
Journal of Parallel and Distributed Computing 60, 1512�1530 (2000)

OpenMP for Networks of SMPs

Y. Charlie Hu

Department of Computer Science, Rice University, Houston, Texas 77005

E-mail: ychu�cs.rice.edu

Honghui Lu

Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005

E-mail: hhl�cs.rice.edu

and

Alan L. Cox and Willy Zwaenepoel

Department of Computer Science, Rice University, Houston, Texas 77005

E-mail: alc�cs.rice.edu, willy�cs.rice.edu

Received September 23, 1999; revised April 11, 2000; accepted April 26, 2000

In this paper, we present the first system that implements OpenMP
on a network of shared-memory multiprocessors. This system enables
the programmer to rely on a single, standard, shared-memory API for
parallelization within a multiprocessor and between multiprocessors. It is
implemented via a translator that converts OpenMP directives to appropriate
calls to a modified version of the TreadMarks software distributed shared-
memory (SDSM) system. In contrast to previous SDSM systems for SMPs,
the modified TreadMarks system uses POSIX threads for parallelism within
an SMP node. This approach greatly simplifies the changes required to the
SDSM in order to exploit the intranode hardware shared memory.

We present performance results for seven applications (Barnes-Hut, CLU,
and Water from SPLASH-2, 3D-FFT from NAS, Red-Black SOR, TSP, and
MGS) running on an SP2 with four four-processor SMP nodes. A com-
parison between the thread implementation and the original implementation
of TreadMarks shows that using the hardware shared memory within an
SMP node significantly reduces the amount of data and the number of
messages transmitted between nodes and consequently achieves speedups that
are up to 300 better than the original versions. We also compare SDSM
against message passing. Overall, the speedups of multithreaded TreadMarks
programs are within 7�300 of the MPI versions. � 2000 Academic Press

Key Words: OpenMP shared memory programming; POSIX threads;
networks of SMPs; software distributed shared memory.

doi:10.1006�jpdc.2000.1658, available online at http:��www.idealibrary.com on

15120743-7315�00 �35.00
Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.



1. INTRODUCTION

The OpenMP Application Programming Interface (API) is an emerging standard
for parallel programming on shared-memory multiprocessors. It defines a set of
program directives and a library for run-time support that augment standard C,
C++, and Fortran [19, 20]. In contrast to MPI [12], a message-passing API,
OpenMP facilitates an incremental approach to the parallelization of sequential
programs: The programmer can add a parallelization directive to one loop or sub-
routine of the program at a time. Unlike POSIX threads [4], OpenMP specifically
addresses the needs of scientific programming, such as support for Fortran and
data parallelism. An earlier proposal for a standard, shared-memory API for
scientific programming, ANSI X3H5, was never formally adopted, leading vendors
to create their own similar but subtly different programming models. OpenMP
consolidates these different models into a single syntax and semantics and finally
delivers the long-awaited promise of single-source portability for shared-memory
parallelism.

This paper reports on the first system that implements OpenMP on a network of
shared-memory multiprocessors. This system enables the programmer to rely on a
single, standard, shared-memory API for parallelization within a multiprocessor
and between multiprocessors. Previously, the only standard APIs available on this
type of platform were message-passing standards. In our system, OpenMP's
program directives are processed by a source-to-source translator that is constructed
from the SUIF Toolkit [1]. In effect, the translator converts each OpenMP directive
into the appropriate calls to a modified version of the TreadMarks software
distributed shared-memory (SDSM) system [2]. The translated source is a
standard C or Fortran 77 program that is compiled and linked with the modified
TreadMarks system.

In its simplest form, running TreadMarks on a network of SMPs could be
achieved by simply executing a (Unix) process on each processor of each multipro-
cessor node and having all of these processes communicate through message pass-
ing. This approach requires no changes to TreadMarks, and we will therefore refer
to it as the original version. This version, however, fails to take advantage of the
hardware shared memory on the multiprocessor nodes. In order to overcome this
limitation, we have built a new version of TreadMarks, in which we use POSIX
threads to implement parallelism within a multiprocessor. As a result, the OpenMP
threads within a multiprocessor share a single address space. We will refer to this
system as the thread version. Our approach is distinct from previous SDSM systems
for networks of SMPs, such as Cashmere-2L [18] and HLRC-SMP [13], which
use (Unix) processes to implement parallelism within an SMP. Each of these pro-
cesses has a separate address space, although the shared-memory regions (and some
other data structures) are mapped shared between the processes. We will refer to
such a system as a process version.

The use of a single address space within a multiprocessor has pluses and minuses.
On the positive side, it reduces the number of changes to TreadMarks to support
multithreading on a multiprocessor. For example, the data within an address space
on a multiprocessor is shared by default. Furthermore, a page protection operation

1513OPENMP FOR NETWORKS OF SMPS



by one thread applies to the other threads within the same multiprocessor; the
operating system maintains the coherence of the page mappings automatically.

On the negative side, using a single address space within a multiprocessor makes
it more difficult to provide uniform sharing of memory between threads on the
same node and threads on different nodes. Under POSIX threads, an application's
global variables are shared between threads within a multiprocessor, but under
TreadMarks they are private with respect to threads on a different multiprocessor.1

However, since we provide the OpenMP API to the programmer, these differences
are hidden by our OpenMP translator (see Section 4).

We measure our OpenMP system's performance on an IBM SP2 with multipro-
cessor nodes. The machine has four nodes, and each node has four processors. We
use seven applications: Barnes-Hut, CLU, and Water from SPLASH-2 [21],
3D-FFT from NAS [3], Red-Black SOR, TSP, and MGS. We compare the results
for our OpenMP system to two alternatives: OpenMP with the original TreadMarks
and MPI. In both of these cases, message passing is used even between processes
on a single node.

