
The Case for FEC-based Reliable Multicast in Wireless Mesh Networks

Dimitrios Koutsonikolas Y. Charlie Hu
School of Electrical and Computer Engineering
Center for Wireless Systems and Applications
Purdue University, West Lafayette, IN 47907

{dkoutson, ychu}@purdue.edu

Abstract

Many important applications in wireless mesh networks
require reliable multicast communication. Previously, For-
ward Error Correction (FEC) techniques have been proved
successful for providing reliability in the Internet, as they
avoid the control packet implosion and scalability problems
of ARQ-based protocols. In this paper, we examine if FEC
can be equally efficient in wireless mesh networks. We im-
plement four reliable schemes initially proposed for wired
networks on top of ODMRP, a popular unreliable multi-
cast routing protocol for wireless networks. We compare
the performance of the four schemes using extensive simu-
lations. Our results show that the use of pure FEC can offer
significant improvements in terms of reliability, increasing
PDR up to 100% in many cases, but it can be very ineffi-
cient regarding the number of redundant packets it trans-
mits. Moreover, a carefully designed hybrid protocol, such
as RMDP, can maintain the same high level of reliability
while improving the efficiency by up to 35% compared to a
pure FEC scheme.

1. Introduction

An important characteristic of many multicast applica-
tions in wireless mesh networks, such as software updates
or audio/video file downloads, is that they require reliable
packet delivery. Many reliable multicast protocols have
been proposed for multihop wireless networks (see [1] for a
survey). Some of them require feedback from all receivers,
leading to the well-known problem of feedback implosion,
which in turn leads to congestion. Others trade off through-
put for reliability, which may be acceptable for MANET
applications (e.g., search-and-rescue operations), but not for
commercial mesh networks. Finally, gossip-based protocols
try to mitigate these problems, however they cannot guaran-
tee 100% reliability.

All the above protocols fall into the class of Automatic

Repeat reQuest (ARQ) schemes. Forward Error Correction
(FEC) has been proposed as an alternative way to provide
reliable multicast in the Internet [2]. With FEC the sender
sends redundant encoded packets, and the receiver can re-
construct the original data even if it receives only a frac-
tion of the encoded packets. Hence, no feedback from the
receivers is required. A carefully selected amount of re-
dundancy can result in less overhead compared to requests
and retransmissions required in ARQ schemes. However,
FEC itself cannot guarantee 100% reliability. Hence, hy-
brid ARQ-FEC schemes, e.g., [3, 4, 5, 6, 7, 8] have been
proposed to combine the advantages of both techniques.

These protocols have been evaluated in the Internet, al-
though some of them (e.g. [4]) are claimed to work also for
wireless environments. However, the wireless environment
is very different from that of the wired networks. (1) In the
wired Internet the main reason for losses is congestion; in
wireless networks the time variability of the wireless chan-
nel is equally important. Obstacles, interference, and mul-
tipath fading lead to bursty losses, possibly decreasing the
effectiveness of FEC. (2) Most wireless multicast protocols
use MAC-layer broadcast to exploit the Wireless Multicast
Advantage [9]. However, the commonly used 802.11 MAC
protocol does not incorporate any reliability mechanism for
broadcast, as opposed to for unicast, where link-layer ac-
knowledgments and retransmissions hide some losses from
the upper layer and the RTS/CTS exchange reduces the
number of losses due to collisions. (3) The asymmetry of
wireless links does not provide any guarantee that requests
for retransmissions sent by receivers will reach the source.
(4) Bandwidth is a limited resource in wireless networks,
and hence a solution that provides a large amount of redun-
dancy may not be applicable. (5) Most wireless multicast
protocols use a mesh to deliver data, as opposed to the tree-
based approach in the Internet. This invalidates many of
the assumptions made by Internet multicast protocol design.
(6) Mesh-based multicast protocols can increase reliability,
since there are usually more than one paths available from
the source to each of the receivers. In summary, it is en-

IEEE/IFIP DSN 2007, Edinburgh, UK, June 25-28, 2007.



tirely not obvious that the FEC-based schemes designed for
the Internet will work well in wireless networks.

The above discussion argues for the need for a de-
tailed evaluation of the existing FEC and hybrid FEC-ARQ
schemes in a multihop wireless mesh network. In this pa-
per, we compare four different reliable multicast schemes,
borrowed from the wired Internet, and examine how effi-
ciently they perform under the special characteristics of a
multihop wireless mesh network. One of the four schemes
is a pure-FEC based scheme, where the source just sends
some amount of redundancy and no feedback is required
from the receivers. Two other schemes are hybrid FEC-
ARQ protocols, namely NP [3] and RMDP [4]. Finally,
for completeness, we include in our comparison a pure
ARQ-based scheme, ReMHoc [10], which follows the de-
sign principles of Scalable Reliable Multicast (SRM) [11],
one of the most popular ARQ-based protocols for the wired
Internet. ODMRP (On Demand Multicast Routing Proto-
col) [12], a widely used multicast protocol for wireless net-
works, is used as the underlying routing protocol for the
four schemes.

Our results show that (1) ARQ-based protocols have a
very poor performance in wireless environments, (2) the use
of pure FEC can offer significant improvements in terms of
reliability, increasing the PDR up to 100% in many cases,
but it can be very inefficient in terms of packet transmis-
sions, (3) a carefully designed hybrid protocol, such as
RMDP, can maintain the same high level of reliability and
also improve the efficiency by up to 35% compared to a
pure FEC scheme.

2. Overview of Reliable Multicast Protocols

In this section we describe an ARQ-based protocol, a
pure FEC-based protocol, and two hybrid protocols. All
four protocols are designed to be superimposed on an unre-
liable multicast routing protocol.

