Under revision for ACM Trans. on Computer Systems. An earlier version appearsin Proceedingof LCR2000: the 5th Workshop

on Languages,Compilers, and Run-time Systemsfor ScalableComputers.

Run-Time Support for Distrib uted Sharing in Typed Languages

Y. CharlieHu, Weimin Yu, Alan Cox, DanWallachandWilly Zwaenepoél

Departmenbf ComputerScience
Rice University
Houston,Texas77005
{ychu,weimin, alc, dwallach,willy } @cs.rice.edu

Key words: sharedmemory DSM, typedprogramminglanguages

Abstract

We presenta new run-time systemfor typed program-
minglanguagesthatsupportsobjectsharingin a distributed
system. The key insight in this systemis that the ability
to distinguishpointers from data at run-time enableseffi-
cientandtranspaentsharingof datawith bothfine-grained
and coarse-gmined accesspatterns. In contrast, corven-
tional distributed shaied memory(DSM) systemghat sup-
port sharing of an untypedmemoryregion are limited to
providing only onegranularity with goodperformance

Thisnew run-timesystemPOSA providesa shaed ob-
ject spaceabstraction rather than a shaied addressspace
abstaction. Three key aspectsof the designare: First,
DOSA usestype information, in particular, the ability to
unambiguouslyecanizerefeencesto male fine-grained
sharing efficient by supportingobject granularity coher
ence Second,DOSA aggregatesthe communicationof
objects, making coarse-gmained sharing efficient. Third,
DOSAusesa globally uniqgue“handle” ratherthana vir-
tual addressto namean object, enablingead madineto
allocatestorage justfor theobjectsthatit accessesmprov-
ing spatiallocality.

We compae DOSAto TreadMarksa corventionalDSM
systemthat is efficient at handling coarse-gained shar
ing. Our performanceavaluationsubstantiateshe follow-
ing claims:

1. The performanceof fine-grained applicationsis con-
siderably (up to 98% for Barnes-Hutand 62% for
Water-Spatial)betterthanin TreadMarks.

2. Theperformanceof garbage-collectedapplicationsis
consideably (up to 65%)betterthanin TreadMarks.

3. The performanceof coarse-giained applicationsis
nearly as goodasin TreadMarks(within 6%). Since
the performanceof sud applicationsis alreadygood
in TreadMarkswe considerthis an acceptableperfor-
mancepenalty

1 Intr oduction

This paperaddressesun-time supportfor sharingob-
jectsin atypedlanguagebetweenthe differentcomputers
within a cluster Typing mustbe strongenoughthatit is
possibleto determineunambiguouslywhethera memory
location containsan object referenceor not. Many mod-
ern languagedall underthis cateyory, including Java and
Modula-3. Direct accesshrougha referenceo objectdata
is supported,unlike Java/RMI or Orca[2], whereremote
objectaccessds restrictedto methodinvocation. Further
more, in languageswith suitable multithreadingsupport,
suchas Java, distributed executionis transparentno nen
API isintroducedor distributedsharing.Thistranspareng
distinguisheshis work from mary earlierdistributedobject
sharingsystemg2, 6, 11, 9].

The key insightin this paperis that the ability to dis-
tinguish pointers from data at run-time enablesefiicient
andtranspaentsharingof datawith bothfine-grainedand
coarse-gained accesspatterns In contrast,corventional
distributed sharedmemory (DSM) systemsthat support
sharingof an untypedmemoryregion are limited to pro-
viding only one granularity with good performance. In-
deed, DSM systemshave beendivided into those offer-
ing supportfor coarse-grainedharingor for fine-grained

Implementation
Handle I B

Table

Heap

Figure 1. Objects with handles.

sharing. Coarse-grairsharingsystemsare typically page-
basedandusethevirtual memoryhardwarefor accesand
modificationdetection. Although relaxed memorymodels
andmultiple-writerprotocolsrelieve theimpactof thelarge
pagesize,fine-grainsharingandfalse-sharingemainprob-
lematic. Throughouthis paperwe will useTreadMarkq1]
astherepresentatie of suchsystemsbut theresultsapplyto
similar systems.Fine-grainsharingsystemgypically aug-
mentthe codewith instructionsto detectreadsandwrites,
freeingthemfrom the large size of the consisteng unit in
virtual memory-basedystemsput introducingperaccess
overheadthat reducesperformancefor coarse-graine@p-
plications.In addition,thesesystemslonotbenefitfrom the
implicit aggregation effect presentin the page-baseadys-
tems.Fine-grainedsystemdypically requirea messag@er
object,while page-basedystemsdringin all datain apage
atonce,avoiding additionalmessage# the applicationac-
cesse®therobjectsin the samepage.Again, in this paper
we will usea single system,Shastq10], to representhis
classof systemsput the discussiomappliesto similar sys-
tems.

Considera (single-processolimplementatiorof sucha
strongly-typedanguageusingahandletable (seeFigurel).
Eachobjectin thelanguagés uniquelyidentifiedby anob-
ject identifier (OID) that also senes as an index into the
handletablefor thatobject.All referenceso anobjectrefer
in factto its entryin the handletable,which in turn points
to theactualobject.In suchanimplementationit is easyto
relocateobjectsin memory It sufficesto changethe corre-
spondingentryin the handletable. No otherchangeseed
to be made,sinceall referencesareindirectedthroughthe
handletable.

Extendingthis simpleobsenationallows anefficientdis-
tributed implementationof theselanguages. Specifically
(seeFigure2), ahandletablerepresentingll sharedbjects
is presenbn eachprocessarA globally uniqueOID identi-
fieseachobject,andsenesasanentryin the handletables.
As before,eachhandletableentry containsa pointerto the
locationin memorywherethe object resideson that pro-
cessor The consisteng protocolcanthenbe implemented
solelyin termsof OIDs, becausdhesearethe only refer

Logical

Processor 2

Processor 1

Figure 2. Shared objects identified by unique
OIDs.

encesthat appearin ary of the objects. Furthermorethe
sameobject may be allocatedat differentvirtual memory
addresseen differentprocessorslt sufficesfor the handle
table entry on eachprocessoto point to the properloca-
tion. In otherwords, althoughthe programmerretainsthe
abstractiorof a singleobjectspaceijt is nolongerthe case
thatall of memoryis virtually shared,andthat all objects
have to resideat the samevirtual addressat all processors,
asis thecasein both TreadMarksandShasta.

In orderto provide goodperformancédor coarse-grained
applicationsye continueto usethevirtual memorysystem
for accesdletection,therebyavoiding the overheadof in-
strumentation. Fine-grainaccessusing VM techniquess
then provided as follows. Although only a single physi-
cal copy of eachobjectexists on a single processqgreach
object can be accessedhroughthree VM mappings. All
three point to the samephysicallocationin memory but
with threedifferentprotectionattributes:invalid, read-only
or read-write. A changein accessnodeis accomplished
by switching betweenthe different mappingsfor that ob-
jectonly. The mappingsfor the otherobjectsin the same
pageremainunafected. Considerthe examplein Figure3.
A pagecontainsfour objects,oneof which is written on a
differentprocessarThis modificationis communicatedbe-
tweenprocessorshroughthe consisteng protocol,andre-
sultsin theinvalid mappingbeingsetfor thisobject. Access
to otherobjectscancontinue,unperturbedy this change,
thuseliminatingfalsesharingbetweernobjectson the same
page.

