|E|l|linin

Design of Scaled CMOS Circuits in the Nano-meter Regime:

Kaushik Roy
Professor of Electrical \& Computer Engineering
Purdue University

Switching/Dynamic Power

Switching Power

- Signal properties
- Signal probability, P_{i}, - probability of a signal being logic ONE
- Signal activity, a_{i}, - probability of signal switching(0->1, or 1->0)
- Energy dissipated per transition
$E_{V D D}=\int_{0}^{\infty} i_{V D D}(t) V_{D D} d t=V_{D D} \int_{0}^{\infty} C_{L} \frac{d v_{\text {out }}}{d t} d t$ $=C_{L} V_{D D} \int_{0}^{V_{\text {Do }}} d v_{\text {out }}=-C_{L} V_{D D}^{-1}$

$E_{C}=\int_{0}^{\infty} i_{\text {vDD }}(t) v_{\text {out }} d t=\int_{0}^{\infty} C_{L} \frac{d v_{\text {out }}}{d t} v_{\text {out }} d t=C_{L} \int_{0}^{V_{\text {op }}} v_{\text {out }} d v_{\text {out }}=-C_{L} V_{D D}^{-} / 2$,
Energy dissipated for 1->0 or 0->1 transition: $C_{L} V_{D D}^{2} / 2$

$$
P_{\text {dynamic }}=C_{L} \cdot V_{D D}^{2} \cdot f
$$

- Example
- 1.2μ CMOS chip
- 100 MHz clock rate
- Average load capacitance of $30 \mathrm{fF} / \mathrm{gate}$
- 5V power supply
- Power consumption/gate $=75 \mu \mathrm{~W}$
- Design with 200,000 gates: 15 W !
- Pessimistic evaluation: not all gates switch at the full rate
- Have to consider the activity factor α : Effective switching capacitance $=\alpha \mathrm{C}_{\mathrm{L}}$
- Reducing V_{DD} has a quadratic effect on $\mathrm{P}_{\text {dynamic }}$

Average Number of Transitions

Switching at internal nodes depends on input signals.
Model input signals as stochastic process. Each signal having some properties:

- Signal probability
- Signal activity

Direct Path Current

- inputs have finite rise and fall times
- Direct current path from V_{DD} to GND while PMOS and NMOS are ON simultaneously for a short period

Short Circuit Current with Loads

Spurious Transition at a Node

Hazardous transition occurs at the output of AND gate due to different delays through two different paths converging at the inputs to the AND gate.

- Assume each gate has unit delay
- Width of the glitch depends on the delays through the logic gates and interconnects.

Energy Dissipation in RC Circuits \& Brief Intro to Energy Recovery

Revisit Dynamic Energy Comsumption: Simple R-C model of Pass pMOS transistor

Consider a pMOS pass transistor with a capacitive load C at the out put. The voltage at the power terminal swings from 0 to $V_{\text {dd }}$ to charge the node capacitance through the transistor channel. The channel is modeled by a normal resistance R in fig (a).

Let us compute energy dissipated while charging capacitance C from 0 to V_{dd} in time T with a linear supply voltage as shown in fig (b).

RC Circuit: Energy Dissipation

The voltage relations are shown here.

$$
R C\left(\frac{d V_{C}}{d t}\right)+V_{C}=\Phi
$$

The supply voltage can be
expressed as

$$
V_{C}=\left\{\begin{array}{cc}
0, & t<0 \\
\left(\frac{V_{d d}}{T}\right), & 0 \leq t<T \\
V_{d d}, & t>T
\end{array}\right.
$$

RC Circuits (contd.)

Solving the voltage equation, we've

$$
V_{C}=\left\{\begin{array}{cc}
0, & t<0 \\
\Phi-\left(\frac{R C}{T}\right) V_{d d}\left(1-e^{-\frac{t}{R C}}\right), & 0 \leq t<T \\
\Phi-\left(\frac{R C}{T}\right) V_{d d}\left(1-e^{-\frac{t}{R C}}\right) e^{-\frac{(t-T)}{R C},} & t>T
\end{array}\right.
$$

The energy dissipation in the charging process can be calculated as

$$
E_{\text {linear }}=\int_{0}^{T} i V_{R} d t+\int_{T}^{\infty} i V_{R} d t
$$

RC Circuits (contd.)