Our results show that using hardware shared memory within an SMP node
significantly reduces the amount of data and the number of messages transmitted.
Consequently, the speedups improve up to 300 over the original TreadMarks
implementation. In addition, we found that the multithreaded TreadMarks per-
forms 1.5�5 times fewer page protection operations. Our experiments also show that
the multithreaded TreadMarks programs incur 1.2�5 times fewer page faults than
their single-threaded counterparts.

We also compare SDSM against message passing. Overall, the speedups of multi-
threaded TreadMarks programs are within 7�300 of the MPI versions.

The remainder of this paper is organized as follows. Section 2 presents an over-
view of the OpenMP API. Section 3 presents an overview of the original Tread-
Marks system and describes the modifications made to support OpenMP on a
network of shared-memory multiprocessors. Section 4 describes the source-to-
source translator for OpenMP. Section 5 evaluates our system's overall perfor-
mance and compares it to the original TreadMarks and to MPI. Section 6 discusses
related work. Section 7 summarizes our conclusions.

2. THE OPENMP API

The OpenMP API [19, 20] defines a set of program directives that enable the
user to annotate a sequential program to indicate how it should be executed in
parallel. There are three kinds of directives: parallelism�work sharing, data environ-
ment, and synchronization. In C and C++, the directives are implemented as
*pragma statements, and in Fortran 77 and 90 they axe implemented as com-
ments. We only explain the directives relevant to this paper and refer interested
readers to the OpenMP standard [19, 20] for the full specification.

1514 HU ET AL.

1 This issue is not specific to TreadMarks. The use of a single address space on a node would give
rise to similar nonuniformities in sharing whithin and across nodes with other SDSM systems.



OpenMP is based on a fork-join model of parallel execution. The sequential code
sections are executed by a single thread, called the master thread. The parallel code
sections are executed by all threads, including the master thread.

The fundamental directive for expressing parallelism is the parallel directive.
It defines a parallel region of the program that is executed by multiple threads. All
of the threads perform the same computation, unless a work sharing directive is
specified within the parallel region. Work sharing directives, such as for, divide the
computation among the threads. For example, the for directive specifies that the
iterations of the associated loop should be divided among the threads so that each
iteration is performed by a single thread. The for directive can take a schedule
clause that specifies the details of the assignment of the iterations to threads.
Schedules can specify assignments such as round robin or block. OpenMP also
defines shorthand forms for specifying a parallel region containing a single work
sharing directive. For example, the parallel for directive is shorthand for a
parallel region that contains a single for directive.

The data environment directives control the sharing of program variables that are
defined outside the scope of a parallel region.2 The data environment directives
include: shared, private, firstprivate, reduction, and threadprivate.
Each directive is followed by a list of variables. Variables default to shared, which
means shared among all the threads in a parallel region. A private variable has a
separate copy per thread. Its value is undefined when entering or exiting a parallel
region. A firstprivate variable has the same attributes as a private variable
except that the private copies are initialized to the variable's value at the time the
parallel region is entered. The reduction directive identifies reduction variables.
According to the standard, reduction variables must be scalar, but we have extended
the standard to include arrays. Finally, OpenMP provides the threadprivate
directive for named common blocks in Fortran and global variables in C and C++.
Threadprivate variables are private to each thread, but they are global in the
sense that they are defined for all parallel regions in the program, unlike private
variables which are defined only for a particular parallel region.

The synchronization directives include barrier, critical, and flush. A
barrier directive causes a thread to wait until all of the other threads in the parallel
region have reached the barrier. After the barrier, all threads are guaranteed to see
all modifications made before the barrier. A critical directive restricts access to
the enclosed code to only one thread at a time. When a thread enters a critical section,
it is guaranteed to see all modifications made by all of the threads that entered the
critical section earlier. The flush directive specifies a point in the program at which
all threads are guaranteed to have a consistent view of the variables named in the
flush directive or of the entire memory if no variables are specified.

3. TREADMARKS

TreadMarks [2] is a user-level SDSM system that runs on most Unix and
Windows NT-based systems. It provides a global shared address space on top of

1515OPENMP FOR NETWORKS OF SMPS

2 The variables defined inside of a parallel region are implicitly private.



physically distributed memories. Under TreadMarks, parallel threads synchronize
via primitives similar to those used in hardware shared-memory machines: barriers
and locks. In C, the program has to call the Tmk�malloc routine to allocate
shared variables in the shared heap. In Fortran, shared variables are placed in a
common block loaded in a standard location.

3.1. Implementation Overview

Memory coherence and synchronization are the key functions performed by
TreadMarks.

3.1.1. Memory coherence. TreadMarks relies on user-level memory-manage-
ment support provided by the operating system to detect accesses to shared
memory at the granularity of a page. A lazy invalidate version of release consistency
(RC) [8] and a multiple-writer protocol are employed to reduce the amount of
communication involved in implementing the shared-memory abstraction.

RC is a relaxed memory consistency model. In RC, ordinary shared-memory
accesses are distinguished from synchronization accesses, with the latter category
divided into acquire and release accesses. RC requires ordinary shared-memory
updates by a thread p to become visible to another thread q only when a subse-
quent release by p becomes visible to q via some chain of synchronization events.
In practice, this model allows a thread to buffer multiple writes to shared data in
its local memory until a synchronization point is reached.

With the multiple-writer protocol, two or more threads can simultaneously
modify their own copies of a shared page. Their modifications are merged at the
next synchronization operation in accordance with the definition of RC, thereby
reducing the effect of false sharing. The merge is accomplished through the use of
diffs. A diff is a run-length encoding of the modifications made to a page, generated
by comparing the page to a copy saved prior to the modifications.