In additionto avoiding false sharing,this organization
hasnumerousotherbenefits. First, on a particularproces-
sor, memory needsto be allocatedonly for thoseobjects
that are accessean that processarresultingin a smaller
memoryfootprint andbettercachelocality. N-body simu-
lationsillustrate this benefit. Eachprocessotypically ac-
cessedts own bodies,anda smallnumberof “nearbybod-
ieson otherprocessorsWith globalallocationof memory
the remotebodiesarescatteredn memory causinglots of

Handle
Table AL 1Bl |19 |D

VM pages ‘ ‘ ‘

Read-write Read-only Invalid
Mapping Mapping Mapping

e —
Object D N

Al |B|l |C| |D

Invalidate

L)L

Read-write Read-only Invalid
Mapping Mapping Mapping

Figure 3. Access detection using the handle pointer s.

missesmessagesand— in the caseof TreadMarks- false
sharing. In contrast,in DOSA, only the local bodiesand
the locally accessedemotebodiesare allocatedin local
memory As a result,therearefar fewer missesand mes-
sagesandfalsesharingis eliminatedthroughtheperobject
mappings.Moreover, objectscanbelocally re-arrangedn
memory for instanceto improve cachelocality or during
garbagecollection, without affecting the otherprocessors.
Finally, the aggreyationeffect of TreadMarkscanbe main-
tainedaswell. Whena faultis detectedon an objectin a
particularpage,all invalidatedobjectsin the samepageas
the faulted object are broughtup-to-date. While this ap-
proachpotentially re-introducedalse sharing,its harmful
effectsaremuchsmallerthanin a corventionalpage-based
systembecauseve arefreeto co-locateor notto co-locate
certainobjectsn apageonaperprocessobasis.Returning
to the N-body application,the location of bodiestypically
changesslowly over time, anda given processolccesses
mary of the samebodiesfrom one iteration to the next.
Thus, bringing in all bodiesin the samepageon the first
accessnissto ary oneof themis beneficial.

While there are mary apparentperformancebenefits,
therearesomeohvious questionsaboutthe performancef
sucha systemaswell. For instance the extra indirection
is not free, and consisteng information nowv needsto be
communicategerobjectratherthan perpage,potentially
leadingto a large increasein its size. To evaluatethese
tradeofs, we have implementedhe systemoutlinedabove,
andcomparedts performanceo that of TreadMarks.We
have derived our implementatiorfrom the samecodebase
asTreadMarksavoiding, to thelargestextentpossible per
formancdlifferenceslueto unrelateccodedifferencesOur
performancevaluationsubstantiatethe following claims:

1. The performanceof fine-grainedapplicationsis con-
siderablybetter(up to 98% for Barnes-Hutand 62%
for WaterSpatial)thanin TreadMarks.

2. The performanceof garbage-collectedpplicationsis
considerably{up to 65%) betterthanin TreadMarks.

3. The performanceof coarse-grainedapplicationsis
nearlyasgoodasin TreadMarks(within 6%). Since
the performanceof suchapplicationsis alreadygood

in TreadMarkswe considerthis anacceptablgerfor
mancepenalty

Unfortunately thereis no similarly availableimplementa-
tion of fine-grainedsharedmemory so an explicit compar
ison with sucha systemcould not be made,but we offer
some speculationshasedon publishedresultscomparing
Cashmerg7], acoarse-grainedystemto Shasta.

The outline of the restof this paperis asfollows. Sec-
tion 2: APl and memorymodel. Section3: Implemen-
tation and comparisonwith corventional systems. Sec-
tion 4: Compileroptimizationsfor coarse-grainedpplica-
tions. Section5: Experimentalmethodology Section6:
Environment. Section7: Applications. Section8: Over
all resultsfor fine-grained,garbage-collectecand coarse-
grainedapplications. Section9: Breakdavn of optimiza-
tions. Section10: Relatedwork. Section11: Conclusions.

2 APl and Memory Model
2.1 API

Thegeneraimodelis a sharedspaceof objects,in which
eachreferenceto an objectis typed. The programmeiis
responsiblgor creatingand destrging threadsof control,
andfor the necessargynchronizatiorio insureorderly ac-
cesshby thesethreadgo the objectspace.Varioussynchro-
nization mechanismamay be used, such as semaphores,
locks, barriers,monitors,etc. No specialAPI is requiredin
languagesvith suitabletyping andmultithreadingsupport,
suchasJava or Modula-3. Unlike Orca,we do allow refer
encedo beusedfor accessingbjects.We do notrequirea
methodinvocationfor eachaccess.

An objectis the unit of sharing.In otherwords,anindi-
vidual objectmustnot be concurrentlywritten by different
threads,evenif thosethreadswrite differentdataitemsin
the object. If two threadswrite to the sameobject, they
shouldsynchronizebetweertheirwrites. Arraysaretreated
ascollectionsof objects andthereforetheirelementsanbe
written concurrently Of course for correctnessthe differ-
entprocessemustwrite to disjointelementsn thearrays.

The single-writernatureof individual objectsis not in-
herentto thedesignof our systemput we have foundthatit

correspondso commonusageandis thereforenot restric-
tive. As will be seenin Section3, it allows usto usean
efficient single-writerprotocolfor individual objects.

2.2 Memory Model: ReleaseConsistency

The objectspaceis releaseconsistent. Releaseconsis-
teng/ (RC) is arelaxedmemoryconsisteng model.In RC,
ordinaryaccesse® sharedlataaredistinguishedrom syn-
chronizationaccessesyith the latter category divided into
acquiresandreleasesAn acquireroughlycorrespond$o a
requesfor accesgo data,suchasalock acquire,a wait at
a conditionvariable,or a barrierdeparture.A releasecor-
respondgo the grantingof sucha request;suchasa lock
release,a signal on a condition variable, or a barrier ar
rival. RC requiresordinary sharedmemoryupdatesby a
processop to becomevisible to anotherprocessoy only
when a subsequenteleaseby p becomesvisible to ¢ via
somechain of synchronizationevents. Parallel programs
thatare properly synchronizedi.e., have a release-acquire
pair betweerconflictingaccesse® shareddata)behae as
expectedon the cornventionalsequentiallyconsistenshared
memorymodel.

3 Implementation

We focuson the consisteng maintenancef individual
objects.Synchronizations implementedasin TreadMarks.

3.1 ConsistencyProtocol

DOSA usesa single-writer lazy invalidate protocol to
maintainreleaseconsisteng. Thelazyimplementatiorde-
lays the propagationof consisteng information until the
time of anacquire.At thattime, thereleaseinformstheac-
quiring processofvhich objectshave beenmodified. This
informationis carriedin theform of write notices.