Term wise expanding, the first term can be expressed as

$$
\begin{aligned}
& \int_{0}^{T} i V_{R} d t=\int_{0}^{T} \frac{\left(\Phi-V_{C}\right)^{2}}{R} d t \\
& =\int_{0}^{T}\left[\frac{V_{d d}}{T} R C\left(1-e^{\left(-\frac{t}{R C}\right)}\right] / R d t\right. \\
& =\left(\frac{R C}{T}\right)^{2} C V_{d d}^{2} \int_{0}^{\frac{T}{R C}}\left(1-e^{-\frac{t}{R C}}\right)^{2} d\left(\frac{t}{R C}\right) \\
& =\left(\frac{R C}{T}\right) C V_{d d}^{2}\left[1-\frac{3}{2}\left(\frac{R C}{T}\right)+2\left(\frac{R C}{T}\right) e^{\left(-\frac{T}{R C}\right)}-\frac{1}{2}\left(\frac{R C}{T}\right) e^{\left(-\frac{2 T}{R C}\right)}\right]
\end{aligned}
$$

The second term of the energy dissipation

$$
\begin{aligned}
& \int_{T}^{\infty} i V_{R} d t=\int_{T}^{\infty} \frac{\left(\Phi-V_{C}\right)^{2}}{R} d t \\
& =\frac{R C}{T} C V_{d d}^{2}\left(1-e^{-\frac{T}{R C}}\right)^{2} \int_{T}^{\infty} e^{-2 \frac{(t-T)}{R C}} d t \\
& =\left(\frac{R C}{T}\right)^{2} C V_{d d}^{2}\left[\frac{1}{2}\left(1-e^{-\frac{T}{R C}}\right)^{2}\right]
\end{aligned}
$$

Final energy expression

$$
E_{\text {linear }}=\left(\frac{R C}{T}\right) C V_{d d}^{2}\left[1-\frac{R C}{T}+\frac{R C}{T} e^{-\frac{T}{R C}}\right]
$$

Energy Dissipation: 2 Cases

Let us consider the two extreme cases, when $\mathrm{T} \gg \mathrm{RC}$

$$
E_{\text {linear }}=\left(\frac{R C}{T}\right) C V_{d d}^{2}
$$

And when $\mathrm{T} \ll \mathrm{RC}$, as in normal CMOS

$$
\begin{aligned}
& E_{\text {linear }}=\left(\frac{R C}{T}\right) C V_{d d}^{2}\left[1-\frac{R C}{T}+\frac{R C}{T}\left(1-\frac{T}{R C}+\frac{1}{2}\left(\frac{T}{R C}\right)^{2}\right)\right] \\
& =\frac{1}{2} C V_{d d}^{2}
\end{aligned}
$$

(a)

(b)

RC ~ 0.1 ns for current technology.
(c)
if $\mathbf{T}=\mathbf{2 n s}, \mathbf{9 0 \%}$ of power saved by Adiabatic Switching
(d)

Basic recovery process

Adiabatic Digital System

A Buffer (Inverter) Chain using Reversible Logic

- 6 phases of clock required
- Inverse logic naturally available
- Charge recovery path can be controlled by inverse function (next stage gate in buffer chain)
- In general, reversibility is not available

Quasi-Static Energy Recovery Logic (QSERL)

- Two phase clocks
- Comparable complexity with static CMOS
- Low threshold voltage MOSFET as the diode
- Lower switching activity than dynamic adiabatic
 logic

A Full Adder Using QSERL

- A quasi-CMOS adiabatic adder
- Works in both static CMOS and adiabatic mode
- A 2x2 adiabatic multiplier using this adder implemented

Summary of Simulation Results of Adiabatic Logic Blocks

- A buffer chain using reversible logic
- At $1 \mathrm{MHz}, 94 \%$ of energy recovered
- At $111 \mathrm{MHz}, 68 \%$ of energy recovered
- A bit-serial adder using partially reversible logic
- At $1 \mathrm{MHz}, 90 \%$ of energy recovered
- At $111 \mathrm{MHz}, 61 \%$ of energy recovered
- A 2x2 multiplier using QSERL logic
- At $20 \mathrm{MHz}, 60 \%$ of energy saved
- At $100 \mathrm{MHz}, 35 \%$ of energy saved

A Generic Resonant Scheme for Energy Recovery

- Ideally, the circuit oscillates between \mathbf{O} and $2 V_{r e f}$
- Pull-up and pull-down paths to replenish the energy to keep oscillation going
- Extra circuits to generate control signal Sp and Sn
- External control signals Sp and Sn are 180 degree out
 of phase