The lazy implementation delays the propagation of consistency information until
the time of an acquire: The releasing thread informs the acquiring thread about
which pages have been modified, causing the acquiring thread to invalidate its local
copy of each modified page. A thread incurs a page fault on the first access to an
invalidated page and obtains the modifications necessary to update its copy from
the previous releasers.

3.1.2. Synchronization. Barrier arrivals are implemented as releases, and barrier
departures are implemented as acquires. Barriers have a centralized manager. At a
barrier arrival, each thread sends a release message to the manager and waits for
a departure (acquire) message. The manager broadcasts a barrier departure
message to all of the threads after the last thread has arrived at the barrier.

The two primitives for mutex locks are lock release and lock acquire. Each lock
has a statically assigned manager. The manager records which thread has most
recently requested the lock. All lock acquire requests are sent to the manager and,
if necessary, forwarded by the manager to the thread that last requested the lock.

1516 HU ET AL.



3.2. Modifications for OpenMP

To support OpenMP-like programming models, recent versions of TreadMarks
include Tmk�fork and Tmk�join primitives, specifically tailored to the fork-join
style of parallelism expected by OpenMP and most other compilers [1] targeting
shared memory. To minimize overhead, all threads are created at the start of a
program's execution. During sequential execution, the slave threads are blocked
waiting for the next Tmk�fork issued by the master.

3.3. Modifications for Networks of Multiprocessors

The modified version of TreadMarks uses POSIX threads to implement
parallelism within a multiprocessor. Hence, the OpenMP threads within a multi-
processor share a single address space. This has many advantages and a few disad-
vantages in both the implementation of TreadMarks and its interface.

3.3.1. Implementation issues. By using POSIX threads, data are shared by
default among the processors within a single node, and coherence is maintained
automatically by the hardware. Thus, we did not have to modify TreadMarks to
enable the sharing of application data or its own internal data structures between
processors within the same node. We did, however, have to modify TreadMarks to
place some data structures, such as message buffers, in thread-private memory.

Synchronizing access by the processors within a node to TreadMarks' internal
data structures was straightforward. The critical sections within TreadMarks were
already guarded by synchronization because incoming data and synchronization
requests occur asynchronously, interrupting the application. Thus, with one excep-
tion, we simply changed the existing synchronization to work with POSIX threads.
The exception is that we added a per-page mutex to allow greater concurrency in
the page fault handler.

The synchronization functions provided by TreadMarks to the program were
modified to combine the use of POSIX threads-based synchronization between pro-
cessors within a node and the existing TreadMarks implementation between nodes.
Thus, the program can continue to use a single API, that of TreadMarks, for
synchronization.

Our last change to the implementation was in the memory coherence mechanism.
Similar to Millipede [9], we added a second mapping at a different address within
each node's address space for the TreadMarks supported shared data heap�
common block, i.e., the memory that is shared between nodes. The first, or original,
mapping is used exclusively by the application. The TreadMarks code uses the
second mapping, which permits read and write access at all times, to update shared-
memory pages so that the application's mapping can remain invalid while the
update is in progress. This ensures that another thread cannot read or modify the
page until the update is complete.

In fact, the use of two mappings reduces the number of mprotect, or page
protection, operations performed by TreadMarks, even on a single-processor node.
For example, in the original TreadMarks, a read access to an invalid page would
result in two mprotect operations: one to enable write access in order to update

1517OPENMP FOR NETWORKS OF SMPS



the page and another to make the page read-only after the update. In the modified
version, only the latter mprotect operation is performed. The second mapping
eliminates the need for the first mprotect operation.

Finally, because of our use of a single address space, the operating system
automatically maintains the coherence of the page mappings in use by the different
processors within a node. Furthermore, an mprotect by one thread within a node
applies to the other threads. In contrast, systems such as Cashmere-2L [181, which
use Unix processes instead of POSIX threads, must perform the same mprotect
in each process's address space. The reason is that mprotect only applies to the
calling process's address space, even if the underlying memory is shared between
address spaces.

3.3.2. Interface Issues. Our use of POSIX threads had one undesirable effect on
the TreadMarks interface. Under POSIX threads, global variables are shared,
whereas in the original TreadMarks API, global variables are private. Thus, in our
modified version of TreadMarks, global variables are shared between threads
within a multiprocessor but are private with respect to threads on a different multi-
processor. Rather than attempting to solve this problem in the run-time system, we
chose to address it in the OpenMP translator where a solution is straightforward.

4. THE OPENMP TRANSLATOR

The OpenMP to TreadMarks translation process is relatively simple, because
TreadMarks already provides a shared memory API across the network. First, the
OpenMP synchronization directives translate directly to TreadMarks synchroniza-
tion operations. Second, the compiler translates the code sections marked with
parallel directives to fork-join code. Third, it implements the data environment
directives in ways that work with both TreadMarks and POSIX threads, hiding the
interface issues discussed in Section 3.3.2 from the programmer.

4.1. Implementing Parallel Directives

To translate a sequential program annotated with parallel directives into a fork-
join parallel program, the translator encapsulates each parallel region into a
separate subroutine. This subroutine also includes code, generated by the compiler,
that allows each thread to determine, based on its thread identifier, which portions
of a parallel region it needs to execute. At the beginning of a parallel region, the
master thread passes a pointer to this subroutine to the slave threads. Pointers to
shared variables and initial values of firstprivate variables are copied into
a structure and passed to the slaves at the same time.

4.2. Implementing Data Environment Directives

Variables accessed within a parallel region default to shared. If a global
variable is annotated threadprivate, it cannot be annotated again within a
parallel region. Thus, the translator allocates all global variables on the shared heap
unless they are annotated threadprivate.

