PURDUE UNIVERSITY

Design of Scaled CMOS Circuits in the Nano-meter Regime: Dynamic Energy Dissipation

Kaushik Roy

Professor of Electrical & Computer Engineering Purdue University

Switching/Dynamic Power

$$\begin{aligned} & \text{RC Circuits (contd.)} \end{aligned}$$

$$\begin{aligned} & \text{Term wise expanding, the first term can be expressed as} \\ & \int_{0}^{T} i V_R dt = \int_{0}^{T} \frac{(\Phi - V_C)^2}{R} dt \\ & = \int_{0}^{T} [\frac{V_{dd}}{T} RC(1 - e^{\left(-\frac{t}{RC}\right)}] / R dt \\ & = (\frac{RC}{T})^2 C V_{dd}^2 \int_{0}^{\frac{T}{RC}} (1 - e^{-\frac{t}{RC}})^2 d(\frac{t}{RC}) \\ & = (\frac{RC}{T}) C V_{dd}^2 \left[1 - \frac{3}{2} (\frac{RC}{T}) + 2(\frac{RC}{T}) e^{\left(-\frac{T}{RC}\right)} - \frac{1}{2} (\frac{RC}{T}) e^{\left(-\frac{2T}{RC}\right)} \right] \end{aligned}$$

Multi-Voltage Results

- Summary of results:
 - up to 50% energy savings 1 vs. 2 voltages
 - less than 15% additional savings 2 vs. 3
 - area penalties vary from 0 up to 170%

Clock Gating

Deterministic Clock Gating (DCG) for High Performance Processors

- Target high-performance processors
- Resource use known in advance deterministically
- No prediction overhead
- More power savings
- Virtually no performance loss

- Reduction of redundant computation by increasing computation re-use
- Complexity reduction in FIR implementation
- High performance
- Low power
- Works efficiently if embedded in large
 - **DSP** systems

Shared Multiplier Algorithm

- Specifically targets the reduction of *redundant* computation in the vector scaling operation.
- < Coefficient Decomposition >

$$c = 111010001100$$

$$C = 2^{2} (111) + 2^{2} (1) + 2^{2} (11)$$

alphabet set = {1, 11, 111}

Alphabets - chosen basic bit sequences

Alphabet set - a set of alphabets that covers all the coefficients in vector C

 $c \cdot x = 111010001100 \cdot x$

 $c \cdot x = 2^9 (0111 \cdot x) + 2^7 (0001 \cdot x) + 2^2 (0011 \cdot x)$

if $0111 \cdot x$, $0001 \cdot x$ and $0011 \cdot x$ are available, $c \cdot x$ can be significantly simplified as add and shift operation

	Radix-16 CSHM (Synth.)	CSHM (Custom)	WTM (Synth.)	CSM (Synth.)
Power Consumption at 10 ns CLK (mW)	226.1	286.6	344.3 16 % 34 %	357.1
Min. CLK Cycle (ns)	5	7	8.5 18 %	37 % 10 30 %
Area (× mm²)	4.1	5.0	4.4	50 % 4.1

DCT	(Background)
- Using the Symmetry of the DCT	coefficient matrix, the matrix multiplication is simplified.
• $Z = Tx^i$, $X = TZ^i$	
Even DCT	$x_{10}, x_{00} \longrightarrow Add \longrightarrow (1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
$\begin{bmatrix} z_0 \\ z_2 \\ z_4 \\ z_6 \end{bmatrix} = \begin{bmatrix} d & d & d & d \\ b & f & -f & -b \\ d & -d & -d & d \\ f & -b & b & f \end{bmatrix} \begin{bmatrix} x_0 + x_7 \\ x_1 + x_6 \\ x_2 + x_5 \\ x_3 + x_4 \end{bmatrix}$	$ \begin{array}{c} \dots X_{11} X_{01} \\ \dots X_{12} X_{02} \\ \dots X_{12} X_{03} \end{array} \begin{array}{c} \text{Add} \end{array} \begin{array}{c} d & d & d & d \\ b & f & -f & -b \\ d & -d & -d & d \\ d & -d & -d & d \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} } \end{array} } \end{array} } \end{array} } \end{array} } \end{array} } \end{array} \end{array} } \end{array} \end{array} } \end{array} } } } \end{array} } } } $
Odd DCT	$X_{14}, X_{04} \xrightarrow{g} Sub \xrightarrow{g} a c e g (\cdot) \xrightarrow{g} g$
$\begin{bmatrix} z_1 \\ z_3 \\ z_3 \\ z_7 \end{bmatrix} = \begin{bmatrix} a & c & e & g \\ c & -g & -a & -e \\ e & -a & g & c \\ g & -e & c & -a \end{bmatrix} \begin{bmatrix} x_0 - x_7 \\ x_1 - x_6 \\ x_2 - x_5 \\ x_3 - x_4 \end{bmatrix}$	$X_{15}, X_{05} Sub Sub c -g -a -e \\X_{16}, X_{06} g Sub g -e -c -a g \xrightarrow$