A Generic Resonant Scheme (continued)

- Serial connected control transistor SO limits the energy recovery efficiency
- Extra circuitry to generate $\mathbf{S p}$ and Sn
- Energy in charging the gate capacitances of $\boldsymbol{S p}$ and $\boldsymbol{S n}$ are dissipated
- It requires an additional reference voltage source
- Single phase clock is generated. More than one resonant circuit is required

- Power Consequences:
- Increased cooling cost
- Shortens battery lifetime in portable applications
- Clock power is significant
- For microprocessors clock distribution power can range from 30% to 50\%

Power Distribution of Pentium II

Ref: ISCAS01, Q.K. Zhu

Power Distribution of McKinley (Itanium) Processor

- Clock power reduction is a promising approach to low power
- Energy Recovery from the clock network

- Resonant clock generator
- Sinusoidal clock
- Clock network: distributed RC load
- To adjust frequency, L is changed according to:

Energy-recovery clocking

Clock distribution network

Clock Tree Simulation

- Integrated 1024 flip-flops across an area of 4 mmX 4 mm
- Compared proposed flip-flops to 3 square wave flip-flops
- Hybrid-latch Flip-Flop
- Conditional Capture Flip-Flop
- Transmission Gate Flip-Flop
- Distributed RC model was extracted from layout
- In square wave case, clock tree was driven by a single buffer

Energy-recovery clocking

Approximate Sinusoidal Generated

Results include clock network and flip-flops

HLFF: Hybrid Latch Flip-Flop CCFF: Conditional Capture Flip-Flop TGFF: Transmission Gate Flip-Flop

- Negligible power overhead for clock generation
- Over 90\% power savings over the clock tree!
- Total power savings including flip-flops over square-wave clocking:
- Up to 83\% for 0\% data switching activity
- Up to 65% for 25% data switching activity
- Up to 49% for 50% data switching activity

Dynamic Energy Minimization

Architecture-Driven Voltage Scaling

Data Path Operator

Architecture-Driven Voltage Scaling

Architecture-Driven Voltage Scaling

Pipelined implementation

$$
P_{\text {pipe }}=(1.15 C)(0.58 V)^{2}(f) \approx 0.39 P
$$

Power Optimization Using Operation Reduction

Reducing operations maintaining throughput

Power Optimization Using Operation Reduction

Reducing operations with less throughput

Power Optimization Using Operation Substitution

(a)

(b)

Substituting addition for multiplication

Precomputation-Based Optimization for Low Power

Precomputation architecture

$$
f_{1}=1 \Rightarrow Z=1 \quad f_{2}=1 \Rightarrow Z=0
$$

Precomputation-Based Optimization for Low Power

N-bit comparator
$f_{1}=A(n-1) \cdot \overline{B(n-1)} \quad f_{2}=\overline{A(n-1)} \cdot B(n-1)$

Precomputation-Based Optimization for Low Power

$$
\begin{aligned}
& f_{1}=A(n-1) \cdot B(n-1) \cdot \overline{C(n-1)} \cdot \overline{D(n-1)} \\
& f_{2}=\overline{A(n-1)} \cdot \overline{B(n-1)} \cdot C(n-1) \cdot D(n-1)
\end{aligned}
$$

Precomputation-Based Optimization for Low Power

Precomputation using Shannon's expansion

$$
Z=x_{j} Z_{x_{j}}+\overline{x_{j}} Z_{\bar{x}_{j}}
$$

Multi-Voltage Scheduling

Multi-Voltage IC Design Issues

Level Conversions

DC-DC Efficiency

- need efficiency of at least $\frac{V_{H I}^{2}}{V_{L O}^{2}}$
to break even

Layout:

- separate power and ground routing
- substrate contacts between voltage regions

Multi-Voltage Results

- Summary of results:
- up to 50% energy savings 1 vs. 2 voltages
- less than 15% additional savings 2 vs. 3
- area penalties vary from 0 up to 170%

Clock Gating

Why Clock Gating?

- Power breakdowns for processors

Pentium Pro		Alpha 21264	
Instruction Fetch 22.2% Register Alias Table 6.3% Reservation Stations 7.9% Reorder Buffer 11.1% Integer Exec. Unit 14.3% Data Cache Unit 11.1% Memory Order Buffer 6.3% Caches 16.1% Out-of-Order Issue Logic 19.3% Memory Management Unit 8.6% Global Clock 7.9% FP Exec. Unit 10.8% Integer Exec. Unit 10.8% Total Clock Power $34.4 \%$$\|$			

Principle of Clock Gating

- Clock gating a dynamic logic gate

Gated-Clock FSM

If the FSM enters a state with a self-loop, the signal F_{a} is asserted and the clock is turned off.