2.1. Automatic Repeat Request

We selected ReMHoc [10] as a representative ARQ pro-
tocol for our comparison. ReMHoc follows the design prin-
ciples of SRM [11], perhaps the most popular ARQ pro-
tocol for reliable multicast in the wired Internet. ReMHoc
is receiver-initiated; each receiver is responsible for detect-
ing loss, by detecting gaps in the packet sequence numbers.
When a packet loss is detected, the receiver schedules a Re-
quest packet, asking for retransmission of the lost packet.
To prevent the implosion of control packets, receivers wait
for a random period of time before sending a request for a
lost packet. If they receive a request for the same packet
from another receiver before their timer expires, they post-
pone their own request by resetting the timer. This backoff

is exponential in SRM, but linear in ReMHoc (proportional
to the number of times this request has already been sched-
uled). This is because the loss rate is much higher in wire-
less networks than in the Internet, and hence faster response
is required.

If the timer expires, a request is sent. But there is no
guarantee that the request itself will not be lost, or that the
repair packet will reach this receiver. Hence, the request
timer is reset. In ReMHoc there is no upper bound on the
number of times a request can be sent. However, we found
that by allowing infinite number of requests, the control
overhead grows too fast and the PDR is reduced. There-
fore, we decided to allow up to five retransmissions of the
same request. After requesting a packet for five times, a re-
ceiver considers this packet permanently lost and no further
action is taken for that packet in the future.

Request packets are multicast toward the whole group.
Any multicast member that receives a request packet and
has the requested packet, sends a Repair packet and does not
propagate the request further. Similarly as for the request
packets, a node postpones its transmission of a repair packet
for a random period of time, and cancels it if in this time it
hears another node retransmitting the same repair packet.
Each repair packet is multicast to the whole group, so that
all nodes that are missing the same data packet can recover
by using the same repair packet.

2.2. Forward Error Correction

The key idea behind Forward Error Correction (FEC) [2,
13] is that k data packets are encoded at the sender to pro-
duce n encoded packets, where n > k, in such a way that
any subset of k encoded packets suffices to reconstruct the
original k data packets. Such a code is called an (n, k) FEC
code and allows the receiver to recover from up to n − k

packet losses in a group of n encoded packets. A code is
called systematic when the first k encoded packets are the
original data packets. Systematic codes are much cheaper
to decode and they allow partial reconstruction of data even
when fewer than k encoded packets are received. In a sys-
tematic code, the n − k encoded packets that are different
from the original k data packets are called parities.

In this paper we use a particular class of FEC codes,
called Reed-Solomon (RS) codes, which uses Vandermonde
matrices to encode the data packets. [2] gives a description
and a software implementation of RS codes which is used
by many protocols, such as [3, 4]. It works for packet sizes
up to 1024 bytes, and the proposed values for k and n are
32 and 255, respectively.



2.3. NP

NP [3] is a hybrid ARQ-FEC based protocol that uses
systematic Reed-Solomon codes. In NP the data file at the
sender is separated in transmission groups (TGs), and an
(n, k) RS code is applied to each TG. Hence, each TG

consists of k original data packets and n − k parities.
In NP the transmission of each TG proceeds in rounds,

which can be interleaved with the transmission of packets
from other transmission groups. In round i the k original
data packets of group TGi are sent. Then in each following
round j, j > i, l

j−1

i new parity packets are sent, where
l
j−1

i is the maximum number of packets lost by any of the
receivers in round j − 1 for group TGi, until all parities are
exhausted.

In more detail, the sender transmits k data packets for
TGi followed by a POLL message POLL(i, k). With
POLL(i, k), the sender informs the receivers that it has sent
k packets for TGi in the current round, and it asks for feed-
back about the missing packets of TGi. Then it continues
by sending the data packets for group TGi+1. When it re-
ceives a NACK(i, l), it interrupts sending data packets of
TGm, m > i, it transmits l new parity packets for group
TGi, followed by a new POLL message POLL(i, l), and it
then resumes transmission for TGm.

For TGi, each receiver stores data packets and pari-
ties until it collects at least k packets, which allow the
reconstruction of TGi. When a POLL(i, s) is received,
NACK(i, l) is scheduled to be transmitted in the interval
[(s − l)Ts, (s − l + 1)Ts], where l is the number of pack-
ets still missing for TGi. When the timer for NACK(i, l)
expires, NACK(i, l) is multicast to the whole group. If a
NACK(i, m) is received with m ≥ l before the timer for
NACK(i, l) expires, the timer is canceled.

Assuming an ideal environment (no NACK or POLL
packets are lost) and a tree structure, the slotting and dump-
ing mechanism of the protocol assures that the sender
will receive only one NACK after every data/parity-POLL
round, which will contain the maximum number of packets
needed by any receiver to reconstruct TGi.