The protocolmaintainsa vectortimestampon eachpro-
cessortheith elementof which recordshe highestinterval
numberof processot that hasbeenseenlocally. An in-
terval is anepochbetweertwo consecutre synchronization
operations. The interval numberis simply a countof the
numberof intervals on a processar Eachwrite notice has
anassociategrocessordentifierandvectortimestampin-
dicatingwhereandwhenthe modificationof the objectoc-
curred. To avoid repeatedsendingof write notices,a pro-
cessorsendsits vector timestampon an acquire,and the
respondingprocessoisendsonly thosewrite noticeswith
a vectortimestampbetweenhe recevved vectortimestamp
andits own currentvectortimestamp.

Arrival of awrite noticefor anobjectcauseshe acquir
ing processoto invalidateits local copy, andto setthelast

writer field in the handletableentryto the processorden-
tifier in the write notice. A processoincursa pagefaulton
thefirst accesgo aninvalidatedobject,andobtainsan up-
to-dateversionof that objectfrom the processoindicated
in thelastwriter field.

In DOSA, the write noticesarein termsof objects. As
aconsequencdor veryfine-grainedapplicationsthenum-
ber of write noticescanpotentiallybe muchlargerthanin
a page-basedSM. To this end, DOSA emplgys a novel
compressiortechniqueto reducethe numberof write no-
ticestransmittedduring synchronizations.

Eachtime a processocreatesa new intenal, it traverses
in reverseorderold intervalsthatit hascreatedbeforeand
looks for the onethat consistsof similar write notices. If
sucha “match” is found, the differencebetweenthe new
interval andthe old interval are presumablymuch smaller
thanwrite noticesthemseles. The processocanthencre-
ateandlatertransmitwhenrequesteanly thewrite notices
that are differentfrom thoseof the matchedold interval,
andthusreducethe consisteng data.Sinceintervalsareal-
waysrecevedandincorporatedn theforward order when
a processorecevessuchan interval containingdifference
of write notices,it is guaranteedo have alreadyreceved
the old interval basedon which the diff of the new interval
is made. It cantheneasilyreconstructhe write noticesof
thenew interval.

3.2 Data Structures

A handletableis presenbn eachprocessarThe handle
tableis indexedby aglobally uniqueobjectidentifier(OID).
Eachentry in the handletable containsthe corresponding
objectsaddressn local virtual memory This addressnay
be differentfrom processoto processarTheobjectslocal
state,i.e., invalid, read-only or read-write,is alsoreflected
in the handletable entry throughdifferentmappingsof the
objects local virtual addresswith the correspondingro-
tectionattributes(seeSection3.4). The handletableentry
containsalastwriter field, indicatingfrom which processor
to fetchanup-to-datecopy of the objecton anaccessniss.
Finally, a handletableentry containsa field linking it with
otherobjectsallocatedn the samepage.

A few auxiliary datastructuresare maintainedaswell.
Aninverseobjecttable, implementedisahashtable,is used
by the pagefault handlerto translatea faulting addresdo
anOID. Eachprocessomaintainsa perpagelinked list of
objectsallocatedn thatpage.Thislist is usedto implement
communicatioraggreation(seeSection3.6). Finally, each
processomaintainsits vector timestampand an efficient
datastructurefor sendingwrite noticeswhenrespondingo
anacquire.

As apracticalmatter OIDs arecurrentlyassignedasthe
virtual addressesf the entry in the handletable. There-

X Y z

i
S5 S S 5SS
Figure 4. Multivie w: one vpage for each ob-
ject.

I

fore,thehandletablemustresideatthesamevirtual address
on all processorsShouldthis ever becomea restriction, it
couldeasilyberemoved.

Objectsareinstantiatecdy anewoperatioror theequiv-
alent.An OID is generatedandmemoryis allocatedon the
local processoto holdtheobject.In orderto minimizesyn-
chronizatioroverheador uniqueOID generationeachpro-
cessoiis allocateda large chunkof OIDs at once,andthis
chunkallocationis protectediy agloballock. Eachproces-
sorthenindependenthgenerate®©IDs from its chunk.

3.3 Object StorageAllocation

The ability to allocateobjectsat differentaddressesn
differentprocessorsuggestshatwe candelaythe storage
allocationfor an objecton a processowuntil that objectis
first accessedby that processar We call this optimization
lazy objectstorage allocation.

3.4 Switching Protection

DOSA relieson hardwarepageprotectionmechanisnto
detectaccessem invalid objectsandwrite accesset read-
only objects. We createthreenon-overlappingvirtual ad-
dressregionsthat mapto the samephysicalmemory from
wheresharedobjectsare allocated. An objectthuscanbe
viewed throughary of the three correspondingaddresses
from the three mappings. DOSA assignsthe accessper
missiongo thethreemappinggo beinvalid, read-onlyand
read-write respectiely. During programexecution,it reg-
ulatesaccesseto a sharedobjectby adjustingthe objects
handleto pointto oneof thethreemappings.In additionto
providing perobjectaccessontrol, this approachhasthe
substantiahdditionalbenefitthat no kernel-basednemory
protectionoperationarenecessargftertheinitialization of
all mappings.

As apracticalmatter thethreemappingf sharednem-
ory region differ in two leading bits of their addresses.
Therefore changingprotectionis a simplebit maskingop-
eration.

This approachs superficiallysimilar to the MultiView
approachusedin Millipede [8], but in factit is funda-
mentally different. In MultiView a physicalpagemay be
mappedat multiple addresse the virtual addresspace,
asin DOSA, but the similarity endsthere. In MultiView,
eachobjectresidesn its own vpage, which is the sizeof a
VM page.Differentvpagesare mappedo the samephysi-
calmemorypage but theobjectsareoffsetwithin thevpage
suchthat they do not overlapin the underlying physical
page(seeFigure4). Differentprotectionattributesmay be
setondifferentvpagestherebyachiezing thesameeffectas
DOSA, namelyperobjectaccessaandwrite detection.The
MultiView methodrequiresone virtual memory mapping
per object, while the DOSA methodrequiresonly three
mappingsper page,resultingin considerablylessaddress
spaceconsumptiorand pressureon the TLB. Also, DOSA
doesnotrequireary changesn the protectionattributesof
themappingsafterinitialization, while MultiView does.

3.5 Modification Detection and Write Aggrega-
tion

On a write fault, we make a copy (a twin) of the page
onwhichthefaultoccurredandwe make all read-onlyob-
jectsin the pageread-write.At a (release)yynchronization
point, we comparethe modified pagewith the twin to de-
terminewhich objectswere changedandhencefor which
objectswrite noticesneedto be generatetl After the (re-
lease)synchronizationthe twin is deletedandthe pageis
maderead-onlyagain.

This approachhas better performancethan the more
straightforvard approachwhereonly oneobjectat a time
is maderead-write. The latter methodgenerates substan-
tially largernumberof write faults.If thereis locality to the
write accesgattern,the costof thesewrite faultsexceeds
the costof makingthetwin andperformingthe comparison
(seeSection9.3). We refer to this optimizationas write-
aggreation.

