\left(E-E_{F}\right)=1 /\left(e^{(E-E F) / k T}+1\right)$

Application of Drain Bias

- Total energy difference between μ_{1} and μ_{2} is $q V_{D}=1 \mathrm{Vxq}=1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

Current Flow

- N_{1} : Avg. \# of electrons that the left contact would like to see $=2 \mathrm{f}_{1}(\epsilon)=2 \mathrm{f}_{0}(\epsilon$
$-\mu_{1}$)
- $\mathrm{N}_{2}: \mathrm{N}_{2}=2 \mathrm{f}_{2}(\epsilon)=2 \mathrm{f}_{0}\left(\epsilon-\mu_{2}\right)$

Accounts for up-spin and down-spin that is possible at a level

Current Flow

- N : Actual \# of electrons at steady state in the channel
- $\mathrm{I}_{1}: \mathrm{q}\left(\mathrm{r}_{1} / \mathrm{h}\right)\left(\mathrm{N}_{1}-\mathrm{N}\right)$
- $\mathrm{I}_{2}: \mathrm{q}\left(\mathrm{Y}_{2} / \mathrm{h}\right)\left(\mathrm{N}-\mathrm{N}_{2}\right)$

- γ / \hbar : rate at which electrons cross (escape rate)
- $\hbar=\mathrm{h} / 2 \pi=1.06 \times 10^{-34} \mathrm{~J} . \mathrm{sec}$
- γ_{1} and γ_{2} are in units of Joule

Ex: $y_{1}=1 \mathrm{meV}$
$\mathrm{Y}_{1} / \hbar=1.6 \times 10^{-19} / 1.06 \times 10^{-34}=10^{-12} / \mathrm{sec}$
$=1$ psec for electron to escape into the channel

Current Flow

At steady state, $\mathrm{I}_{1}=\mathrm{I}_{2}$
$\rightarrow \mathrm{N}=\left(\mathrm{N}_{1} \mathrm{Y}_{1}+\mathrm{N}_{2} \mathrm{Y}_{2}\right) /\left(\mathrm{Y}_{1}+\mathrm{Y}_{2}\right)$
$I=I_{1}=I_{2}=(q / \hbar)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left(N_{1}-N_{2}\right)$
$=(2 q / \hbar)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left[f_{1}(\epsilon)-f_{2}(\epsilon)\right]$

N type conduction: go thru level that is empty at equilibrium
P type conduction: go thru level that is full at equilibrium
At small voltages (use Taylor series expansion)
$\mathrm{f}_{1}(\epsilon)=\mathrm{f}_{0}\left(\epsilon-\mu_{1}\right), \mathrm{f}_{2}(\epsilon)=\mathrm{f}_{0}\left(\epsilon-\mu_{2}\right)$
$\mathrm{f}_{1}-\mathrm{f}_{2}=\left(\delta \mathrm{f}_{0} / \delta \mathrm{E}\right)\left(\mu_{2}-\mu_{1}\right)=-\left(\delta \mathrm{f}_{0} / \delta \mathrm{E}\right) \mathrm{qV}_{\mathrm{D}}$
Therefore,

$$
\begin{aligned}
\mathrm{I} & =(2 q / \hbar)\left(\mathrm{V}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1}+\mathrm{V}_{2}\right)\left[\mathrm{f}_{1}(\epsilon)-\mathrm{f}_{2}(\epsilon)\right] \\
& =\mathrm{V}\left(2 q^{2} / \hbar\right)\left(\mathrm{y}_{1} \mathrm{~V}_{2} / \mathrm{v}_{1}+\mathrm{V}_{2}\right)\left[-\delta \mathrm{f}_{0} / \delta E\right]
\end{aligned}
$$

Current Flow

Use $E=\epsilon-E_{F}$ Since $\mu_{1}=E_{F}+q V_{D} / 2, \mu_{2}=E_{F}-q V_{D} / 2$
$2 q^{2} / \hbar \quad$: dimension of conductance
$Y_{1} Y_{2} / Y_{1}+\gamma_{2}$: dimension of energy
$\delta \mathrm{f}_{0} / \delta \mathrm{E} \quad:$ dimension of inverse energy

Current Flow

I/V = conductance $=\left(2 q^{2} / \hbar\right)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left[-\delta f_{0} / \delta E\right]$
If $f_{1}-f_{2}=1$ and $\gamma_{1}=\gamma_{2} ; I=q \gamma_{1} / 2 \hbar$
Seems to indicate that there is no limit to conductance but in reality, we do have a limit
$R_{\text {min }}=h / 2 q^{2}=\left(6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right) / 2 \times\left(1.6 \times 10^{-19}\right)^{2}=12.9 \mathrm{k} \Omega$

$$
\mathrm{I}=(\mathrm{q} / \hbar)\left(\mathrm{y}_{1} / 2\right)\left(\mathrm{q} \mathrm{~V}_{\mathrm{D}} / 2 \mathrm{y}_{j}\right)=\mathrm{q}^{2} \mathrm{~V}_{\mathrm{D}} / 4 \hbar
$$