1518 HU ET AL.



For each threadprivate global variable, the compiler allocates an array of n
copies of the global variable, where n is the number of threads per node. Each
reference to the global variable is replaced by a reference to the array, specifically,
a reference to the element corresponding to the thread's (local) id.

In TreadMarks, a thread's stack is kept in private memory. Thus, variables
declared within a procedure that are accessed within a parallel region must be
moved to the shared heap. In addition, variables declared within a procedure and
passed by reference to another procedure are moved to the shared heap because the
translator cannot prove that such a variable will not be used in a parallel region.
Storage for these variables is allocated at the beginning of the procedure and freed
at the end.

Implementing private variables is straightforward: whenever a variable is
annotated private within a parallel region, its definition is duplicated in the proce-
dure generated by the compiler that encapsulates the parallel region. Because each
thread calls this procedure after the fork, these variables will be allocated on the
private stack of each thread.

5. PERFORMANCE

5.1. Platform

Our experimental platform is an IBM SP2 consisting of four SMP nodes. Each
node contains four IBM PowerPC 604 processors and 1 Gbyte of memory. All of
the nodes are running AIX 4.2.

5.2. Applications and Their OpenMP Implementations

We use seven applications in this study: SPLASH-2 Barnes-Hut, NAS 3D-FFT,
SPLASH-2 CLU and Water, Red-Black SOR, TSP, and MGS. Table I summarizes
the problem size, the sequential running time, and the parallelization directives used
in the OpenMP implementation of each application. The sequential running times
are used as the basis for the speedups reported in the next section.

TABLE I

Application, Problem Size, Sequential Execution Time, and Parallelization Directive(s) in
the OpenMP Programs

Sequential OpenMP parallel
Application Size, iterations time (s) directives

Barnes 65536 158.0 parallel regin
3D-FFT 128_128_64, 10 65.2 parallel for

CLU 2048_2048, block: 32 86.9 parallel region
Water 4096, 4 760.3 parallel for�region
SOR 8K_4K, 20 149.0 parallel for
TSP 19 cities, &r14 248.1 parallel region
MGS 2K_2K 563.3 parallel for

1519OPENMP FOR NETWORKS OF SMPS



Barnes: Barnes-Hut from SPLASH-2 is an N-body simulation code using the
hierarchical Barnes-Hut method. A shared tree structure is used to represent the
recursively decomposed subdomains (cells) of the three-dimensional physical
domain containing all of the particles. The other shared data structure is an array
of particles corresponding to the leaves of the tree. Each iteration is divided into
two steps.

1. Tree building: A single thread reads the particles and rebuilds the tree.

2. Force evaluation: All treads participate., First, they divide the particles by
traversing the tree in the Morton ordering (a linear ordering of the points in higher
dimension) of the cells. Specifically, the ith thread locates the ith segment. The size
of a segment is weighted according to the workload recorded from the previous
iteration. Then, each of the threads performs the force evaluation for its particles.
This involves a partial traversal of the tree. Overall, each thread reads a large
portion of the tree.

In OpenMP, the force evaluation is parallelized using the parallel region
directive.

3D-FFT: 3D-FFT from the NAS benchmark suite solves a partial differential
equation using three-dimensional forward and inverse FFT. The program has three
shared arrays of data elements and an array of checksums. The computation is
decomposed so that every iteration includes local computation and a global trans-
pose.

In OpenMP, the data parallelism in the local computation and the global trans-
pose is expressed using the parallel for directive.

CLU: Continuous LU from SPLASH-2 performs LU factorization without
pivoting. The matrix is divided into square blocks that are distributed among
processors in a round-robin fashion. Furthermore, the blocks owned by the same
processor are allocated consecutively in shared memory to minimize false sharing.

In OpenMP, the parallelism along both dimensions of the matrix is expressed
using the parallel region directive.

Water: Water from SPLASH-2 is a molecular dynamics simulation. The main
data structure in Water is a one-dimensional array of molecules. During each time
step, both intra- and intermolecular potentials are computed. The parallel algo-
rithm statically divides the array of molecules into equally sized contiguous blocks,
assigning each block to a thread. The bulk of the interprocessor communication
results from synchronization that takes place during the intermolecular force com-
putation.

In OpenMP, the evaluation of intramolecule potentials requires no interactions
between molecules and is parallelized using the parallel for directive. The
evaluation of intermolecule potentials is parallelized using the parallel region
directive. Each thread is assigned a subset of the molecules. It accumulates the
results of the force computation on subsets of molecules assigned to other threads
into its private memory during the computation. Afterward, all the threads syn-
chronize with each other and sum up the contributions to their own subsets of
molecules in a staggered fashion.

1520 HU ET AL.



SOR: Red-Black Successive Over-Relaxation is a method for solving partial dif-
ferential equations by iterating over a two-dimensional array. In every iteration,
each of the array elements is updated to the average of the element's four nearest
neighbors.

These data parallel operations are expressed in OpenMP using the parallel
for directive.

TSP: TSP solves the traveling salesman problem using a branch-and-bound
algorithm. The major data structures are a pool of partially evaluated tours, a
priority queue containing pointers to tours in the pool, a stack of pointers to
unused tour elements in the pool, and the current shortest path. A thread
repeatedly dequeues the most promising path from the priority queue and either
extends it by one city and enqueues the new path or takes the dequeued path and
tries all permutations of the remaining cities.

In OpenMP, the threads are created using the parallel region directive.
Accesses to the priority queue are synchronized using the critical directive.

MCS: Modified Gramm�Schmidt (MGS) computes an orthonormal basis for a
set of N-dimensional vectors. During the ith iteration, the algorithm first normalizes
the ith vector sequentially and then, in parallel, makes all vectors j>i orthogonal
to vector i. Vectors are assigned to threads in a cyclic manner to balance the load.
All threads synchronize at the end of each iteration.