2.4. RMDP

Reliable Multicast data Distribution Protocol
(RMDP) [4] is the only protocol claimed to work in
wireless environments, although it was only evaluated on
the MBone. In RMDP the data file at the sender is again
divided into B transmission groups of k packets each, and
an (n, k) RS code is applied to each group. However, dif-
ferently from in NP, in RMDP the TGs are not transmitted
sequentially, but their packets are interleaved as shown in
Figure 3 of [4]. The sender maintains a counter csi

for
each TGi, counting the number of packets (original plus

parities) it has to send for TGi. Similarly, each receiver
maintains a counter cri

for each TGi, counting the number
of packets received for TGi. The protocol uses only one
control message type: a request R = [f, cri

, i] is sent by a
receiver to inform the sender that it has received cri

packets
of TGi of the file f . The sender augments each data packet
pj of TGi with a file identifier f , the total number of
original data packets constituting TGi k, the current value
of csi

, and a sequence number j. We will denote such an
augmented data packet as S = [f, k, csi

, j, pj ].
Whenever the sender receives a message R [f, cri

, i], it
sets csi

= max(csi
, D(k − cri

)) for TGi where D is the
amount of redundant data sent unconditionally (D = 1
means that redundant packets are only sent on demand).
If csi

> 0 the sender has to transmit csi
packets (original

plus/or parities) for TGi . For example, in the beginning,
csi

= 0 at the sender, and cri
= 0 at each receiver, hence

the sender will set csi
= D × k upon receiving a message

R, i.e, it has to send D × k packets for each TG. As we
mentioned before, the sender sends the packets using TG

interleaving, i.e., every τ seconds it transmits a packet from
a different TG, where τ is the interarrival packet time im-
posed by the application.

Each receiver sends initially an R message with cr = 0,
and then it schedules a new request every TR seconds. If it
receives a data message S, it cancels any pending request.
Then if the number of packets received for at least one TG

is less than k, it schedules a new request after TC seconds
for the TG with the largest number of missing packets.

The largest difference between NP and RMDP, other
than TG interleaving, is the way the sender reacts to the
reception of request messages (NACKs or R messages, re-
spectively). In NP, the sender responds immediately to each
NACK, by sending the amount of packets requested. In
RMDP, the sender takes no immediate action, but it updates
the appropriate counter csi

, increasing the amount of pack-
ets it has to transmit in the future for TGi.

3. Evaluation

3.1. Methodology

ODMRP For our comparison we used On Demand Mul-
ticast Routing Protocol (ODMRP) [12] as the underlying
multicast protocol, and implemented ReMHoc, FEC, NP,
and RMDP on top of it. ODMRP is a best-effort multicast
protocol originally designed for mobile ad hoc networks;
receivers do not attempt to recover from packet losses.

To keep the route discovery control overhead low,
ODMRP does not send explicit Join Query packets (for re-
freshing multicast routes), but periodically incorporates this
information in the header of the data packets. This implies
that not all data packets are equally important; the ones
that carry Join Queries are more important than the rest,



since if such a packet is lost, no route is built and subse-
quent data packets are also lost. This creates a conflict with
FEC’s principle, where any k out of n packets suffice to
decode the original data. Hence in this paper, we decided
to decouple the tree construction/maintenance from the data
transmission and use explicit Join Query packets. The orig-
inal ODMRP uses short route refresh intervals (the interval
between two successive route discoveries) to maintain the
connectivity in the presence of node mobility. In mesh net-
works, routers are stationary, and hence routes are much
more stable than in MANETs. Therefore, we increased the
values for route refresh interval and FG timeout (the time
after which a forwarding node stops forwarding packets) to
reduce the control overhead.

Scenario We used the Glomosim [14] simulator in our
simulation study. Glomosim is a widely used wireless net-
work simulator with a detailed and accurate physical signal
propagation model. We simulated a network of 50 static
nodes placed randomly in a 1000m×1000m area. We used
two multicast groups with nine receivers and one source
each. In this way, the traffic for one group acts as cross-
traffic for the other group. Each source sent a 4MB file,
consisting of 512-byte packets at a constant rate of 5 pack-
ets/sec in a low-load scenario and 20 packets/second in a
high-load scenario1.

The radio propagation range was 250m and the chan-
nel capacity was 2Mbps (the data rate used for broadcast
in 802.11 MAC protocol). The TwoRay propagation model
was used. To make the simulations realistic, we added fad-
ing in our experiments. The Rayleigh model was used, as it
is appropriate for environments with many large reflectors,
e.g., walls, trees, and buildings, where the sender and the
receiver are not in Line-of-Sight of each other. We envision
that such environments will be common for mesh networks.
We simulated each protocol on 10 different randomly gen-
erated topologies and the results for each topology as well
as the average over all topologies are presented.

For the implementation of ReMHoc, FEC RS codes, NP,
and RMDP, we followed [10], [2], [3] and [4], respectively.
For the protocol parameters that are given specific values in
these four papers, we kept the same values. For the rest of
the parameters (e.g., the slot size Ts in NP), we ran sim-
ulations with different values, and we selected those that
resulted in the best reliability (i.e. packet delivery ratio)
without suffering too much on throughput (both metrics are
defined below). These parameters along with the selected
values are shown in Table 1.

Evaluation metrics The following metrics are used to
evaluate the various reliable multicast protocol versions:

1Although the source sending rate is only 80 Kbps, the actual load on
the network is much higher as taking the node density into account, the
total traffic load within a transmission range is on average 800 Kbps.

(a) PDR - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
 (

%
)

ReMHoc

(b) Throughput - high load

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

ReMHoc

(c) PDR - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
 (

%
)

ReMHoc

(d) Throughput - low load

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

ReMHoc

Figure 1. PDR and throughput for ReMHoc
under high and low load for 10 different
topologies.

Average Packet Delivery Ratio (PDR): The number of the
data packets delivered to a multicast group member divided
by the number of data packets transmitted by the source,
averaged over all multicast group members. For FEC-based
protocols, the data packets refer to the original data packets,
i.e., before encoding at the source and after decoding at the
destination. This metric directly measures reliability.

Average Throughput: The number of data packets (in bytes)
delivered to a multicast group member divided by the total
time required for this delivery, averaged over all multicast
group members.

Efficiency: The number of decoded packets at a multi-
cast group member divided by the total number of encoded
packets received by that member, averaged over all multi-
cast group members. It is a common metric in FEC-based
protocols. For ARQ-based protocols there is no redun-
dancy and efficiency is 100%, since all data/repair packets
received are useful packets.