Single-clock, flip-flop based FSM

Limitation:

Only applicable to FSMs where the outputs do not depend directly on the primary inputs (i.e.,Moore FSMs).

FSM Transformation

- Locally transform a Mealy FSM into a Moore FSM

SO: Same output for all of self-loops.
S1: The output depends on the inputs for the diff. self-loops.

Deterministic Clock Gating (DCG) for High Performance Processors

- Target high-performance processors
- Resource use known in advance deterministically
- No prediction overhead
- More power savings
- Virtually no performance loss

DCG Applied to Back-end Stages, Latches

Info available at ID

Effectiveness of DCG

Average power savings: DCG 20\%; PLB-orig 5.6\%; PLB-ext 10\% Performance loss: DCG ~0\%; PLB-orig \& PLB-ext 2.8\%

VSV:
 Variable Supply-Voltage Scaling

VSV: L2-Miss-Driven Variable Supply-

 Voltage- CPU usually end up stalling on L2 misses
- L2 miss as trigger to transit from high to low V_{DD}

Implementation of VSV

Alpha 21264 floorplan

Fixed $V_{D D}{ }^{H}$
transition energy overhead

Two steady operation modes: high-performance \& low-power

- Not so simple: What if high ILP overlaps misses?

- Go to low-power mode only if low ILP
- Down-FSM avoids unnecessary performance loss

- Back to high-power mode when LAST L2 miss returns
- Up-FSM increase power savings

Effectiveness

- FSMs effectively avoid performance degradation
- Average CPU power savings : performance loss
7% : 1\% for all SPEC2K programs
21% : 2% for programs with MR>4.0

Impact of Time-Keeping Prefetching

- Average CPU power savings : performance loss

4\% : 1\% for all SPEC2K programs
12% : 2% for programs with MR>4.0

Low-Power VLSI Signal Processing (Low-complexity DSP)

Shared Multiplier

- Reduction of redundant computation by increasing computation re-use
- Complexity reduction in FIR implementation
- High performance
- Low power
- Works efficiently if embedded in large DSP systems

Vector scaling operation

< Transposed direct form FIR filter >

$$
\left[c_{0}, c_{1}, c_{2} \ldots \ldots \ldots . c_{M-2}, c_{M-1}\right] \quad \times \quad X(\mathrm{n})
$$

- FIR filtering operation can be expressed as a product of coefficient vector C and scalar X(n)
- Vector Scaling Operation , $\mathbf{Y}=\boldsymbol{C} \cdot x$

Shared Multiplier Algorithm

- Specifically targets the reduction of redundant computation in the vector scaling operation.
< Coefficient Decomposition >

$$
c=111010001100
$$

$$
\begin{aligned}
c= & 2^{9}(111)+2^{7}(1)+2^{2}(11) \\
& \text { alphabet set }=\{1,11,111\}
\end{aligned}
$$

Alphabets - chosen basic bit sequences
Alphabet set - a set of alphabets that covers all the coefficients in vector C

```
c\cdot\chi=111010001100 - \chi
c•x = 29}(0111•x)+\mp@subsup{2}{}{7}(0001\cdotx)+\mp@subsup{2}{}{2}(0011\cdotx
if 0111 • x,0001 * x and 0011 * x are available, c • x can be significantly
simplified as add and shift operation
```

Shared Multiplier Architecture

16×16 Shared Multiplier Implementation

Select units \& Adders

- 16×16 Wallace tree multiplier (WTM) and carry save array multiplier (CSAM) are also implemented for comparison.