In OpenMP, the normalization of each vector is performed by the master thread,
and the parallel updates are expressed using the parallel for directive with a
cyclic schedule.

5.3. Results

We first compare the performance of the OpenMP programs translated into
TreadMarks programs modified to use POSIX threads within an SMP node
(OpenMP�thread) against the performance of those same programs translated into
original TreadMarks programs using processes (OpenMP�original). In the latter,
processes on the same node communicate via message passing instead of using the
hardware shared memory.

We then compare the OpenMP�thread and OpenMP�original versions of the
applications against MPI versions of the same applications. We use the MPICH
(http:��www.mcs.anl.gov �mpi�mpich) implementation of MPI.

Figure 1 shows the speedups for the OpenMP�original programs with four pro-
cesses per node, OpenMP�thread programs with four threads per node, and MPI
programs with four processes per node on the four-node SP2. Figures 2 and 3 com-
pare the amount of data and the number of messages transmitted in the above three
versions of the applications. For each application, the values on the y-axis are nor-
malized with respect to the OpenMP�thread version and are truncated at 4. The
absolute numbers are listed in Table II.

For the MPI version, we report both the total number of messages and the
number of messages that actually cross node boundaries.

5.3.1. OpenMP�original versus OpenMP�thread. In terms of relative speedups,
the applications can be categorized into four groups. The first group, consisting of

1521OPENMP FOR NETWORKS OF SMPS



FIG. 1. Speedup comparison between the OpenMP-original, OpenMP�thread, and MPI versions of
the applications on an SP2 with four-processor SMP nodes.

Barnes, CLU, and MGS, has low to moderate computation to communication
ratios. For these programs, the 2- to 5-fold reduction in the amount of data trans-
mitted results in significant speedups. The second group, consisting of Water and
SOR, has high computation to communication ratios. In this case, a 4.5- to 9-fold
reduction in data loads to little improvement in running time. TSP forms the
third group. It also has a high computation to communication ratio. The
OpenMP�thread version does, however, achieve performance improvement because
an update of the current shortest path is immediately seen by all threads on the
same node which effectively reduces the number of paths to be expanded. FFT

FIG. 2. Normalized data comparison between the OpenMP�original, OpenMP�thread, and MPI
versions of the applications on an SP2 with four-processor SMP nodes. The y-axis is truncated at 4.

1522 HU ET AL.



FIG. 3. Normalized messages comparison between the OpenMP�original, OpenMP�thread, and
MPI versions of the applications on an SP2 with four-processor SMP nodes. The y-axis is truncated at 4.

TABLE II

Amount of Data and Number of Messages Transmitted in the OpenMP�original,
OpenMP� thread, and MPI Versions of the Applications on an SP2 with Four Four-Processor
SMP Nodes

MPI
OpenMP� OpenMP�

Application original thread Total Off-node

Data (Mbytes)

Barnes 593.3 196.5 259.7 207.8
3D-FFT 159.4 126.5 157.3 125.8

CLU 102.2 51.2 102.2 51.1
Water 192.3 42.7 34.6 26.0
SOR 0.64 0.07 9.8 2.0
TSP 2.8 0.55 0.03 0.026
MGS 508.6 102.2 251.6 201.3

Messages

Barnes 1478908 156371 720 576
3D-FFT 40975 31694 9750 7800

CLU 28895 13239 1860 930
Water 78402 24667 1776 1344
SOR 3637 735 1200 240
TSP 9227 4853 1256 1070
MGS 184583 37041 30720 24576

1523OPENMP FOR NETWORKS OF SMPS



forms the fourth group, where we see a slight slowdown for the OpenMP�thread
code. The slowdown happens in the transpose stage where all processors request
data from one processor at a time, invoking large numbers of request handlers on
that processor's node. The reason for the slowdown is due to AIX's inefficient
implementation of page protection operations as explained below.

Overall, compared to OpenMP�original, the OpenMP�thread programs send less
data, from a low of 260 less data for 3D-FFT to a high of 9.1 times less data for
SOR, and fewer messages, from a low of 290 fewer messages for 3D-FFT to a high
of 9.5 times fewer messages for Barnes.

Figure 4 compares the number of times that the mprotect operation is performed
in the original and the thread versions of the translated OpenMP programs on four
SMP nodes. The values on the y-axis are normalized with respect to the thread ver-
sions. The detailed numbers are listed in Table III. First, the OpenMP�thread
programs with one thread per node perform 25�560 fewer mprotect operations
than the corresponding OpenMP�original versions with one process per node,
indicating that the alias mapping (see Section 3.3.1) reduces the number of
mprotect operations independent of any multithreading effects. Second, the
OpenMP�thread programs with four threads per node perform 1.9�6.2 times fewer
mprotect operations than the OpenMP�original codes with four processes per
node. To separate the contributions to this reduction from using double mapping
and from using multithreading, we further measure the number of mprotect
operations in running the OpenMP�thread programs with 16 processes, each con-
taining one thread, on the four nodes. The comparison with the above two 16-way
parallelism versions are summarized in Table IV. The comparison between
Thrd�16_1 results and the Orig�16_1 results shows that the use of double

FIG. 4. Normalized mprotect count comparison between the OpenMP�original and
OpenMP�thread versions of the applications on four four-processor SMP nodes. Orig�1 and Orig�4
denote OpenMP�original with one and four processes on a node, and Thrd�1 and Thrd�4 denote
OpenMP�thread with one and four threads on a node, respectively. Orig�1 and Orig�4 are normalized
with respect to Thrd�1 and Thrd�4, respectively.