3.2. Results

ARQ We first evaluate the performance of ReMHoc, a
pure ARQ protocol. Figure 1 shows the average PDR and
throughput achieved by ReMHoc under high and low load.

As we observe in Figures 1(a), 1(c), the PDR is very
low under both high and low load. On average, ReMHoc
achieves only 13% PDR under high load, and slightly higher
(23%) under low load. This PDR is much lower than that
achieved by ODMRP without any reliability scheme (74%
and 87%, respectively, undel high and low load). In other
words, a reliable protocol achieves much lower reliability
compared to a best-effort protocol which does not have any
reliability characteristics. Same observations can be made
for throughput which is extremely low, 5.9Kbps and 4Kbps,
under high and low load, respectively.



Table 1. Parameters of the various reliable protocols and their values.
Protocol Name - Description Notation Value

ReMHoc number of times a request is sent - 5
FEC number of original data packets in each TG k 32

number of total (original + encoded) data packets in each TG n 63,127,255
NP number of original data packets in each TG k 32

number of total data packets in each TG n 255
slot size for NACK timers T s 1sec (NP), 5sec (NP opt)

RMDP number of original data packets in each TG k 32
number of total data packets in each TG n 255
timer for next R message after R is sent TR 20sec

timer for next R message after S is received TC 10sec
amount of redundant data sent unconditionally D 1,3,5

Tang et al. observe a similarly low PDR for SRM in [15].
The poor performance of ReMHoc (or SRM) stems from the
way ARQ protocols try to recover from packet losses. For
each lost packet, additional request and repair packets are
injected into the network, which finally leads to congestion
and packet dropping. Of course request/repair suppression
tries to mitigate this problem. However, suppression does
not work well in wireless networks for two reasons. First,
it is very possible that request packets will also be lost, like
data packets. This is usually not taken into account in the
wired Internet. Second, packet losses in wireless multicast
are highly uncorrelated, as opposed to in the Internet. In
IP multicast, a tree is built from the source to the receivers.
Hence, a packet loss observed by a node is also observed by
all its downstream nodes [11]. In wireless networks, most
multicast protocols build a mesh instead of a tree to increase
reliability. Hence, there are usually several paths from the
sender to each receiver, which result in uncorrelated losses.
This is true even for tree-based protocols, because of the
broadcast nature of a wireless transmission.

Things get even worse due to bursty losses. We observed
in ReMHoc bursty losses of up to 90 consecutive data pack-
ets. Such bursts of lost packets cause bursts of requests, and
subsequently, bursts of repairs sent by the source. This re-
sults in the MAC layer queues of the nodes one hop away of
the source being fully occupied by repair packets for certain
periods of time, during which all new data packets are sim-
ply dropped. On average, each receiver sent 1260 requests
under high load but it received only 472 repair packets. The
same numbers for low load were 3564 and 1149, respec-
tively. This shows that the request-repair mechanism does
not perform well in wireless networks.

In general, the ARQ model for the Internet performs very
poorly in wireless networks. The conclusion is that an ef-
ficient reliable protocol for wireless multicast should avoid
or at least limit the transmission of request packets, and be
able to react to bursty losses without causing congestion in
the network.

FEC In this section we evaluate the performance of pure
FEC, where no feedback is sent by the receivers. Rizzo
in [4] proposes the use of a (255, 32) RS code as a good
compromise between encoding/decoding speed and effi-
ciency. However, this implies a large amount of redundancy
(seven times the file size). In a wireless network of limited
capacity, this might not be a good choice, as high traffic
will compete with traffic from other sources. Hence, we
examine the use of smaller values for n, while keeping the
value for k equal to 32. Figure 2 shows the results for PDR,
throughput, and efficiency in case of high and low load, for
three different amounts of redundancy, namely for n = 63,
127, and 255.

As we observe in Figures 2(a), 2(d), the use of FEC sig-
nificantly improves reliability. For high load, the use of
(63, 32), (127, 32), and (255, 32) codes achieves on average
PDRs of 89.5%, 98.4%, and 98.9%, respectively. For low
load, the PDR with a (63, 32) code increases up to 97.9%,
while for the other two codes it remains the same. More im-
portantly, (127, 32) and (255, 32) codes give a 100% PDR
in 5 and 8 out of 10 scenarios, respectively, under high load,
and in 8 out of 10 scenarios under low load.2

Figures 2(b), 2(e) show that the average throughput
achieved is the same for a (127, 32) and a (255, 32) code,
equal to 46Kbps under high load and 15.5Kbps under low
load. Taking into account the fact that the sending rate is
81.9Kbps and 20.5Kbps, under high and low load, respec-
tively, we conclude that 100% reliability comes at the cost
of reduced throughput, especially under high load. It also
comes at the cost of very low efficiency, as we observe in
Figures 2(c), 2(f). The efficiency of a (127, 32) code is
on average 36% and 29% under high and low load, respec-
tively. For a (255, 32) code it decreases even more – 19%
and 14%, respectively. It means that a lot of packets are

2In both scenarios 5 and 6, where PDR is less than 100% even with a
(255, 32) code, the reason is that one node is almost isolated from the rest
of the network, due to the random placement of nodes. Such pathological
cases should not happen with a planned deployment.