	Precomputer	Select units \& Adders	WTM	CSAM
Delay	6.923 ns	11.231 ns	16.638 ns	23.398 ns
Power	18.06 mW	18.91 mW	22.80 mW	21.78 mW
Area	$162340 \mu \mathrm{~m}^{2}$	$252120 \mu \mathrm{~m}^{2}$	$241000 \mu \mathrm{~m}^{2}$	$175640 \mu \mathrm{~m}^{2}$

- CMU library ($0.35 \mu \mathrm{~m}$ technology)

FIR filter using Shared Multiplier

- Computations $a_{k} \cdot x$ are performed just once for all alphabets and these values are shared by all the select units
- Only select unit and adders and lie on the critical path

FIR filter using WT \& CSAM

Filter	FIR filter using Shared Multiplier	FIR filter using Wallace Tree	FIR filter using Carry Save Array
Clock Cycle	13 ns	18 ns	25 ns
Power	398.4 mW	412.2 mW	401.1 mW
Area	$4.41 \times 10^{6} \mu^{2}$	$3.87 \times 10^{6} \mu^{2} \mathrm{~m}^{2}$	$3.15 \times 10^{6} \mu \mathrm{~m}^{2}$

- CMU library ($0.35 \mu \mathrm{~m}$ technology) • Power measured with clock frequency : $25 n \mathrm{n}$

DFE using Shared Multiplier

Coefficient Update

```
C}\mp@subsup{k}{+1}{}=\mp@subsup{C}{k}{}+\mathrm{ StepSize }\times\mathrm{ Error }\times\mp@subsup{V}{k}{
```


Filter	Clock Cycle	Area
DFE using CSHM	96.67 ns	$4.06^{*} 10^{7} \mu \mathrm{~m}^{2}$
DFE using WTM	112.73 ns	$2.51^{*} 10^{7} \mu \mathrm{~m}^{2}$
DFE using CSAM	117.23 ns	$2.51^{*} 10^{7} \mu \mathrm{~m}^{2}$

- CMU library (0.35 $\mu \mathrm{m}$ technology)

DCT: Shared Multiplier Application

DCT (Discrete Cosine Transform)

- The number of a/phabets can be reduced by modifying the coefficients in DCT matrix
- Only 1x \& 3x are required for the Precomputer bank
- Performance and Power improvement in Precomputer bank and Select unit.
- DCT with the modified coefficients generates acceptable quality of image

Shared Multiplier Application

DCT (Discrete Cosine Transform)

$T=\left[\begin{array}{cccc}d & d & d & d \\ a & c & e & g \\ b & f & -f & -b \\ c & -g & -a & -e \\ d & -d & -d & d \\ e & -a & g & c \\ f & -b & b & -f \\ g & -e & c & -a\end{array}\right]\left[\begin{array}{cccc}d & d & d & d \\ -g & -e & -c & -d \\ -b & -f & f & b \\ e & a & g & -c \\ d & -d & -d & d \\ -c & -g & a & -e \\ -f & b & -b & f \\ a & -c & e & -g\end{array}\right]$

- $Z=T x^{t}, Z=T x^{t}$

Note the symmetry of the DCT coef. matrix

DCT (Background)

Using the Symmetry of the DCT coefficient matrix, the matrix multiplication is simplified

- $Z=T x^{t}, X=T Z^{t}$

Even DCT
$\left[\begin{array}{l}z_{0} \\ z_{2} \\ z_{4} \\ z_{6}\end{array}\right]=\left[\begin{array}{cccc}d & d & d & d \\ b & f & -f & -b \\ d & -d & -d & d \\ f & -b & b & f\end{array}\right]\left[\begin{array}{l}x_{0}+x_{7} \\ x_{1}+x_{6} \\ x_{2}+x_{5} \\ x_{3}+x_{4}\end{array}\right]$

Odd DCT
$\left[\begin{array}{l}z_{1} \\ z_{3} \\ z_{3} \\ z_{7}\end{array}\right]=\left[\begin{array}{cccc}a & c & e & g \\ c & -g & -a & -e \\ e & -a & g & c \\ g & -e & c & -a\end{array}\right]\left[\begin{array}{c}x_{0}-x_{7} \\ x_{1}-x_{6} \\ x_{2}-x_{5} \\ x_{3}-x_{4}\end{array}\right]$

DCT using Shared Multiplier

$X_{k l}=\frac{c(k) c(l)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} x_{i j} \cos \left(\frac{(2 i+1) k \pi}{16}\right) \cos \left(\frac{(2 j+1) l \pi}{16}\right)$

8bit DCT Coefficients

- $Z=T x^{t}, X=T Z^{t}$

Even DCT
$\left[\begin{array}{l}z_{0} \\ z_{2} \\ z_{4} \\ z_{6}\end{array}\right]=\left[\begin{array}{cccc}d & d & d & d \\ b & f & -f & -b \\ d & -d & -d & d \\ f & -b & b & f\end{array}\right]\left[\begin{array}{l}x_{0}+x_{7} \\ x_{1}+x_{6} \\ x_{2}+x_{5} \\ x_{3}+x_{4}\end{array}\right]$