3.6 AccessMiss Handling and Read Aggregation

Whena processofaultson a particularobject,if theob-
jectis smallerthana page,it usesthe list of objectsin the
samepage(seeSection3.2)to find all of theinvalid objects
residingin that page. It sendsout concurrentobjectfetch
messagefor all theseobjectsto the processorsecordedas
thelastwritersof theseobjects.

By doing so,we aggreyatethe requestdor all objectsin
the samepage. This approactperformsbetterthansimply

1The twin is usedherefor a differentpurposethanthe twin in Tread-
Marks. Hereit is simply usedto generatevrite notices.In the TreadMarks
multiple-writer protocolit is usedto generatea diff, an encodingof the
changego the page. Sincewe are usinga single-writerprotocol, thereis
no needfor diffs.

fetchingonefaultedobjectat atime. Therearetwo funda-
mentalreasongor this phenomenon.

1. If thereis somelocality in the objectsaccessedy a
processarthenit is likely thatthe objectsallocatedin
thesamepagearegoingto beaccessedloselytogether
in time. Here,again thelocal objectstorageallocation
works to our advantage. It is true that someunnec-
essarydatamay be fetched, but the effect of that is
minimal for thefollowing reason.

2. With read aggreyation as describedabove, the mes-
sagedo fetch the differentobjectsgo out in parallel,
and thereforetheir latenciesand the latenciesof the
repliesarelargely overlapped.

If anobijectis largerthana page we fall backto a page-
basedapproach.In otherwords,only the pagethatis nec-
essanyto satisfythefaultis fetched.

3.7 Summary

We summarizewith a discussionof the salientdiffer-
encesbetweenDOSA on one hand,and TreadMarksand
Shastan theotherhand.

DOSA shareswith TreadMarksits use of invalidate-
basedazyreleaseonsisteny, its useof the VM systentor
accesandwrite detection andits page-basedggreation.
It differsin thatit allocatesstoragefor shareddatalocally,
ratherthanglobally, it performsperobjectratherthanper
pageaccessandwrite detectionandit usesa single-writer
protocol per object ratherthan a multiple-writer protocol
perpage.

Shastausesan invalidate-basedagerreleaseconsis-
teng. More importantly it differs from DOSA in that it
usesglobal ratherthan local memory allocation. It uses
instrumentatiorratherthanthe VM systemfor accessand
write detection.It doesaccessandwrite detectionon a per
“cacheline” basis,wherethe cacheline is implementedn
softwareandcanbevariedfrom programto program.There
is no attemptto aggreyatedata.

4 Compiler Optimizations

The extra indirectioncreatesa potentialproblemfor ap-
plicationsthatacces$argearrayspecausé maycausesig-
nificantoverheadwithout ary gainfrom bettersupportfor
fine-grainedsharing. This problemcan be addressedis-
ing type-basedliasanalysisandloop invariantanalysisto
eliminatemary repeatedndirections.

Consider a C programwith a two-dimensionalarray
of scalars,suchas f | oat, thatis implementedin the
samefashionas a two-dimensionallava array of scalars,
i.e., an array of pointersto an array of a scalar type

(“scal ar type **a;). Assumehisprogramperforms
aregulartraversalof thearraywith anestedor loop.

for i
for j

=ali][jl;

In general,a C compiler cannotfurther optimize this
loop nest,becausét cannotprove thata anda[i] donot
changeduringtheloop execution.a, a[i] anda[i][]]
are,however, of differenttypes,andthereforethe compiler
for atypedlanguagecaneasilydeterminghata anda] i]
do notchangeandtransformtheloop accordinglyto

for i
p=alil;
for j
=pljil;

resultingin a significantspeedup.In the DOSA program
theoriginal programtakestheform of

for i
for j
= a->handl e[i]->handl e[j];

which, in atypedlanguagecanbe similarly transformedo

for i
p = a->handle[i];
for j
= p->handl e[j];

While offering muchimprovement,this transformation
still leavesthe DOSA programat a disadantagecompared
to the optimized TreadMarksprogram,becauseof the re-
maining pointer dereferencingn the innerloop. Obsene
also that the following transformationof the DOSA pro-
gramis legal but not profitable:

for i
p = a->handl e[i]->handl e;
for j
=plil;

The problemwith this transformationoccurswhen a-
>handl e[i] - >handl e hasbeeninvalidatedasa result
of a previous synchronization. Before the j-loop, p con-
tainsan addressn the invalid region, which causes page
fault on the first iteration of thej-loop. The DSM runtime
changes- >handl e[i] - >handl e toits locationin the
read-writeregion, but this changds notreflectedn p. Asa
result,thej-loop pagefaultson every iteration.

We solwe this problemby touchinga- >handl e[i] -
>handl e[0] beforeassigningt to p. In otherwords,

for i
touch(a->handl e[i]->handl e[0]);
p = a->handl e[i]->handl e;
for j
=plil;

Touching a->handl e[i]->handl e[0] outside
the j-loop causesthe fault to occur there, and a-
>handl e[i] - >handI e to be changedo the read-write
location. The sameoptimizationcanbe appliedto the outer
loop aswell.

Theseoptimizationsare dependenbn the lazy imple-
mentationof releaseconsisteng. Invalidationscan only
arrive at synchronizationpoints, never asynchronously
thus the cachedreferencescannot be invalidated in a
synchronization-freéop.

5 Evaluation Methodology

Ourperformancevaluationseekdo substantiat¢éhefol-
lowing claims:

1. The performanceof fine-grainedapplicationsis con-
siderablybetterthanin TreadMarks.

2. The performanceof garbage-collectedpplicationsis
considerabhbetterthanin TreadMarks.

3. The performanceof coarse-grainedapplicationsis
nearly as good asin TreadMarks. Sincethe perfor
manceof suchapplicationsis alreadygoodin Tread-
Marks, we considerthis an acceptableperformance
penalty

A difficulty arisesn makingthe comparisorwith Tread-
Marks. Ideally, we would like to make thesecomparisons
by simply taking a numberof applicationsin a typedlan-
guage,and running them, on one hand, on TreadMarks,
simply usingsharednemoryasanuntypedregion of mem-
ory, and,on the otherhand,runningthemon top of DOSA,
usingasharedbjectspace.

For a variety of reasonsthe mostappealingprogram-
ming languagdor this purposds Java. Unfortunatelycom-
monly availableimplementationsf Javaareinterpretecand
run on slow Java virtual machines.This would renderour
experimentdargely meaninglessbecauseénefficienciesin
the Java implementatiorand virtual machinewould dwarf
differencedetweerilreadMarksandDOSA. Perhapsnore
importantly we expectefficient compiledversionsof Java
to becomeavailable soon,andwe would expectthatthose
be usedin preferenceover the currentimplementations,
quickly obsoletingour results. Finally, the performanceof
theselava applicationsvould bemuchinferior to published
resultsfor corventionalprogramminganguages.