1524 HU ET AL.



TABLE III

Number of mprotect Operations, Average mprotect Time, Number of Page Faults, and
DSiffs in the OpenMP�original and OpenMP�thread Versions of the Applications Running on
Four-Processor SMP Nodes

Application Orig�1 Thrd�1 Orig�4 Thrd�4

mprotect count

Barnes 112452 73322 320743 107114
3D-FFT 65650 50200 97690 50588

CLU 12411 8253 29015 8308
Water 27244 19071 102879 27691
SOR 1209 969 6037 969
TSP 6947 5529 11628 5438
MGS 30730 21511 86154 21118

Average mprotect time (+s)

Barnes 49.6 63.9 65.6 115.5
3D-FFT 82.0 137.6 62.5 644.9

CLU 82.6 258.8 61.8 555.5
Water 57.8 83.8 72.2 128.4
SOR 216.9 339.8 142.5 708.5
TSP 37.6 51.5 42.7 85.2
MGS 66.3 183.7 67.5 234.8

Page fault count

Barnes 55810 55810 161565 83349
3D-FFT 30860 30860 39020 31155

CLU 4158 4158 12460 6230
Water 13533 13523 46130 28705
SOR 480 480 2400 480
TSP 2895 2889 4794 4047
MGS 14336 14336 40346 32404

diff count

Barnes 29941 29941 87651 44333
3D-FFT 15404 15404 19370 15501

CLU 4095 4095 4095 2079
Water 5090 5090 13017 7890
SOR 240 240 1200 240
TSP 1394 1394 1599 1357
MGS 3072 3072 3827 3724

Note. Orig�1 and Orig�4 denote OpenMP�original with one and four processes on a node, and
Thrd�1 and Thrd�4 denote OpenMP�thread with one and four threads on a node, respectively.

mapping alone reduces the number of mprotect operations by 1.2�1.8 times, and
the comparison between Thrd�4_4 results and the Thrd�16_1 results shows that
the use of multithreading reduces the number of mprotect operations by an addi-
tional 1.5�5 times.

Table III further compares the average cost of an mprotect operation in the
original and the thread versions. It shows that the average cost of an mprotect

1525OPENMP FOR NETWORKS OF SMPS



TABLE IV

Number of mprotect Operations in the OpenMP�original and OpenMP� thread Versions of
the Applications with 16-way Parallelismg on Four Nodes

Application Orig�16_1 Thrd�16_1 Thrd�4_4

Barnes 320743 207293 107114
3D-FFT 97690 78040 50588

CLU 29015 16555 8308
Water 102879 60667 27691
SOR 6037 4840 969
TSP 11628 8211 5438
MGS 86154 48313 21118

Note. Orig�16_1 denotes OpenMP�original with four processes on a node, and Thrd�16_1 denotes
OpenMP�thread with four processes on a node, each of which has one thread, and Thrd�4_4 denotes
OpenMP�thread with one process on each node, with four threads.

in OpenMP�thread with four threads per node is greater than in OpenMP�original
with four processes per node. The difference ranges from a low of 1.8 times for
Water to a high of 10.3 times for 3D-FFT. The order of magnitude increase in the
cost of mprotect operations coupled with the small reductions in the number of
messages, the amount of data, and the number of mprotect operations in the
OpenMP�thread version of 3D-FFT explains the slight slowdown mentioned above.

The increase in mprotect cost is almost entirely a result of the data structure
used by AIX to represent a virtual address space: an ordered, linked list recording
the allocated regions of the address space. AIX optimizes accesses to entries in the
list by starting the traversal from the previous entry accessed. This optimization is,
however, not very effective on multiprocessors because different threads tend to
access distinct regions of memory.3

Figure 5 compares the number of page faults that occured in the original and the
thread versions of the applications, normalized with respect to the thread versions.
The detailed numbers are listed in Table III. The comparison shows that multi-
threading reduces the number of page faults: while the number of page faults
incurred by OpenMP�thread with one thread per node and OpenMP�original with
one process per node is the same, the OpenMP�thread programs with four threads
per node incur 1.2�5 times fewer page faults than their OpenMP�original counter-
parts with four processes per node. This reduction comes from two sources. First,
for multiple-reader pages, only one of the threads on a node needs to fault in order
to update the page and make it accessible by all of the threads, whereas each of the
processes on a node has to fault once to update its own copy. Second, using multi-
threading eliminates the faults required by a process accessing a page that was
invalidated by another process within the same node.

Finally, Table III shows that for 16-way parallelism on four nodes, OpenMP�
thread creates 1.03�5 times fewer diffs than Open MP�original.

1526 HU ET AL.

3 Every other brand of Unix, including Linux, to which we have ported TreadMarks, uses data
structures that handle mprotect operations more efficiently.



FIG. 5. Normalized page fault count comparison between the OpenMP�original and
OpenMP�thread versions of the applications on four four-processor SMP nodes. Orig�1 and Orig�4
denote OpenMP�original with one and four processes on a node, and Thrd�1 and Thrd�4 denote
OpenMP�thread with one and four threads on a node, respectively. Orig�1 and Orig�4 are normalized
with respect to Thrd�1 and Thrd�4, respectively.