Odd DCT
$\left[\begin{array}{l}z_{1} \\ z_{3} \\ z_{3} \\ z_{7}\end{array}\right]=\left[\begin{array}{cccc}a & c & e & g \\ c & -g & -a & -e \\ e & -a & g & c \\ g & -e & c & -a\end{array}\right]\left[\begin{array}{c}x_{0}-x_{7} \\ x_{1}-x_{6} \\ x_{2}-x_{5} \\ x_{3}-x_{4}\end{array}\right]$

Original 8-bit DCT coefficient			
Coefficient	Value	Binary code	Pre-computer bank Needed
a	0.49	00111111	$3 \mathrm{x}, 15 \mathrm{x}$
b	0.46	00111011	$3 \mathrm{x}, 11 \mathrm{x}$
c	0.42	00110101	$3 \mathrm{x}, 5 \mathrm{x}$
d	0.35	00101101	$1 \mathrm{x}, 13 \mathrm{x}$
e	0.28	00100100	1 x
f	0.19	00011000	1 x
g	0.10	00001100	3 x
Modified 8-bit DCT coefficient			
Coefficient	Value	Binary code	Pre-computer bank Needed
a^{\prime}	0.50	01000000	1 x
b^{\prime}	0.47	00111100	3 x
c^{\prime}	0.41	00110100	$1 \mathrm{x}, 3 \mathrm{x}$
d^{\prime}	0.34	00101100	$1 \mathrm{x}, 3 \mathrm{x}$
e^{\prime}	0.28	00100100	1 x
f	0.19	00011000	1 x
g^{\prime}	0.12	00001100	3 x

- Only 1x \& 3x are required in the Modified 8-bit DCT Coefficient

DCT using Shared Multiplier

< DCT with original 8 bit coefficient >

$<D C T$ with modified 8 bit coefficient >

- DCT with the modified coefficients generates acceptable quality of image

Shared Mutiplier: Summary

- Reduces computational complexity
- Possible to trade-off power/performance by judiciously selecting coefficients and alphabets

Differential Coefficients Method (DCM)

< FIR Filtering operation >

- An " \boldsymbol{n} " tap FIR Filter performs the following computation :

$$
Y_{j}=\sum_{k=0}^{n-1} C_{k} X_{j-k}
$$

- C's are the filter coefficients
- X and Y are the input and output sequences.
- The filter output Y typically obtained by :
- Computing each product term by multiplication
- Summing up the product terms
- Called Direct Form (DF) computation of the FIR output

FIR Filters using Differential Coefficients

- Excepting the first coefficient the C's can be expressed as :

$$
C_{k}=C_{k-1}+\delta_{k-1 / k}^{1}
$$

- The delta's are called the "First Order Differences"
- By expanding the expression for consecutive Y's and subtracting we get :

$$
Y_{J+!}=Y_{j}+C_{0} X_{j+1}+\sum_{k=1}^{N-1} \delta_{k-1 / k}^{1} X_{j-k+1}-C_{N-1} X_{j-N+1}
$$

- The "First Order Partial Sum" is defined as :

$$
\sum_{k=1}^{N-1} \delta_{k-1 / k}^{1} X_{j-k+1}=\left\{S_{P}^{1}\right\}_{t=j+1}
$$

Advantages of the FD algorithm

- To obtain Y we now do the following :
- Retrieve the previously computed Y
- Compute the "partial sum" and the two other product terms by multiplication
- Add these to obtain the current Y
- Store the current Y
- Called the "First Order Differences Algorithm" (FD) for computing the FIR Filter output
- Computational savings of FD algorithm:
- only if differences (delta's) are smaller than C's
- product term computation simplified as the differences have reduced word-width

Algorithm using generalized differences

- Generalized m-th order differences defined as :

$$
\delta_{k-m / k}^{m}=\delta_{k-m+1 / k}^{m-1}-\delta_{k-m / k-1}^{m-1}
$$

- We can thus generalize the recurrence for Y as :

$$
\begin{aligned}
& Y_{j+1}=Y_{j}+C_{0} X_{j+1}+\sum_{k=1}^{m-1}\left[\left\{S_{P}^{k}\right\}_{t=1}+\delta_{0 / k}^{k} X_{j-k+1}\right. \\
& \\
& \\
& \left.-\delta_{N-k-1 / N-1}^{k} X_{j-N+1}\right]-C_{N-1} X_{j-N+1}+\sum_{k=m}^{N-1} \delta_{k-m / k}^{m} X_{j-k+1}
\end{aligned}
$$