DCT using S	hare	d Mu	ultiplier
$X_{ii} = \frac{c(k)c(l)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} x_{ij} \cos\left(\frac{(2i+1)k\pi}{16}\right) \cos\left(\frac{(2j+1)l\pi}{16}\right)$		8bit D	OCT Coefficient
	1	Orig	inal 8-bit DCT coefficien
• $Z = Tx^t$, $X = TZ^t$	Coefficient	Value	Binary code
	а	0.49	0011 1111
Even DCT	b	0.46	0011 1011
	с	0.42	0011 0101
$ z_0 d d d d x_0 + x_7 $	d	0.35	0010 1101
	е	0.28	0010 0100
$ z_2 b f - f - b x_1 + x_6 $	f	0.19	0001 1000
	g	0.10	0000 1100
$ z_4 $ $a - a - a - a x_2 + x_5 $			
f f h h f x x x		Mod	ified 8-bit DCT coefficier
$\begin{bmatrix} z_6 \end{bmatrix} \begin{bmatrix} j & -b & b & j \end{bmatrix} \begin{bmatrix} x_3 + x_4 \end{bmatrix}$	Coefficient	Value	Binary code
	a'	0.50	0100 0000
Odd DCT	b'	0.47	0011 1100
	c'	0.41	0011 0100
$ z_1 a c e g x_0 - x_7 $	ď	0.34	0010 1100
	e'	0.28	0010 0100
$ z_3 c - g - a - e x_1 - x_6 $	f	0.19	0001 1000
	g'	0.12	0000 1100
$ z_3 e - a g c x_2 - x_5 $			
$\begin{bmatrix} z \\ z \end{bmatrix} = \begin{bmatrix} a \\ -e \end{bmatrix} \begin{bmatrix} c \\ -a \end{bmatrix} \begin{bmatrix} x \\ -x \end{bmatrix}$	• Only	1x & 3x	are required
$\lfloor x_7 \rfloor \ \lfloor 8 \ c \ c \ u \rfloor \lfloor x_3 \ x_4 \rfloor$	9 hit		officient
	0-DIL		emcient

8bit DCT Coefficients

	Or	iginal 8-bit DCT coefficient	
Coefficient	Value	Binary code	Pre-computer bank
			Needed
а	0.49	0011 1111	3x, 15x
b	0.46	0011 1011	3x, 11x
с	0.42	0011 0101	3x, 5x
d	0.35	0010 1101	1 x, 13 x
e	0.28	0010 0100	1x
f	0.19	0001 1000	1x
g	0.10	0000 1100	3x

	Mo	dified 8-bit DCT coefficient	
Coefficient	Value	Binary code	Pre-computer bank Needed
a'	0.50	0100 0000	1x
b'	0.47	0011 1100	3x
c'	0.41	0011 0100	1x, 3x
d'	0.34	0010 1100	1x, 3x
e'	0.28	0010 0100	1x
f	0.19	0001 1000	1x
<u>e</u> '	0.12	0000 1100	3x