5.3.2. OpenMP versus MPI. A previous study comparing SDSM with message
passing [10] has shown that, in general, SDSM programs send more messages and
data than message passing versions due to the separation of synchronization and
data transfer, the need to handle access misses caused by the use of an invalidate
protocol, false sharing, and diff accumulation for migratory data. In our
experiments, the OpenMP�original programs sent between 5.3 and 2568 times more
messages than their MPI counterparts, for which only off-node messages are counted.
The difference was the least for FFT and the most for Barnes. The reason that
the MPI version of Barnes sends so many fewer messages is that it replicates the
particles and duplicates rebuilding the tree by every process. As a consequence,
within an iteration, the only communication by each process is a single broadcast
of all the particles modified by that process. Except for SOR, the amount of data
sent by OpenMP�original ranges from 1.27 times more for 3D-FFT to 93 times
more for TSP, compared with off-node data in the MPI programs. For SOR,
because a large percentage of the elements remains unchanged, and because
TreadMarks only communicates diffs, the OpenMP program sends 15.5 times less
data than the MPI code, which always communicates whole boundary rows. As has
been demonstrated by Dwarkadas et al. [6], many of the causes of the gap in data
and message count between SDSM and MPI can be overcome with additional
compiler support, which is currently not present in our translator.

Our results with the OpenMP�thread programs show that on SMP nodes using
multithreading in SDSM can significantly reduce the above gaps in the number of
messages and the amount of data transmitted between SDSM and MPI programs.
Compared to MPI, the OpenMP�thread programs send from 1.5 times more
messages, for MGS, to only 271 times more messages, for Barnes. Similarly,

1527OPENMP FOR NETWORKS OF SMPS



OpenMP�thread sends 2�28.6 times less data than MPI for two out of the seven
applications, about the same amount of data for the other three and only 1.6�21.2
times more data than MPI for the remaining two.

6. RELATED WORK

Previously, we developed support for OpenMP programming on networks of
single-processor workstations through a compiler that targets TreadMarks [11].
Our experiments showed that the OpenMP versions of the five selected applications
achieve performance within 170 of their handwritten TreadMarks counterparts,
suggesting that the compiler and the fork-join model incur very little overhead.

We are aware of five implementations of SDSM on networks of SMPs [7, 13, 14,
17, 18].

The SMP-Shasta system [14] extends the base Shasta system [15] to support
fine-grain shared memory across SMP nodes. The base Shasta implements eager
release consistency and a single-writer protocol with variable granularity by
instrumenting the executable to insert access control operations (in-line checks)
before shared-memory references. Novel techniques are developed to minimize the
overhead of in-line checks. Moving Shasta to clustered SMP nodes to use hard
shared memory within each node is complicated because the in-line checks are non-
atomic with respect to loads and stores of shared data. The solution in SMP-Shasta
uses explicit (downgrade) messages to synchronize processors within a SMP node
in addition to using internal locks for all protocol operations on shared data
blocks.

In their paper, Erlichson et al. [7] present a single-writer sequential consistency
implementation and identify network bandwidth as the bottleneck. Earlier work
(e.g., [5]) has demonstrated that the performance of such a system can be poor
when false sharing occurs. Finally, our implementation is a relatively portable user-
level implementation, while theirs is a kernel implementation specific to the Power
Challenge Irix kernel.

Cashmere-2L [18] uses Unix processes instead of POSIX threads. Therefore, it
must perform the same mprotect in each process's address space. The reason is
that mprotect only applies to the calling process's address space, even if the
underlying memory is shared between address spaces. The protocol implemented by
Cashmere-2L also takes advantage of the Memory Channel network interface
unique to the DEC Alpha machines.

Samanta et al. [13] present an implementation of a lazy, home-based, multiple-
writer protocol across SMP nodes. Similar to Cashmere-2L, their implementation
uses Unix processes instead of POSIX threads.

Similar to the multithreaded TreadMarks, the Brazos system [17] also uses mul-
tiple threads to take advantage of the hardware shared memory within each SMP
node on a cluster of SMP nodes running Windows NT. However, the integration
of the two-level consistency protocols (within and across SMP nodes) was not
explicitly addressed. Speight et al. [16] also implemented a subset of OpenMP
APIs on top of the Brazos system.

1528 HU ET AL.



7. CONCLUSIONS

In this paper, we present the first system that implements OpenMP on a network
of shared-memory multiprocessors. This system enables the programmer to rely on
a single, standard, shared-memory API for parallelization within a multiprocessor
and between multiprocessors. The system is implemented via a translator that con-
verts OpenMP directives to appropriate calls to a modified version of TreadMarks
that exploits the hardware shared memory within an SMP node using POSIX
threads.

Using the hardware shared memory within an SMP node can significantly reduce
data and messages transmitted by A. SDSM. In our experiments, the translated
multithreaded TreadMarks codes send from a low of 260 less data and 290 fewer
messages to a high of 9.1 times less data and 8.4 times fewer messages for our
collection of applications than the translated single-threaded TreadMarks counter-
parts. As a consequence, they achieve up to 300 better speedups than the latter for
all applications except 3D-FFT, for which the thread version is 80 slower than the
process version. The slowdown in 3D-FFT is due to AIX's inefficient implementa-
tion of page protection operations. Overall, the speedups of multithreaded Tread-
Marks codes on four four-way SMP SP2 nodes are within 7�300 of the MPI
versions.

REFERENCES

1. S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng, The SUIF compiler for scalable
parallel machines, in ``Proceedings of the 7th SIAM Conference on Parallel Processing for Scientific
Computing,'' Feb. 1995.

2. C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel,
TreadMarks: Shared memory computing on networks of workstations, IEEE Comput. 29 (Feb.
1996), 18�28.

3. D. Bailey, J. Barton, T. Lasinski, and H. Simon, ``The NAS parallel Benchmarks,'' Technical Report
TR RNR-91-002, NASA Ames, Aug. 1991.

4. D. R. Butenhof, ``Programming With POSIX Threads,'' Addison�Wesley, Reading, MA, 1997.

5. J. Carter, J. Bennett, and W. Zwaenepoel, Techniques for reducing consistency-related information
in distributed shared memory systems, ACM Trans. Comput. Systems 13, 3 (Aug. 1995), 205�243.