- Multiplications involve only m-th order differences
- Greater computational savings possible if the m-th order differences are even smaller than the coefficients

Example: Low Pass Filter

- Example : FIR Filter with 100 taps
- Shift and Add model for multiplication
- Energy dissipated data from a low-power library

Canonical Signed Digits (CSD)

- Canonical Signed Digits (CSD) is another commonly used technique for simplifying multiplications in FIR filters
- Reduces switching-power by reducing number of ones in multiplier
- Typically a 33\% reduction in the number of ones (and hence additions) is obtained using CSD
- Compared to CSD, DCM has 40\% better power dissipation
- Modifications to DCM is possible for near multiplier-less filters

Coefficient Reordering

- We represent this problem using a graph in which vertices represent the coefficients and edges represent the resources required when the differential coefficient corresponding to the edge is used in the computation
- The optimal solution is the well-known problem of finding the Hamiltonian cycle of smallest weight of this graph (minimum spanning tree), thus achieving even lower complexity

Implementation of DCMI

Compute the Hamiltonian cycle in G
$K=\left\{k_{0}, \ldots, k_{M-1}\right\}=s e t$ of ordering of indices of the coefficients
(e.g. In DCM $K=\{0,1,2,3, \ldots, M-1\} . \Delta \mathrm{c}_{\mathrm{j}}=\mathrm{C}_{1+\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$)

Then $\quad \Delta C_{i}=c_{k_{t+1}}-c_{k_{i}}$ and $P_{k_{i}}^{(n)}=\left(c_{k_{i}}-c_{k_{t-1}}\right) x(n-k)+P_{k_{t-1}}^{\left(n-k_{+}+k_{t-1}\right)}$

Obtaining the Reduced Form

Step 1 : Move the delay elements into branches

Obtaining the Reduced Form

Step 2 : Move the delay elements out of the branches and connect the appropriate partial product.

- Overhead = M-1 Add operations.

Low Complexity FIR Filters with FPC

- Factorization of Perturbed Coefficients (FPC) is a method to design digital filters which require less computation.
- Factorization allows common factors between coefficients in the filter to be used to share computation.
- Perturbation maximizes the benefits of factorization by guaranteeing "good" common factors.
- FPC constrains the frequency response within acceptable limits.

Factorization

- The output of an FIR filter is:

$$
\mathrm{y}(\mathrm{n})=\sum_{i=0}^{\mathrm{M}-1} \mathrm{C}_{i} \mathrm{x}(\mathrm{n}-\mathrm{i})
$$

- If two coefficients have a common factor there is a calculation that can be shared.
(i.e., If C1 = F1 * F2 \& C2= F1 * F3, the value of F1*x(n) can be reused.)
- The problem is the lack of common factors across multiple coefficients.

Perturbation

- Every whole number is unique product of prime factors. Thus the coefficients can be expressed as:

$$
\mathrm{C}_{i}=\prod_{k=1}^{\mathrm{Q}(n)}\left\{\mathrm{f}_{n}(\mathrm{k})\right\}^{p n(k)}
$$

- To maximize the number of common factors, generate the coefficients from a small set of prime factors.
- To minimize the impact on the filter output, these should be the first several prime factors: $\mathbf{f}=$ \{2,3,5,7,11...\}

FPC Algorithm

Sample Filter Response

- Start with Parks-McClellan and Least Squares filters. These provide our bounds.
- Use these filter coefficients to find an intermediate filter.
- Perturb the coefficients of this new filter until they are products of only the first few prime numbers (2,3,5,7,11...) AND still within bounds.
- Build factorization tree that give all of the coefficients.

FPC Results

- FPC can be applied to filters of various types and sizes to give a 24-43\% savings in the amount of computation.