(a) PDR - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
(%

)

(63,32) (127,32) (255,32)

(b) Throughput - high load

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

(63,32) (127,32) (255,32)

c) Efficiency - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

E
ff

ic
ie

n
cy

 (
%

)

(63,32) (127,32) (255,32)

(d) PDR - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
 (

%
)

(63,32) (127,32) (255,32)

(e) Throughput - low load

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

(63,32) (127,32) (255,32)

(f) Efficiency - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

E
ff

ic
ie

n
cy

 (
%

)

(63,32) (127,32) (255,32)

Figure 2. Comparison of RS codes of different redundancy in terms of PDR, throughput, and effi-
ciency for 10 different topologies.

wasted in order to achieve finally 100% PDR. This is due to
high uncorrelated packet losses occurring in wireless envi-
ronments.

In general, a (127, 32) RS code achieves almost the same
PDR as a (255, 32) RS code, but with doubled efficiency.
Hence, in the overall comparison in Section 3.2, we will
use this code. Since 100% PDR can be achieved in practi-
cal scenarios with a (127, 32) RS code, which sends redun-
dant data equal to only 3 times the file size, as opposed to
7 times as proposed in [4], the use of a hybrid FEC-ARQ
scheme will be preferred only if it offers higher throughput
or efficiency compared to the pure FEC scheme. This is
examined in the following sections.

NP In NP, redundant packets are sent only after explicit
requests (NACK packets from the receivers). Hence there
is no reason to keep the value of n low in the RS code. If the
protocol performs well, only a part of the redundant packets
is going to be sent. Hence for the NP evaluation, we used
a (255, 32) RS code in all cases. Figure 3 shows the results
for PDR, throughput, and efficiency in case of high and low
load, for the original NP protocol (NP) and an optimized
version (NP opt) which we will describe in the following.

As Figure 3(a) shows, the average PDR under high load
is only 78%, much lower than the PDR achieved by pure
FEC, and only slightly better than the PDR of ODMRP
(about 74%). Hence, NP in its original version fails to pro-
vide reliable data delivery in wireless networks. The reason
can be explained by the way the protocol works. As we ex-
plained in Section 2.3, the sender sends a POLL message
after each round, and the receivers respond to POLL mes-
sages with NACK messages containing the number of miss-
ing packets. Upon receiving a NACK, the sender sends the

appropriate amount of redundant packets. In other words,
there is a chain of three types of messages, POLL, NACK,
and parity packets, each of which is sent as a response to
the previous one. If one of them is lost, the chain breaks.
If a POLL is lost before it reaches any receiver or in the
more rare case that all the NACKs generated by different
receivers as a response to a specific POLL are lost, the re-
ceivers will not recover any lost packets.

Note that even if a NACK is received, it is not always
the NACK with the maximum number of lost packets, since
NACK suppression may not work perfectly in wireless net-
works, as we explained in Section 3.2. Under low load, the
problem is not so intense, because there is much less con-
tention for the channel, and the probability of collisions is
lower. As Figure 3(d) shows, the PDR under low load is
quite high, about 92%, but again it is worse than pure FEC.

The above discussion shows that in wireless networks
this handshake mechanism (POLL - NACK) is not efficient.
A second mechanism is necessary to initiate NACK mes-
sages even if POLLs are lost. On the other hand, the ra-
tionale behind this design was to keep the control overhead
low. Simply sending NACK packets in response to packet
losses and using no POLL messages could lead to uncon-
trolled bursts of NACK packets (NACK implosion), similar
to what we observed in ReMHoc in Section 2.1. Our solu-
tion to the problem is as follows. We keep the POLL-NACK
exchange the same as in the original NP protocol, but every
time a NACK is sent, we reset the timer for that NACK. If
a POLL message comes before the timer expires, we can-
cel it, since a new NACK will be sent in response to the
POLL message. However, if the timer expires before any
POLL message comes, the same NACK is re-sent. Note



(a) PDR - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

P
D

R
 (

%
)

NP NP_opt

(b) Throughput - high load

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10 AvgScenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

NP NP_opt

(c) Efficiency - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

E
ff

ic
ie

n
cy

NP NP_opt

(d) PDR - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

P
D

R
 (

%
)

NP NP_opt

(e) Throughput - low load

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

NP NP_opt

(f) Efficiency - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

E
ff

ic
ie

n
cy

 (
%

)

NP NP_opt

Figure 3. PDR, throughput and efficiency of the original NP protocol and an optimized version for 10
different topologies. NP and NP opt use a (255, 32) RS code.

that we need this mechanism only as a backup mechanism,
which should not interrupt the POLL-NACK exchange, and
should not create more, unnecessary NACKs. Hence we set
this timer to a very large value (200 sec), to make sure that
it will only be activated if the basic mechanism of the pro-
tocol is not working anymore. We call this new version of
NP NP opt (optimized NP).

Figures 3(a), 3(d) show that NP opt increases signifi-
cantly the reliability compared to NP. The PDR with NP opt
is on average 97.5% under high load and 98.4% under low
load, which are very close to 100%. If we look at the to-
tal number of NACK and POLL messages sent on average
with NP and NP opt, we will see that NP opt sends on aver-
age about 7 times more NACK messages and 4 times more
POLL messages compared to NP. But these extra control
messages do not cause extra overhead, because they are sent
in a much longer time period, compared to NP. To verify
this, we look at the time the last useful data/parity packet
was received. This time is on average 610 sec for NP and
3480 sec for NP opt under high load, and 2049 sec and 8190
sec, respectively under low load.

The above values show again that increased reliability
comes at the cost of low throughput. Figures 3(b), 3(e)
verify this, showing that average throughput with NP and
NP opt, respectively, is 42.8Kbps and 17.8Kbps under high
load, and 15.1Kbps and 8.2Kbps under low load. Similarly
the efficiency drops from 79% for NP to 25% for NP opt
under high load and from 82% to 35% under low load.