Only a fraction of levels

Broadening

- Each electronic level has a wavefunction Ψ associated with it
- With no coupling, $\Psi a \mathrm{e}^{-\mathrm{iet/h}} \rightarrow$ time domain
- Energy domain (Fourier transform) we get an impulse response
- Ψ^{2} : probability of finding the electron at a point
- $|\Psi|$ is 1 for the above expression of Ψ^{2}.
- After coupling the waveform gets modified
- $\Psi \alpha \mathrm{e}^{-\mathrm{e} \epsilon / \mathrm{h}} \mathrm{e}^{-\mathrm{t} / 2 \zeta}$: lifetime associated with electron
- ζ : lifetime --- the probability of finding the electron in the channel
- Fourier transform of new Ψ gives the density of states

$$
D(E)=(\gamma / 2 \pi) /\left((E-\epsilon)^{2}+(\gamma / 2)^{2}\right), \gamma=\gamma_{1}+\gamma_{2}=\hbar / 2 \zeta
$$

Broadening

$\mathrm{I}=(\mathrm{q} / \hbar)\left(\mathrm{y}_{1} v_{2} / \mathrm{y}_{1}+\mathrm{y}_{2}\right)\left[f_{1}-\mathrm{f}_{2}\right]$
$=\operatorname{dED}(E)(\mathrm{q} / \hbar)\left(\mathrm{v}_{1} \mathrm{v}_{2} / \mathrm{v}_{1}+\mathrm{v}_{2}\right)\left[f_{1}-\mathrm{f}_{2}\right]$
$N=\int D(E) d E\left(\gamma_{1} f_{1}+\gamma_{2} f_{2} / v_{1}+\gamma_{2}\right)$

If $f_{1}-f_{2}=1$,

$l=-(q / /)^{\prime}\left(v_{1} v_{2} / v_{1}+v_{2}\right) \cdot D(E) d E$

But the channel potential gets modulated by the drain voltage!

Current Flow

Channel Potential

The effect of U (potential in the channel) is to move the density of states up or down depending on the sign of U
$\mathrm{I}=-(\mathrm{q} / \hbar) \int \mathrm{D}(\mathrm{E}-\mathrm{U}) \mathrm{dE}\left(\mathrm{y}_{1} \mathrm{~V}_{2} / \mathrm{V}_{1}+\mathrm{Y}_{2}\right)$
$N=\int D(E-U) d E\left(Y_{1} f_{1}+\gamma_{2} f_{2} / \gamma_{1}+\gamma_{2}\right)$
In order to find U in general, we
 need to solve Poisson's equation $\mathrm{d}^{2} \mathrm{~V} / \mathrm{dx} \mathrm{x}^{2}=-(\mathrm{q}) \Delta \mathrm{n} / \epsilon \quad$ (assume U is the same all over the channel)

Channel Potential

Amount of charge in channel $=-q \Delta n=C_{S} V+C_{G}\left(V-V_{G}\right)+$ $\mathrm{C}_{\mathrm{D}}\left(\mathrm{V}-\mathrm{V}_{\mathrm{D}}\right)$
With V_{S} grounded,
$V=\left(C_{G} V_{G}+C_{D} V_{D}\right) /\left(C_{S}+C_{G}+C_{D}\right)+(-q \Delta n) /\left(C_{S}+C_{G}+C_{D}\right)$
$\mathrm{U}=-\mathrm{qV}=-\mathrm{q}(\ldots \ldots \ldots \ldots \ldots . .$.
$U=U_{L}+q^{2} / C_{E} \Delta n ; \quad C_{E}=C_{S}+C_{G}+C_{D}$
Single electron charging energy
Small devices, C_{E} is small and q^{2} / C_{E} is large \rightarrow can change a lot of things

Channel Potential

As drain levels are lowered, the DOS also wants to slide down \rightarrow more available states, hence more current

$$
U_{L}=-q\left(C_{G} V_{G}+C_{D} V_{D}\right) /\left(C_{S}+C_{G}+C_{D}\right)
$$

Good transistors: stop DOS sliding in channel. Make U_{L} as large as possible (C_{G}) to make effect of V_{D} negligible!

Good Transistor

- Increase C_{G} to make the effect of V_{D} negligible

$$
U_{L}=-q\left(C_{G} V_{G}+C_{D} V_{D}\right) /\left(C_{S}+C_{G}+C_{D}\right)
$$

- Gate as close as possible to the channel
- If $L=500 \mathrm{~A}$, then gate should be as close as 20A to the channel. If L is smaller, gate should be even closer, but gate leakage...