Filter	Type	Pass-band	Stop-band	PM taps	LS taps	Savings
EX	LPF	$0.0-0.25$	$0.55-1.0$	8	10	24%
A	HPF	$0.7-1.0$	$0.0-0.6$	57	75	43%
B	LPF	$0.0-0.4$	$0.5-1.0$	54	78	28%
C	BPF	$0.5-0.6$	$0-0.35,0.75-1$	54	76	24%
D	HPF	$0.475-1.0$	$0.0-0.4$	91	115	36%
E	LPF	$0.0-0.2$	$0.25-1.0$	71	121	39%
F	BPF	$0.4-0.5$	$0-0.3,0.6-1$	85	111	30%
G	HPF	$0.75-1.0$	$0.0-0.7$	123	161	39%
H	LPF	$0.0-0.575$	$0.625-1.0$	131	167	25%

LPF: Low-Pass Filter
BPF: Band-Pass Filter
HPF: High-Pass Filter
TAPS: Size of filter (\# of coefficients)

Other Silicon Solutions

- FINFET's and Double Gate MOSFET's
- Better short channel effect
- Intrinsic channel

- Better scalability

Advantages of Double Gate Devices

- Short channel effect control
- Better scalability
- Lower subthreshold current
- Higher On Current
- Near-Ideal Subthreshold slope
- Elimination of Vt variation due to Random dopant fluctuation

DG devices are very promising for circuit design in sub-50nm technology

How do we design circuits in

 Double Gate technologies?

Use the "good" DG devices in place of single gate bulk-CMOS/PD-SOI devices

Are there any new challenges?
How can we take advantages of DG technologies?

Nano-Scaled Double Gate Devices

DGMOS
Planar double-gate structure

Ground Plane SOI MOS
Shared back gate DG devices

What opportunities do we have for circuit design in DG technologies?

3-Terminal DG Devices

3-Terminal DG devices are essentially
"better" single gate devices

DG Devices with Shared Back

 Gate (GP-SOI)

GP-SOI devices are similar to bulk-CMOS devices with substrate biasing option

Back-Biased Circuits in GP-SOI

DG Devices with Independent Front and Back Gates

Independent gate devices can have separate input at front and back gates

Unique in DG technologies \Rightarrow Design of new circuit styles

Circuits Design in Double Gate Technologies

3-T DG devices Directly Translate single gate designs Width quantization, T_{si} variations,

Dynamic Vt Circuits in GP-SOI Technology

Back Biasing for Dynamic- \mathbf{V}_{t}

Applying bias to the back gate can modify "on" and "off" currents of the device

Back Biasing for Dynamic- \mathbf{V}_{t}

Back-biasing in GP-SOI is more effective than body-biasing in bulk

Digital Back Bias (DBB) in GP-SOI

Dynamic Digital Back Biasing with GP-SOI

Dynamic DBB improves performance and leakage

Digital Circuit Design using Independent Gate Operation in Double-Gate Devices

4-Terminal Operation of DG (Symmetric)

Digital Circuits using Independent Gate Devices

Sense-Amplifier Higher performance Better robustness Smaller area

4-Transistor Schmitt Trigger Circuit using Independent Gate Devices

Schmitt-circuit is a high-performance circuit used to shape input pulses and reduce noises

4-T Schmitt Trigger using Independent Gate

Independent control of the back gate reduces the number of transistors in the Schmitt Trigger circuit

4-T Schmitt Trigger using Independent Gate

Independent control of the back gate reduces the number of transistors in the Schmitt Trigger circuit

4-T Schmitt Trigger using Independent Gate

4-T Schmitt Trigger with symmetric devices can have large hysteresis window

4-T Schmitt Trigger using Independent Gate

Hysteresis window in 4-T Schmitt-Trigger can be designed using Asymmetric DG devices

Pre-Charge Evaluate Logic Circuits using Independent Gate Devices

Independent Gate Skewed Logic

Independent Gate Skewed Logic

Independent Gate Skewed Logic

IG Skewing reduces evaluation and precharge delay

Independent gate operation results in higher performance and lower power in skewed logic

High-Performance SenseAmplifier using Independent Gate Devices

Sense Amplifier using 3-T Devices

Sense Amplifier Circuit designed using 3-T devices

Voltage difference between BL and BLB produces current difference between ND1 and ND2

Conclusions

- Power considerations (both dynamic and leakage) are very important for scaled technologies
- Process parameter variation is also expected to be a major concern. There is a need for leakage statistical design techniques to improve power dissipation and yield
- An integrated approach to design - device/circuit/arch. - is essential for an optimized design
- New failure modes have to be considered for nano-scale designs
- Process parameter variations
- High Leakage
- Soft failures
- New technologies may come to the rescue!
- DG-MOSFET, FINFET's, CNFET's, Molecular RTD's,