Overall, the value of throughput for NP is close to that
achieved by a pure (127, 32) FEC code, and the efficiency
much better, but the PDR much lower. On the other hand,
NP opt achieves a PDR almost equal to that of a pure (127,

32) FEC code, but still less than 100%, with lower through-
put and efficiency. A general conclusion is that in wireless
environments, trying to recover from bursty losses by im-
mediately responding to those losses is not a good solution,
since it can very easily lead to congestion. Instead, a proto-
col that schedules future response to current requests might
be a better option. This is the main design idea in RMDP,
the second hybrid protocol, which we study next.

RMDP In RMDP we also used a (255, 32) RS code, as in
NP, for the reasons we explained previously. Figure 4 shows
the results for PDR, throughput, and efficiency in case of
high and low load, for three different values of D, 1, 3, and
5, denoted as RMDP 1, RMDP 3, RMDP 5, respectively.

In Figures 4(a), 4(d), we observe that the PDR for RMDP
with D = 3, or D = 5, reaches 100% with both high and
low load, for all the scenarios except the two pathological
scenarios we mentioned when we discussed the results of
FEC. With D=1, the sender initially sends only the origi-
nal data packets for each TG (32 packets), and extra pack-
ets are only sent after requests. This increases the protocol
overhead, since many more requests (R packets) are initi-
ated, and the probability for collisions increases, reducing
the PDR. With D > 1, some redundancy is sent in the
beginning, reducing the number of subsequent requests for
more packets. We measured the number of requests sent
in each case, and we found that on average each receiver
sends 274 requests when D = 1, 45 requests when D = 3,
and only 22 requests when D = 5, in case of high load, and
the numbers are similar under low load.

Hence, RMDP, the only protocol designed to work in
both wired and wireless environments (although previously
evaluated only in the former), does achieve the goal of pro-



(a) PDR - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

P
D

R
 (

%
)

RMDP_1 RMDP_3 RMDP_5

(b) Throughput - high load

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 AvgScenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

RMDP_1 RMDP_3 RMDP_5

(c) Efficiency - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

E
ff

ic
ie

n
cy

 (
%

)

RMDP_1 RMDP_3 RMDP_5

(d) PDR - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

P
D

R
 (

%
)

RMDP_1 RMDP_3 RMDP_5

(e) Throughput - low load

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

RMDP_1 RMDP_3 RMDP_5

(f) Efficiency - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

E
ff

ic
ie

n
cy

 (
%

)

RMDP_1 RMDP_3 RMDP_5

Figure 4. PDR, throughput, and efficiency of RMDP for three different values of D for 10 different
topologies. RMDP uses a (255, 32) RS code.

viding reliable multicast data delivery in wireless networks.
As we explained previously, RMDP does not take any ac-
tion to recover from losses the moment they are observed.
On the receiver side, a timer for a request for the TG with
the largest number of losses is set every time a data packet
is received, but in most cases this timer is reset upon recep-
tion of the next data packet. Only if a receiver experiences
a large interval without receiving any packets, it initiates
an R message. Also, reseting the timer after sending a re-
quest ensures that the protocol will never stop working (the
mechanism is similar to that we applied in NP opt). On the
sender’s side, no repair packets are sent upon the reception
of a request. The only action taken is scheduling more par-
ities for future transmission by increasing the appropriate
cs counter. This significantly reduces overhead and elimi-
nates the problem of bursty losses, but it can potentially re-
duce throughput, since it may take longer for the receivers
to complete the necessary number of packets to decode.

Figures 4(b), 4(e) show that throughput increases with
D, since more packets are sent in advance. RMDP with
D = 1, 3, and 5 achieves on average throughput equal to
20.2 Kbps, 43.9 Kbps, and 44.4 Kbps, respectively, under
high load, and 11.7 Kbps, 15.3 Kbps, and 15.4 Kbps, un-
der low load. For D = 3 or 5 these values are very close
to those achieved by pure FEC in Figures 2(b), 2(e). But
the great advantage of RMDP over pure FEC is efficiency.
Figures 4(c), 4(f) show that the efficiency of RMDP with D

= 1, 3, and 5, is 69%, 47%, and 29%, respectively, under
high load, and 76%, 39%, and 23% under low load. For
example, with D = 3, RMDP with a (255, 32) FEC code
improves efficiency by 30% and 34% compared to a pure
(127, 32) FEC code, under high and low load, while achiev-

ing the same PDR and the throughput reduced only by less
than 5%.

In general, there is a tradeoff in the amount of redun-
dancy sent unconditionally (without any request). By send-
ing more packets unconditionally, we can increase through-
put but the efficiency is reduced. D = 3 seems a good com-
promise between these two conflicting factors, and hence
we will use this value in our overall comparison.

Overall Comparison In this section, we compare all five
protocols, in order to give an overall picture of their relative
performance. For this comparison, the best version of each
protocol is used. FEC uses a (127, 32) RS code, and RMDP
has D = 3. Figure 5 shows the PDR, throughput, and effi-
ciency for ODMRP static, ReMHoc, a (127, 32) FEC code,
NP opt, and RMDP with D = 3, for 10 different topologies.

Figures 5(a), 5(d) show that FEC and hybrid ARQ-FEC
based protocols offer significant improvements in terms of
reliability, increasing the PDR close or up to 100%. In con-
trast, pure ARQ-based protocols such as ReMHoc have a
very poor performance in wireless environments, reducing
the PDR to unacceptable levels, much lower than the best-
effort ODMRP. As we mentioned before, ReMHoc is very
vulnerable to bursty packet losses, because both the sender
and the receivers try to respond immediately to each sin-
gle packet loss detection. This causes the well-known re-
quest/repair implosion problem, and it finally leads to con-
gestion. The request/repair suppression mechanism cannot
mitigate the problem, because it does not work properly in
wireless environments.