Current

$$
I=-(q / \hbar) \int D(E-U) d E\left(Y_{1} Y_{2} / Y_{1}+\gamma_{2}\right)\left(f_{1}-f_{2}\right)
$$

$N=\int D(E-U) d E\left(y_{1} f_{1}+\gamma_{2} f_{2} / Y_{1}+V_{2}\right)$
$\mathrm{U}=\mathrm{U}_{\mathrm{L}}+\mathrm{U}_{0} \Delta \mathrm{~N}$
$\mathrm{U}_{0}=\mathrm{q}^{2} / \mathrm{C}_{\mathrm{E}}$
$C_{E}=C_{S}+C_{G}+C_{D}$
$U_{L}=\left[C_{G}\left(-q V_{G}\right)+C_{D}\left(-q V_{D}\right)\right] / C_{E}$

Need to be solved
self-consistently

Single Electron Charging Energy

$$
\left[\begin{array}{l}
\mathrm{N}=\left\{\mathrm{D}(\mathrm{E}-\mathrm{U}) \mathrm{dE}\left(\mathrm{Y}_{1} \mathrm{f}_{1}+\mathrm{V}_{2} \mathrm{f}_{2} / \mathrm{V}_{1}+\mathrm{V}_{2}\right)\right. \\
\mathrm{U}=\mathrm{U}_{\mathrm{L}}+\mathrm{U}_{0} \Delta \mathrm{t}
\end{array}\right.
$$

Because of term U_{0} in self-consistent solution, the level starts floating up as it gets filled with electrons \rightarrow making the filling up process slower!

Example

Sphere of charge
$U=q^{2} / 4 \pi \epsilon R$

$=1.6 \times 10^{-19} \mathrm{Coul} / 4 \times 3.14 \times 8.85 \times 10^{12} \mathrm{~F} / \mathrm{mx} 10^{-7} \mathrm{~m}$ $\approx 14 \mathrm{meV} \sim$ order of kT

For small devices U_{0} will be larger $\mathrm{U}=\mathrm{U}_{\mathrm{L}}+\mathrm{U}_{0}\left(\mathrm{~N}-\mathrm{N}_{0}\right)$
Big devices, U_{0} is smaller, but $\left(\mathrm{N}-\mathrm{N}_{0}\right)$ is large

Current Flow

$\mathrm{U}_{0} \gg \mathrm{kT}+\mathrm{y} \rightarrow$ Coulomb blockage charging energy U_{0} exceeds broadening γ.

Conductance (Revisited)

$I=-(q / \hbar) \int D(E-U) d E\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right)\left(f_{1}-f_{2}\right)$
For small applied voltage
$I=-(q / \hbar) D(E)\left(\gamma_{1} \gamma_{2} / \gamma_{1}+\gamma_{2}\right) q V_{D}$

Ohm's law: G a A/L

- More states, more current \& larger devices have more states. $\mathrm{D} \alpha \mathrm{WL} \rightarrow$ contradicts Ohm's law??
- Y decreases as $1 / \mathrm{L} ; \rightarrow \mathrm{Y}_{1} \mathrm{~V}_{2} / \mathrm{y}_{1}+\mathrm{Y}_{2}$ a $1 / \mathrm{L}$
- L cancels out!
\rightarrow - Conductance independent of L! Ballistic device

Bottom-up view leads to ($\mathrm{V}_{1}=\mathrm{V}_{2}$ and $\mathrm{U}=0$)
$\mathrm{I}=\left(\mathrm{q} \mathrm{Y}_{1} / \mathrm{h}\right) \int \mathrm{D}(\mathrm{E}) \mathrm{dE}\left(\mathrm{f}_{1}(\mathrm{E})-\mathrm{f}_{2}(\mathrm{E})\right)$
For small applied voltage
Usual top down view yields an expression
I= -(S/L) $n \bar{\mu}\left(\mu_{1}-\mu_{2}\right)$
S: cross sectional area; (1/L): inverse of length; n : electron density; $\bar{\mu}$: mobility

- Relate broadening to diffusion instant $D, \gamma_{1}=2 \hbar D / L^{2}$
- Fermi fn approximated by Boltzmann fn ("nondegenerate" assumption) $\left.f_{1}(E)-f_{2}(E)\right)=e^{(E-\mu 1) / k T}\left(\mu_{1}-\mu_{2}\right) / k T$
- $\mathrm{D} / \bar{\mu}=\mathrm{kT} / \mathrm{q}$ (Einstein's relation) and $n S L=\int D(E) d E e^{(E-\mu 1) / k T}$

Subthreshold

$$
\begin{aligned}
& n_{s}=\int D(E) d E f(E-\mu) \\
& =\int D(E) d E e^{(E-\mu) k T} \\
& =e^{\mu / K T} \int D(E) d E e^{-\mu / k T}
\end{aligned}
$$

With gate bias:
$f(E)=1 /\left(1+e^{(E-\mu) / k T}\right)$
$\approx \mathrm{e}^{-(\mathrm{E}-\mu) / \mathrm{kT}}$
When everything are way above $\mu, 1 \ll e^{(\mathrm{E}-\mu) / k T}$
$n_{s}=e^{q V G / k T}[\ldots]$
(equivalent to lowering $D(E)$ or raising μ)
$n_{s}=n_{s}(0) e^{q V G / k T}$
$\log _{10} n_{s}=\log _{10} n_{s}(0)+q V_{G} / k T \log _{10} e \cdot \log _{10} e=0.43$
$\underset{\text { PURDUE }}{\substack{\stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ}}}$

Superthreshold