We have thereforechosento carry out the following ex-
perimentsFor comparisond and3, we have takenexisting
C applicationsandwe have re-writtenthemto follow the
modelof a handle-based@nplementation.In otherwords,
a handletableis introduced.andall pointersareindirected
throughthe handletable. This approachrepresentshe re-
sultsthat could be achievzed by a languageor compilation
ervironmentthatis compatiblewith ourapproactor main-
taining consisteny, but otherwiseexhibits no compilation
or executiondifferenceswith the corventionalTreadMarks
executionervironment. In otherwords, theseexperiments
isolatethe benefitsand the dravbacksof our consisteng
maintenancenethodsrom otheraspect®f thecompilation
andexecutionprocess.t alsoallows usto assesshe over-
headof the extra indirectionon single-processaoexecution
times. The compiler optimizationsdiscussedn Section4
have beenimplementedby handin both the TreadMarks
andthe DOSA programs.We reportresultswith andwith-
outtheseoptimizationspresent.

For comparison2, we have implementeda distributed
garbagecollector on both TreadMarksand DOSA that is
representatie of the state-of-the-art. Distributed garbage
collectorsare naturally divided into two parts: the inter-
processoralgorithm, which tracks cross-processorefer
ences;and the intra-processoalgorithm, which performs
the traversal on each processorand reclaimsthe unused
memory Our distributedgarbagecollectorusesa weighted
refeencecountingalgorithmfor theinter-processopart[3,
13, 14] anda generationalcopying algorithmfor theintra-
processopart. To implementweightedreferencecounting
transparentlywe checkincoming and outgoingmessages
for referencesThesereferencesarerecordedn animport
tableandanexporttable,respectiely.

6 Experimental Environment

Our experimentalplatform is a switched, full-duplex
100Mbps Ethernetnetwork of thirty-two 300 MHz Pen-
tium ll-basedcomputers.Eachcomputerhasa 512K byte
secondarycacheand 256M bytesof memory All of the
computerswvere running FreeBSD2.2.6 and communicat-
ing throughUDP soclets. On this platform, the round-trip
lateng for a1-bytemessagés 126 microsecondsThetime
to acquirealock variesfrom 178to 272microsecondsThe
timefor an32-processoabparrieris 1,333microsecondsThe
time to obtaina diff variesfrom 313to 1,544microseconds,
dependingon the size of the diff. Thetime to obtaina full
pageis 1,308microseconds.

7 Applications

Ourchoiceof applicationdollowsimmediatelyfrom the
goals of our performanceevaluation. First, we use two

Application SmallProblemSize Time (sec.) Large ProblemSize Time (sec.)
Original | Handle Original | Handle
Red-BlackSOR 3070x204720 steps 21.13| 21.12 || 4094x204720steps 27.57| 28.05
WaterN-Squared 1728mols, 2 steps 7159 | 73.83 2744mols,2 steps| 190.63| 193.50
Barnes-Hut 32K bodies,3 steps 58.68 60.84 || 131Kbodies3steps| 270.34| 284.43
WaterSpatial 4K mols, 9 steps 89.63| 89.80 32Kmols,2 steps| 158.57| 160.39

Table 1. Applications,

fine-grainedapplicationsfor which we hopeto seesignif-
icant benefitsover a page-basedystem. Theseapplica-
tionsareBarnes-HuandWaterSpatialfrom the SPLASH-
2 [15] benchmarksuite. Barnes-Hutis an N-body simula-
tion, andWaterSpatialis a moleculardynamicssimulation
optimizedfor spatiallocality.

Second,we usetwo coarse-graine@pplicationsto as-
sessthe potential performanceloss in such applications,
comparedo a systemthat is gearedtowardssuchcoarse-
grained applications. Thesetwo applicationsare SOR
and WaterN-Squared. SOR performsred-black succes-
sive overrelaxationon a 2-D grid, and WaterN-Squared
is amoleculardynamicssimulationfrom the SPLASH[12]
benchmarlsuite.

For eachof theseapplications,Table1 lists the problem
sizeandthe sequentiabxecutiontimes. The sequentiakx-
ecutiontimes were obtainedby removing all TreadMarks
or DOSA calls from the applicationsandfor DOSA using
the compile-timeoptimizationsdescribedn Section4. The
optimizationswere appliedby hand. Thesetimings shav
thatthe overheadof the extra level of dereferencingn the
handle-basedersionsof theapplicationss nevermorethan
5.2%o0n oneprocessofor ary of thefour non-syntheti@ap-
plications. The sequentiabxecutiontimeswithout handles
wereusedasthebasisfor computingthe speedupseported
laterin the paper

Third, to exercisethe distributed garbagecollector we
usea modifiedversionof the OO7 object-orientedlatabase
benchmark[5]. This benchmarkis designedto match
thecharacteristicef mary CAD/CAM/CASE applications.
The OO7databaseontainsatreeof assemblybjectswith
leaves pointing to threecompositepartschosenrandomly
from among500 objects. Eachcompositepart containsa
graphof atomic partslinked by connectionobjects. Each
atomicparthas3 outgoingconnections.

Ordinarily, OO7 doesnot releasememory Thus,there
would be nothingfor a garbagecollectorto do. Our mod-
ified versionof OO7 createsgarbageby replacingrather
updating objectswhen the databasechanges. After the
new object, containingthe updateddata,is in placein the
databasethe old objectbecomesligible for collection.

The OO7 benchmarkdefinesseveral databaseraver-
sals[5]. For our experiments,we usea mixed sequence
of T1, T2a, and T2b traversals. T1 performsa depth-first

input data sets, and sequential execution time.

traversalof the entire compositepartgraph. T2aand T2b
areidenticalto T1 exceptthatT2amodifiestheroot atomic
partof thegraph,while T2b modifiesall theatomicparts.
Table? liststhe sequentiakxecutiontimesfor OO7run-
ning with the garbagecollectoron TreadMarksandDOSA.
It alsolists the time spentin the memoryallocator/garbage
collector DOSA incurs 2% overheadto the copying col-
lector becausef extra overheadn handlemanagementit
hasto updatethe handletable entry whenever an objectis
createddeleted,or moved. Overall, DOSA underperforms
TreadMarksby 3% dueto handledereferenceost.

Tree Tmk | DOSA
Overalltime (in sec.) 184.8| 190.8
Alloc andGCtime (in sec.)| 10.86| 11.04

Table 2. Statistics for TreadMarks and DOSA
on 1 processor for OO7 with garbage collec-
tion.

8 Overall Results
8.1 Fine-grained Applications

Figure5 shavs the speedugcomparisorbetweenTread-
Marks andDOSA for Barnes-Hutand WaterSpatialon 16
and 32 processorgor small andlarge problemsizes. Fig-
ure 6 shovs normalizedstatisticsfrom the execution of
theseapplicationson 32 processors$or both problemsizes.
Thedetailedstatisticsarelistedin Table3.