NP solves partly this problem, since on the receiver’s
side response is not immediate, but only after the reception
of a POLL message. In other words, the receivers in NP



(a) PDR - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
 (

%
)

ODMRP ReMHoc (127,32) FEC
NP_opt RMDP_3

(b) Throughput - high load

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

ODMRP ReMHoc (127,32) FEC NP_opt RMDP_3

(c) Efficiency - high load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

E
ff

ic
ie

n
cy

 (
%

) ODMRP ReMHoc (127,32) FEC
NP_opt RMDP_3

(d) PDR - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

P
D

R
 (

%
)

ODMRP ReMHoc (127,32) FEC
NP_opt RMDP_3

(e) Throughput - low load

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 Avg
Scenario

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

ODMRP ReMHoc (127,32) FEC
NP_opt RMDP_3

(f) Efficiency - low load

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 AvgScenario

E
ff

ic
ie

n
cy

 (
%

)

ODMRP ReMHoc (127,32) FEC
NP_opt RMDP_3

Figure 5. PDR, throughput, and efficiency for ODMRP, ReMHoc, a (127, 32) FEC code, NP opt, and
RMDP with D = 3, for 10 different topologies. NP opt and RMDP use a (255, 32) RS code.

perform some kind of NACK aggregation. However, this
aggregation could cause even larger problem on the sender’s
side and increase the burstiness of repair packets. Finally,
the use of a timer for NACKs with a carefully selected value
mitigates this new problem, and hence NP opt performs al-
most as well as FEC and RMDP in terms of PDR.

Pure FEC and RMDP are the only two protocols that
can achieve 100% PDR, because they take no immediate re-
sponse in case of packet losses. Our experiments with FEC
show that we can always achieve 100% PDR by increasing
the amount of redundancy sent. However, FEC can be very
inefficient, wasting many packets, since the amount of re-
dundancy to be sent is decided in advance. On the other
hand, RMDP sends only a fraction of redundant packets
in advance, and the rest is sent only if necessary. For this
reason, RMDP is the most efficient among the three proto-
cols. As Figures 5(c), 5(f) show, the efficiencies of RMDP,
NP opt, and FEC are on average 47%, 26%, and 34%, re-
spectively, under high load, and 37%, 35%, and 29%, under
low load. Increased efficiency, especially under high load,
is another advantage of RMDP over NP. For ODMRP and
ReMHoc efficiency is 100%, since there are no redundant
packets, but this efficiency is meaningless, since it is coun-
terbalanced by the low PDR.

Finally, we observe in Figures 5(b), 5(e) that increased
reliability comes at the cost of reduced throughput, since
for all three protocols that increase reliability, i.e., FEC,
NP, and RMDP, the average throughput is lower than for
ODMRP. However, for FEC and RMDP, this reduction is
very small – throughput is 46 Kbps for FEC and 44 Kbps
for RMDP vs. 52 Kbps for ODMRP under high load, and
15 Kbps for both FEC and RMDP vs. 17 Kbps under low

load, and it can be tolerated, since the gains in reliability are
much higher. On the other hand, throughput for NP is very
low – 18 Kbps and 8 Kbps, under high and low load, which
shows once more that the design of NP is not appropriate
for wireless environments.

4. Related Work

Recently, many protocols have been proposed for reli-
able multicast in mobile ad hoc networks. A survey on reli-
able multicast protocols for ad hoc networks [16] classifies
them into deterministic and probabilistic ones, depending
on whether the delivery is fully reliable or not. Determin-
istic protocols [17, 18, 19, 20, 15, 21] provide determinis-
tic guarantees for packet delivery ratio, but they incur high
overhead when the mobility or the group size increases.
In these cases, they resort to flooding, resulting in severe
performance degradation. In contrast, probabilistic proto-
cols [22, 23] do not offer hard delivery guarantees, but they
incur much less overhead compared to the former. All the
above protocols fall in the class of ARQ. As mentioned be-
fore, no work other than RMDP [4] has considered the use
of FEC for reliable multicast in wireless networks. To our
best knowledge, we are the first to study the performance of
FEC for multicast in wireless mesh networks.

In our comparison we used Reed-Solomon codes in the
FEC-based schemes. Reed-Solomon codes are very easy to
simulate, because they are deterministic, meaning that a re-
ceiver knows in advance that it can obtain the original data
if it receives any k out of n packets. A drawback of Reed-
Solomon codes is that k and n have to be kept small (the
maximum values are 64 and 255, respectively). Tornado
codes [24] allow the use of very large values for k and n, but



they are non-deterministic, and the receiver has to perform a
partial decoding of the data stream in order to decide when
it should stop receiving. Moreover, the number of packets
required for decoding is (1+ε)×k, but ε is different for each
receiver and unknown beforehand, which complicates both
the design of hybrid protocols. Finally, rateless codes is a
new class of erasure codes in which an arbitrary number of
encoded packets can be produced on demand. [25] uses LT
codes [26], one type of rateless codes, to implement Dig-
ital Fountain, an ideal protocol that allows any number of
heterogeneous receivers to acquire content with the optimal
efficiency at the times of their choosing. Rateless codes are
also probabilistic codes, and hence they cannot be easily in-
corporated into the current hybrid protocols, since receivers
can not report how many parities they need.

Finally, adaptive FEC techniques that adapt the number
of parities sent based on an estimation of the loss rate have
been proposed for multicast in wireless LANs [27, 28]. In
our future work we plan to study if these techniques can
also be applied to multihop mesh networks.