6. S. Dwarkadas, A. Cox, and W. Zwaenepoel, An integrated compile-time�run-time software dis-
tributed shared memory system, in ``Procedings of the 7th Symposium on Architectural Support for
Programming Languages and Operating Systems,'' pp. 186�197, Oct. 1996.

7. A. Erlichson, N. Nuckolls, G. Chesson, and J. Hennessy, SoftFLASH: Analyzing the performance of
clustered distributed virtual shared memory, in ``Proceedings of the 7th Symposium on Architectural
Support for Programming Languages and Operating Systems,'' Oct. 1996.

8. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy, Memory con-
sistency and event ordering in scalable shared-memory multiprocessors, in ``Proceedings of the 17th
Annual International Symposium on Computer Architecture,'' pp. 15�26, May 1990.

9. A. Itzkovitz and A. Schuster, Multiview and millipage��fine-grain sharing in page-based dsms, in
``Proceedings of the Third USENIX Symposium on Operating System Design and Implementation,''
Feb. 1999.

10. H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, Quantifying the performance differences
between PVM and TreadMarks, J. Parallel Distrib. Comput. 43, 2 (June 1997), 56�78.

1529OPENMP FOR NETWORKS OF SMPS



11. H. Lu, Y. C. Yu, and W. Zwaenepoel, OpenMp on networks of workstations, in ``Proceedings of
Supercomputing '98,'' Nov. 1998.

12. Message Passing Interface Forum, ``MPI: A Message-Passing Interface Standard,'' Version 1.0, May 1994.

13. R. Samanta, A. Bilas, L. Iftode, and J. Singh, Home-based SVM protocols for SMP clusters: design
and performance, in ``Proceedings of the Fourth International Symposium on High-Performance
Computer Architecture,'' Feb. 1998.

14. D. Scales, K. Gharachorloo, and A. Aggarwal, Fine-grain software distributed shared memory
on SMP clusters, in ``Proceedings of the Fourth International Symposum on High-Performance
Computer Architecture,'' pp. 125�136, Feb. 1998.

15. D. Scales, K. Gharachorloo, and C. Thekkath, Shasta: A low overhead software-only approach for
supporting fine-grain shared memory, in ``Proceedings of the 7th Symposium on Architectural
Support for Programming Languages and Operating Systems,'' Oct. 1996.

16. W. Speight, H. Abdel-Shafi, and J. Bennett, A integrated shared-memory�message passing api for
cluster-based multicomputing, in ``Proceedings of the 2nd International Conference on Parallel and
Distributed Computing and Networks (PDCN),'' Dec. 1998.

17. W. Speight and J. Bennett, Brazos: A third generation DSM system, in ``Proceedings of the 1997
USENIX Windows�NT Workshop,'' Aug. 1997.

18. R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and
M. Scott, Cashmere-2L: Software coherent shared memory on a dlustered remote write network, in
``Proceedings of the 16th ACM Symposium on Operating Systems Principles,'' pp. 170�183, Oct. 1997.

19. The OpenMP Forum, ``OpenMP Fortran Application Program Interface,'' Version 1.0. Available at
http:��www.openmp.org, (Oct. 1997).

20. The OpenMP Forum, ``OpenMP C and C++ Application Program Interface,'' Version 1.0.
Available at http:��www.openmp.org, (Oct. 1998).

21. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 programs: characteriza-
tion and methodological considerations, in ``Proceedings of the 22nd Annual International
Symposium on Computer Architecture,'' pp. 24�36, June 1995.

Y. CHARLIE HU received the B.S. from the University of Science and Technology of China in 1989,
the M.S. from Yale University in 1992, and the Ph.D. from Harvard University in 1997, all in computer
science. He is currently a research scientist at Rice University. His research interests include parallel and
distributed systems, high performance computing, large scale N-body simulations, and performance
modeling and evaluation. Dr. Hu is a member of ACM, IEEE, and SIAM.

HONGHUI LU received the B.S. from Tsinghua University, China, in 1992, and the M.S. from Rice
University in 1995. She is currently a computer engineering Ph.D. student under the direction of Pro-
fessor Willy Zwaenepoel. Her research interests include parallel and distributed systems, including both
the compiler and the runtime system.

ALAN COX received the B.S. in applied mathematics from Carnegie Mellon University, Pittsburgh,
PA, in 1986 and the M.S. and Ph.D. in computer science from the University of Rochester, Rochester,
NY, in 1988 and 1992, respectively. He is an Associate Professor of Computer Science at Rice Univer-
sity, Houston, TX. His research interests include parallel processing, computer architecture, distributed
systems, concurrent programming, and performance evaluation. Dr. Cox received the NSF Young
investigator (NYI) Award in 1994 and a Sloan Research Fellowship in 1998.

WILLY ZWAENEPOEL received the B.S. from the University of Gent, Belgium, in 1979, and the
M.S. and Ph.D. from Stanford University in 1980 and 1984. Since 1984, he has been on the faculty at
Rice University. His research interests are in distributed operating systems and in parallel computation.
While at Stanford, he worked on the first version of the V kernel, including work on group communica-
tion and remote file access performance. At Rice, he has worked on fault tolerance, protocol perfor-
mance, optimistic computations, distributed shared memory, nonvolatile memory, and system support
for scalable network servers.

1530 HU ET AL.


	1. INTRODUCTION 
	2. THE OPENMP API 
	3. TREATMARKS 
	4. THE OPENMP TRANSLATOR 
	5. PERFORMANCE 
	TABLE I 
	FIG. 1 
	FIG. 2 
	FIG. 3 
	TABLE II 
	FIG. 4 
	TABLE III 
	TABLE IV 
	FIG. 5 

	6. RELATED WORK 
	7. CONCLUSIONS 
	REFERENCES 