We derive the following conclusionsfrom this data.
First, from Table1, the overheadof the extra indirectionin
the sequentiatodefor theseapplicationss lessthan5.2%
for Barnes-Hutand 1.1% for WaterSpatial. Second even
for asmallnumberof processorghebenefitsof thehandle-
basedimplementatiorare larger thanthe costof the extra
indirection. For Barnes-Hutwith 32K and 128K bodies,
DOSA outperformsTreadMarksy 29% and52%, respec-
tively, on 16 processors.For WaterSpatial with 4K and
32K molecules,DOSA outperformsTreadMarksby 62%
and47%,respectiely, on 16 processorsThird, asthenum-
berof processormcreasesthebenefitsof thehandle-based

24

20

16

12

BH/ BH/ BH/
sm:16 sm:32 1g:16

BH/ WSpa/ Wspa/ WSpa/ WSpa/
19:32 sm:16 sm:32 Ig:16 1g:32

[TreadMarks Il DOSA

Figure 5. Speedup comparison between
TreadMarks and DOSA for fine-grained ap-
plications.

0.8

0.2 —
0 IA

BH/ BH/ BH/

Data

req

BH/

alloc

Msg

1a

WSpa/ WSpa/ WSpa/ WSpa/
Msg overlap Mem Data

overlap Mem
req alloc

‘ [] Treadmarks Il DOsA ‘

Figure 6. Statistics for TreadMarks and
DOSA on 32 processor s for fine-grained
applications with large data sizes, normal-

ized to TreadMarks measurements.

Application Barnes-Hut/sm Barnes-Hut/lg WaterSpatial/sm | WaterSpatial/lg
Tmk | DOSA Tmk DOSA Tmk | DOSA Tmk | DOSA
Time 18.07| 12.06 89.07 45.98 12.52 8.04 12.89 8.52
Data(MB) 315.3 82.6 1307 246 475.1| 262.6| 342.1| 166.8
Messages 2549648 | 307223 | 10994350| 1027932 617793 | 188687 | 330737 | 109560
Overlappedatarequests 108225| 98896 439463 | 341303 | 193692| 66937 | 202170| 41491
Objectmemoryalloc. (MB) 7.36 1.05 29.4 3.35 3.15 0.61 25.2 2.64

Table 3. Detailed statistics for TreadMarks and DOSA on 32 processor s for fine-grained applica-
tions, Barnes-Hut and Water-Spatial. In TreadMarks, a call to diff request whic h may involve parallel
messages to diff erent processor s is counted as one overlapped request.
request whic h may involve parallel messages to diff erent processor s to update other objects in the

same page is counted as one overlapped request.

In DOSA, a call to object

implementationgrow. For Barnes-Hutwith 128K bodies,
DOSA outperformsTreadMarksby 52% on 16 processors
and 98% on 32 processors. For WaterSpatial with 32K
molecules DOSA outperformsTreadMarksby 47% on 16
processorand51%on 32 processorskourth,if theamount
of falsesharingunderTreadMarksdecreasess the prob-
lemsizeincreasesasin WaterSpatial thenDOSAs advan-
tageover TreadMarksdecreaseslf, onthe otherhand,the
amountof falsesharingunderTreadMarksdoesnt change,
asin Barnes-HutthenDOSAs advantageover TreadMarks
is maintainedIn fact,for Barnes-Hutthe advantagegrows
dueto slower growth in the amountof communicatiorby
DOSA, resultingfrom improvedlocality dueto lazy object
allocation.

The reasondor DOSASs clear dominanceover Tread-
Marks canbe seenin Figure6. This figure shovs the num-
berof messageexchangedthe numberof overlappediata
requests’, the amountof datacommunicatedandthe av-
erageamountof shareddataallocatedon eachprocessar
Specifically we seea substantiateductionin theamountof
datasentfor DOSA,asaresultof thereductionin falseshar
ing. Furthermorethe numberof messagess reducedby a
factorof 11 for Barnes-Hut/lgand 3 for WaterSpatial/lg.
More importantly the numberof overlappeddatarequests
is reducedby afactorof 1.3 for Barnes-Hut/Igand 4.9 for
WaterSpatial/lg. Finally, the benefitsof lazy objectalloca-
tion for theseapplicationsarequite clear:the memoryfoot-
print of DOSA is considerablysmallerthanthat of Tread-
Marks.

8.2 GarbageCollected Applications

Figures7 and8 shaw the executionstatisticson 16 pro-
cessorgor theOO7benchmarkunningon TreadMarksand
DOSA usingthe generationalcopying collector The de-
tailed statisticsarelistedin Table4. We do not presentre-
sults on 32 processordecausehe total datasize, which
increasedinearly with thenumberof processorss solarge
thatit causegpagingon 32 processors.

On 16 processorsQO7 on DOSA outperformsOO7on
TreadMarksby almost65%. Figure7 shows thatthe time
spentin the memorymanagementodeperformingalloca-
tion and garbagecollectionis almostthe samefor Tread-
Marks and DOSA. The effects of the interactionbetween
thegarbageollectorandDOSA or TreadMarksactuallyap-
pearduringtheexecutionof theapplicationcode.Themain
causefor the large performanceémprovementin DOSA is
reduceccommunicationasshowvn in Figure8.

The extra communicatioron TreadMarkss primarily a
side-efect of garbagecollection. On TreadMarkswhena

2Theconcurrenmessagefor updatinga pagein TreadMarksor updat-
ing all invalid objectsin a pagein DOSA are countedasoneoverlapped
datarequest.Sincethesemessagego out andrepliescomebackin paral-
lel, their latenciesarelargely overlapped.

10

processoicopiesan objectduring garbagecollection, this
is indistinguishablefrom ordinary writes. Consequently
when anotherprocessorccesseshe object after garbage
collection, the objectis communicatedo it, even though
the object’s contentshave not beenchangedby the copy.
In fact, the processomay have an up-to-datecopy of the
objectin its memory just at the wrong virtual address.In
contraston DOSA, whena processocopiesanobjectdur-
ing garbagecollection, it simply updatesits handletable
entry, which is local information that never propagateso
otherprocessors.

Thelazy storageallocationin DOSA alsocontrilbutesto
thereductionin communication.In OO7, live objectsand
garbagemay coexist in the samepage. In TreadMarksif
a processorequestsa page,it may get both live objects
andgarbage.In DOSA, however, only live objectswill be
communicatedieducinggheamountof datacommunicated.
This also explainswhy the memoryfootprintin DOSA is
smallerthanin TreadMarks.

8.3 Coarse-grainedApplications

Figure9 shavs the speeduggcomparisorbetweenread-
MarksandDOSA for SORandWaterNsquaredn 16 and
32 processor$or smallandlarge problemsizes.Figure 10
shavs normalizedstatisticsfrom the executionof theseap-
plicationson 32 processordor both problemsizes. The
detailedstatisticsare listed in Table5. The resultsshav
thattheperformancef thesecoarse-grainedpplicationsn
DOSA s within 6% asin TreadMarks.