5. Conclusions

In this paper we examined the applicability of FEC-
based reliable multicast protocols initially proposed for
the wired Internet in wireless mesh networks. We com-
pared four different reliable multicast schemes, one ARQ-
based (ReMHoc), one FEC-based (use of RS codes), and
two hybrid protocols (NP and RMDP). Our simulation
study shows that ARQ-based protocols perform very poorly
in wireless environments, because they cannot cope with
bursty packet losses. Moreover, we found that trying to re-
spond immediately to packet losses or to requests for re-
transmissions is not a good design choice for wireless pro-
tocols, because it can very quickly lead to congestion. The
use of FEC without any feedback from the receivers, and
hence without any need for retransmissions, can offer per-
fect reliability in most practical scenarios, but at the cost
of low efficiency. RMDP can increase the efficiency while
keeping the PDR at the same level as pure FEC, by schedul-
ing more packet transmissions in the future based on feed-
back from the receivers, instead of immediately responding
to this feedback. In our future work, we plan to validate our
simulation results on a real mesh network testbed [29].

Acknowledgment

This work was supported in part by NSF grant CNS-
0626703.

References

[1] L. Huang and H. Hassanein, “A performance comparison of reliable
multicast protocols over ad hoc networks,” in 22nd Biennial Confer-

ence on Communications, 2004.
[2] L. Rizzo, “Effective erasure codes for reliable computer communi-

cation protocols,” ACM Computer Communications Review, vol. 27,
no. 2, 1997.

[3] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss
recovery for reliable multicast transmission,” in ACM SIGCOMM,
1997.

[4] L. Rizzo and L. Visicano, “RMDP: an FEC-based reliable multicast
protocol for wireless environments,” Mobile Computing and Com-
munications Review, vol. 2, no. 2, 1998.

[5] J. Yoon, A. Bestavros, and I. Matta, “Adaptive reliable multicast,” in
Proc. of ICC, 2000.

[6] E. Schooler and J. Gemmel, “Using multicast FEC to solve the mid-
night madness problem,” Technical Report, MSR-TR-97-25, Tech.
Rep., 1997.

[7] R. Kermode, “Scoped hybrid automatic repeat request with forward
error correction (SHARQFEC),” in Proc. of ACM SIGCOMM, 1998.

[8] J. Gemmel, “Scalable reliable multicast using erasure-correcting re-
sends,” Technical Report, MSR-TR-97-20, Tech. Rep., 1997.

[9] M. Cagalj, J.-P. Hubaux, and C. Enz, “Minimum-energy broadcast in
all-wireless networks: NP-Completeness and distribution,” in Proc.
of ACM MobiCom, September 2002.

[10] A. Sobeih, H. Baraka, and A. Fahmy, “ReMHoc: A reliable multicast
protocol for wireless mobile multihop ad hoc networks,” in IEEE
IPCCC, 2004.

[11] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reli-
able framework for light-weight sessions and application level fram-
ing,” IEEE/ACM Transactions on Networking, 1997.

[12] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-Demand Multicast Rout-
ing Protocol,” in Proc. of IEEE WCNC, September 1999.

[13] A. J. McAuley, “Reliable broadband communication using a burst
erasure correcting code,” in Proc. of ACM SIGCOMM, 1990.

[14] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A library for par-
allel simulation of large-scale wireless networks,” in Proc. of PADS
Workshop, May 1998.

[15] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla, “Reliable adaptive
lightweight multicast protocol,” in Proc. of ICC, 2004.

[16] E. Vollset and P. Ezhilchelvan, “A survey of reliable broadcast pro-
tocols for mobile ad-hoc networks,” University of Newcastle upon
Tyne, Tech. Rep. CS-TR-792, 2003.

[17] E. Pagani and G. Rossi, “Reliable broadcast in mobile multihop
packet networks,” in Proc. of MobiCom, 1997.

[18] S. Gupta and P.Srimani, “An adaptive protocol for reliable multicast
in mobile multi-hop radio networks,” in Proc. of IEEE Workshop on
Mobile Computing Systems and Applications, 1999.

[19] T. Gopalsamy, M. Singhal, and P. Sadayappan, “A reliable multicast
algorithm for mobile ad hoc networks,” in Proc. of ICDCS, 2002.

[20] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla, “A reliable,
congestion-controlled multicast transport protocol in multimedia
multi-hop networks,” in Proc. of WPMC, 2004.

[21] V. Rajendran, Y. Yi, K. Obraczka, S.-J. Lee, K. Tang, and M. Gerla,
“Combining source- and localized recovery to achieve reliable mul-
ticadt in multi-hop ad hoc networks,” in Proc. of Networking, 2004.

[22] R. Chandra, V. Ramasubramaniam, and K. Birman, “Anonymous
gossip: Improving multicast reliability in mobile ad hoc networks,”
in Proc. of ICDCS, 2001.

[23] J. Luo, P. Eugster, and J.-P. Hubaux, “Route driven gossip: Proba-
bilistic reliable multicast in ad hoc networks,” in Proc. of IEEE Info-
com, 2003.

[24] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Ef-
ficient erasure correcting codes,” IEEE Transactions on Information
Theory, vol. 47, 2001.

[25] J. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain ap-
proach to asynchronous reliable multicast,” Journal on selected areas
in communications, vol. 20, 2002.

[26] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002.

[27] D. Xu, B. Li, and K. Nahrstedt, “QoS-directed error control of video
multicast in wireless networks,” in Proc. of ICC, 1999.

[28] P. Chumchu, Z. G. Zhou, and A. Seneviratne, “A model-based scal-
able reliable multicast transport protocol for wireless/mobile net-
works,” IEICE Transactions on Communications, vol. 4E88-B, no. 4,
2005.

[29] Mesh@Purdue, “http://www.engineering.purdue.edu/MESH.”