• Only 1x & 3x are required in the Modified 8-bit DCT Coefficient

DCT using Shared Multiplier

< DCT with original 8 bit coefficient >

< DCT with modified 8 bit coefficient >

 DCT with the modified coefficients generates acceptable quality of image

Shared Mutiplier: Summary

- Reduces computational complexity
- Possible to trade-off power/performance by judiciously selecting coefficients and alphabets

Differential Coefficients Method (DCM)

< FIR Filtering operation >

• An "*n*" tap FIR Filter performs the following computation :

$$Y_{j} = \sum_{k=0}^{n-1} C_{k} X_{j-k}$$

- C's are the filter coefficients
- X and Y are the input and output sequences.
- The filter output Y typically obtained by :
 - Computing each product term by multiplication
 - Summing up the product terms
- Called *Direct Form* (**DF**) computation of the FIR output

Algorithm using generalized differences

• Generalized *m*-th order differences defined as :

$$\delta^{m}_{k-m/k} = \delta^{m-1}_{k-m+1/k} - \delta^{m-1}_{k-m/k-1}$$

• We can thus generalize the recurrence for Y as :

ł

$$Y_{j+1} = Y_j + C_0 X_{j+1} + \sum_{k=1}^{m-1} \left[\left\{ S_P^k \right\}_{t=j} + \delta_{0/k}^k X_{j-k+1} - \delta_{N-k-1/N-1}^k X_{j-N+1} \right] - C_{N-1} X_{j-N+1} + \sum_{k=m}^{N-1} \delta_{k-m/k}^m X_{j-k+1}$$

- Multiplications involve only m-th order differences
- Greater computational savings possible if the m-th order differences are even smaller than the coefficients

Factorization

• The output of an FIR filter is:

$$y(n) = \sum_{i=0}^{M-1} C_i x(n-i)$$

 If two coefficients have a common factor there is a calculation that can be shared.

(i.e., If C1 = F1 * F2 & C2= F1 * F3, the value of F1*x(n)

can be reused.)

• The problem is the lack of common factors across multiple coefficients.

	FPC Results						
FF siz co	PC c zes omp	an be to give utatior	applied e a 24-4 n.	l to fil 3% sa	lters avinç	of va gs in	rious types and the amount of
Filter	Туре	Pass-band	Stop-band	PM taps	LS taps	Savings	
EX	LPF	0.0-0.25	0.55-1.0	8	10	24%	
А	HPF	0.7-1.0	0.0-0.6	57	75	43%	
в	LPF	0.0-0.4	0.5-1.0	54	78	28%	LPF: Low-Pass Filter
С	BPF	0.5-0.6	0-0.35, 0.75-1	54	76	24%	BPF: Band-Pass Filter
	HPF	0.475-1.0	0.0-0.4	91	115	36%	HPF: High-Pass Filter
D		0.0-0.2	0.25-1.0	71	121	39%	TAPS: Size of filter
D E	LPF	0.0 0.2					(U. 0. 00) I
D E F	LPF BPF	0.4-0.5	0-0.3, 0.6-1	85	111	30%	(# of coefficients)
D E F G	LPF BPF HPF	0.4-0.5	0-0.3, 0.6-1	85 123	111 161	30% 39%	(# of coefficients)

Other Silicon Solutions

- FINFET's and Double Gate MOSFET's
- Better short channel effect
- Intrinsic channel
- Better scalability

Circuits Design in Double Gate Technologies

3-T DG devices Directly Translate single gate designs Width quantization, T_{si} variations,

DG devices with shared back gate GP-SOI Back biased circuits Dynamic Vt circuits

4-T DG Devices Unique for DG Isolated front and back gate can have diff. inputs New circuit styles

Conclusions

- Power considerations (both dynamic and leakage) are very important for scaled technologies
- Process parameter variation is also expected to be a major concern. There is a need for leakage statistical design techniques to improve power dissipation and yield
- An integrated approach to design device/circuit/arch. is essential for an optimized design
- New failure modes have to be considered for nano-scale designs
 - Process parameter variations
 - High Leakage
 - Soft failures
- New technologies may come to the rescue!
 DG-MOSFET, FINFET's, CNFET's, Molecular RTD's,