9 Effectsof the Various Optimizations

To achieve theresultsdescribedn the previous section,
variousoptimizationswvereusedin DOSA. Theseoptimiza-
tionsincludelazy objectallocation(Section3.3), readag-
gregation(Section3.6),write aggrejation(Section3.5),and
compile-timeoptimization(Section4). To seewhat effect
eachoptimizationhasindividually, we performedthe fol-
lowing experimentsfor eachof theoptimizationswe com-
paretheperformancef DOSA withoutthatoptimizationto
the fully-optimized system.Figure 11 shaws the speedups
for eachof the experiments,except for compile-timeop-
timization, for Barnes-Hut,WaterSpatial, and WaterN-
SquaredThecompile-timeoptimizationis omittedbecause
it only effectsSOR.SORis omittedbecausehe only opti-
mizationthat hasary effect is the compile-timeoptimiza-
tion. Table 6 providesfurther detail beyond speedup®on
the effectsof the optimizations.

0 l
TreadMarks

DOSA

[J Alloc and GC time M Resttime

Figure 7. Time breakdo wn (in seconds) for
the OO7 benchmark on TreadMarks and
DOSA on 16 processor s.

0.75+

0.54

|

Data

i

Msg

i

Overlap Mem alloc
req

[] TreadMarks I DOSA

Figure 8. Statistics for OO7 on TreadMarks
and DOSA on 16 processor s, normaliz ed
to TreadMarks measurements.

Tree 007

Tmk | DOSA
Time 234 14.2
Alloc andGCtime 0.70 0.70
Data(MB) 48.4 17.9
Messages 427811 | 117403
Overlappeddatarequests|| 171024 | 43747

Table 4. Detailed statistics for TreadMarks

9.1 Lazy Object Allocation

Table6 shavsthatwithoutlazy objectallocation, DOSA
sends57%and68% moremessageandruns13%and18%
slower thanDOSA with lazy objectallocation,for Barnes-
Hut andWaterSpatial,respectiely.

Lazy object allocation has no impact on WaterN-
Squaredecausenoleculesareallocatedn al-D array and
eachprocessorlwaysaccessethe sameseggmentconsist-
ing of half of thearrayelementsn afixedincreasingorder

Lazy objectallocationsignificantlybenefitsrregularap-
plicationsthat exhibit spatiallocality of referencein their
physicaldomain For example,eventhoughthe bodiesin
Barnes-Hutandthemoleculesn WaterSpatialareinput or
generatedn randomorder, in the parallelalgorithms,each
processoonly updateshodiesor moleculescorresponding
to a contiguousphysicalsubdomain. Furthermoreinter-
subdomairdatareference®nly happeron theboundaryof
eachsubdomainAs describedn theintroduction,for such
applications]azy objectallocationwill only allocatespace
for objectson a processothatareaccessetby thatproces-
sor. Therefore,a physicalpagewill containonly “useful”
objects.With readaggreyation,theseobjectswill all be up-
datedin a singleroundof parallelmessagewhenfaulting

11

and DOSA on 16 processor s for OO7.

on the first object. In contrast,without lazy objectaggre-
gation, objectsare allocatedon all processorsn the same
orderand at the samevirtual address.Thus, the order of

the objectsin memoryreflectsthe accesgatternof theini-

tializationwhich may differ from the computationIn other
words,objectsaccessetly aspecificprocessomaybescat-
teredin mary more pagesthanin the scenariowith lazy
objectallocation. Whenaccessingheseobjects,this pro-
cessorhasto fault mary moretimesand sendmary more
roundsof messagem orderto updatethem.

9.2 ReadAggregation

Thesingleoptimizationthataffectsperformancemostis
readaggreyation. Table6 shows thatwithout readaggreya-
tion, DOSA sends2.2, 4.4, and5.2 timesmore messages,
and 3.3, 5.8, and 5.8 times more datamessageoundsfor
Barnes-Hut,WaterSpatial, and WaterN-Squared respec-
tively. As a consequencd)OSA without readaggreyation
is 310%,24%,and22% slower thanDOSA for thesethree
applications.

Intuitively, the potential problem with read aggreya-
tion is that DOSA may fetch more objectsthannecessary
DOSAwithoutreadaggreyation,however, only fetchesac-
cessear necessarybjects. Thus,by looking at the differ-

24

20

16

12

SOR/ SOR/ SOR/
sm:16 sm:32 1g:16

SOR/ WNsq/ WNsq/ WNsqg/ WNsq/
1g:32 sm:16 sm:32 Ig:16 19:32

[] Treadmarks Il DOSA

Figure 9. Speedup comparison between
TreadMarks and DOSA for coar se-grained
applications.

0.8

0.6

0.4

0.2

SOR/ SOR/ SOR/
Data Msg

SOR/ WNsqg/ WNsq/ WNsg/ WNsq/
overlap Mem Data Msg overlap Mem
req alloc req alloc

[J TreadMarks Il DOSA

Figure 10. Statistics for TreadMarks and
DOSA on 32 processor s for coar se-grained
applications with large data sizes, normal-
ized to TreadMarks measurements.

Application SOR/sm SOR/Ig WaterNsquare/sm| WaterNsquare/lg

Tmk | DOSA | Tmk | DOSA Tmk DOSA Tmk | DOSA
Time 1.10 1.10 1.32 1.31 4.52 4.27 9.74 9.58
Data(MB) 23.6 23.6 23.6 236 | 134.1 114.0| 2124 181.4
Messages 12564 | 12564 | 12440| 12440 77075 63742 | 114322| 101098
Overlappediatarequests 4962 4962 | 4962 4962 || 33033 28032 | 51816 | 44758
Objectmemoryalloc. (MB) 1.64 1.64 1.64 2.18 1.58 0.66 2.10 1.04

Table 5. Detailed statistics for TreadMarks and DOSA on 32 processor s for coarse-grained applica-

tions SOR and Water-N-Squared.

encebetweerDOSAwith andwithoutreadaggreyation,we
can determinethe amountof unnecessarglatacommuni-
cated. Table6 shawvs that DOSA without readaggreyation
sendsalmostthe sameamountof dataas fully-optimized
DOSA for WaterSpatialand WaterN-Squaredput half as
muchdatafor Barnes-Hut.Thedatatotalsfor WaterSpatial
andWaterN-Squaredarenearlyidenticalbecauséazy ob-
jectallocationimprovestheinitial spatiallocality of thedata
on eachprocessar Since the set of moleculesaccessed
by eachprocessoremainsstatic, spatiallocality is good
throughoutheexecution.Consequentlyobjectsprefetched
by readaggreyationaretypically used.In Barnes-Huthow-
ever, thesetof bodiesaccessebly a processochangesver
time. In effect,whenabodymigratesrom its old processor
to its new one, it leavesbehinda “hole” in the pagethatit
usedto occupy. Whentheold processonccesseary of the
remainingobjectsin that page,readaggreationwill still
updatethehole.

9.3 Write Aggregation

Table 6 shavs that write aggregationreduceshe num-
berof pagefaultsby factorsof 21,5.3,and5.7 for Barnes-
Hut, WaterSpatial,andWaterN-Squaredrespectrely. As
a result, DOSA is one secondor 2.2% fasterfor Barnes-
Hut than DOSA without write aggreyation. The impacton
WaterSpatialandWaterN-Squards mamginal.

9.4 Write Notice Reduction

Table 6 shows that our write noticereductionoptimiza-
tion is highly effective for Barnes-Hutand WaterSpatial.
For Barnes-Hutjt reduceghe amountof write noticedata
by afactorof 5.5, resultingin a 10% performancémprove-
ment;andfor WaterSpatial,it reduceghe amountof write
noticedataby afactorof 4.5, resultingin a 3% performance
improvement.Thisoptimizationhaslittle effectontheother
applications.

12

24

20

16

12

Barnes-Hut

Figure 11. Speedup comparison between DOSA and DOSA without each of the optimizations on 32

processor s.

|

Water-Spatial

SOR

Water-N-Squared

DOSA

w/o Read Aggre.
w/o Lazy Obj. Alloc.
w/o Write Aggre.

RO

w/o W.N. Reduc.

Application DOSA | w/oRead| w/olLazy | w/oWrite | w/o W.N.
Aggre. | Obj. Alloc. Aggre. Reduc.
Barnes-Hut Time (sec.) 45.07 139.88 50.90 46.05 49.56
(lg) Data(MB) 245.8 124.7 251.7 246.2 277.4
Write notices(M) 6.42 6.42 6.42 6.42 35.4
Messages 1027903| 2254374 1612276| 1027944| 1027991
Overlappeddatarequests|| 341303 | 1123734 428537 341303 341303
Mem. allocatedMB) 3.35 3.35 23.2 3.35 3.35
Write faults 27586 28248 163865 582533 27728
WaterSpatial Time (sec.) 8.52 10.54 10.07 8.54 8.75
(lg) Data(MB) 166.8 166.0 167.2 166.7 169.4
Write notices(M) 0.74 0.74 0.74 0.74 3.30
Messages 109560| 478674 183965 109560| 109558
Overlappediatarequests 41486 238341 72664 41491 41490
Mem. allocatedMB) 2.64 2.64 22.5 2.64 2.64
Write faults 20989 20777 35277 110864 21062
WaterN-Squared| Time(sec.) 9.58 11.74 9.58 9.58 9.58
(lg) Data(MB) 181.3 183.2 181.8 181.4 181.6
Write notices(M) 0.81 0.81 0.81 0.81 0.97
Messages 101098 530783 101228 101116 101108
Overlappeddatarequests 44758 261669 44874 44770 44757
Mem. allocatedMB) 1.04 1.04 1.89 1.04 1.04
Write faults 16953 87498 16978 96589 16968

Table 6. Statistics for DOSA and DOSA without each of the
Barnes-Hut, Water-Spatial, and Water-N-Squared.

13

optimizations on 32 processor s for

9.5 Compile-time Optimization

Table7 shavsthatfor SOR,the compile-timeoptimiza-
tion cansignificantlyimprove the performanceOnasingle
processarthe compile-timeoptimizationimprovesthe per
formanceof the original array-basedersionof SOR/Igby
20%, andthe handle-basedersionby 69%. On 32 nodes,
the improvementsare 17% and 40% for the two versions,
respectiely.

10 RelatedWork

Two othersystemshave usedVM mechanismgor fine-
grain DSM: Millipede [8] and the Region Trapping Li-
brary[4]. ThefundamentaHifferencebetweenrDOSA and
thesesystemss that DOSAtakesadvantaye of a typedlan-
guage to distinguisha pointer from data at run-time and
theseother systemsdo not. This allows DOSA to imple-
ment a numberof optimizationsthat are not possiblein
theseothersystems.

Specifically in Millipede a physical page may be
mappedtmultiple addresseim thevirtual addresspaceas
in DOSA, but the similarity endsthere. In Millipede, each
objectresidesin its own vpage, which is the sizeof a VM
page. Differentvpagesare mappedto the samephysical
memorypage,but the objectsare offset within the vpage
suchthat they do not overlap in the underlying physical
page. Differentprotectionattributesmay be seton differ-
ent vpages,therebyachieving the sameeffect as DOSA,
namelyperobjectaccessand write detection. The Milli-
pedemethodrequiresonevirtual memorymappingperob-
ject,while the DOSA methodrequiresonly threemappings
per page,resultingin considerablyessaddresspacecon-
sumptionand pressureon the TLB. Also, DOSA doesnot
requireary costly OS systemcalls (e.g., npr ot ect) to
changepageprotectionsfterinitialization, while Millipede
does.

The Region TrappingLibrary is similarto DOSAin that
it allocatesthreedifferentregions of memorywith differ-
ent protectionattributes. Unlike DOSA, it doesnt usethe
regionsin ary way thatis transparento the programmer
Instead,it providesa specialAPI. Furthermorejn the im-
plementation the read memoryregion and the read-write
memoryregionarebacledby differentphysicalmemoryre-
gions. This decisionhasthe unfortunatesideeffect of forc-
ing modificationamadein theread-writeregionto becopied
tothereadregion, everytime protectionchangedrom read-
write to read.

Orca[2], Jadg9], COOL [6], andSAM [11] areparallel
or distributed object-orientedanguages.All of thesesys-
temsdiffer from oursin thatthey presentanew languageor
API to theprogrammeto expresdistributedsharing while
DOSA doesnot. DOSA aimsto provide transparenbbject

14

sharingfor existing typedlanguagessuchasJava. Further
more, noneof Orca,Jade,COOL, or SAM useVM-based
mechanism$or objectsharing.

Dwarkadaset al. [7] comparedCashmere,a coarse-
grainedsystemsomaeavhatlike TreadMarksandShastaan
instrumentation-bases/stem runningon anidenticalplat-
form — a clusterof four 4-way AlphaSenersconnectedy
a Memory Channelnetwork. In generalCashmer@utper
formed Shastaon coarse-grainedpplicationge.g., Water
N-Squared),and ShastaoutperformedCashmereon fine-
grainedapplications(e.g., Barnes-Hut). The only surprise
wasthat ShastaequaledCashmereon the fine-grainedap-
plication WaterSpatial. They attributed this resultto the
run-timeoverheadf theinline accesshecksin Shastaln
contrast,DOSA outperformsTreadMarksby 62% on the
sameapplication.We attributethisto lazy objectallocation,
whichis notpossiblein Shastaandreadaggreation.

11 Conclusions

In this paper we have presentec new run-timesystem,
DOSA thatefficiently implementsasharedbjectspaceab-
stractionunderneatta typed programminglanguage. The
key insight behindDOSA is that the ability to unambigu-
ouslydistinguishpointers fromdataat run-timeenablesef-
ficientfine-grainedsharingusingVM support Like earlier
systemgalesignedor fine-grainedsharing DOSAimproves
theperformancef fine-grainedapplicationshy eliminating
falsesharing.In contrastto theseearliersystemsDOSASs
VM-basedapproaclandreadaggrejationenablet to match
a page-basedystemon coarse-graine@pplications. Fur-
thermore, its architecturepermits optimizations, such as
lazy object allocation, which are not possiblein corven-
tional fine-grainedor coarse-graineSM systems.Lazy
objectallocationtransparentlymprovesthe locality of ref-
erencan mary applicationsjmproving their performance.

Our performancesvaluationon a clusterof 32 Pentium
Il processorgonnectedvith a 100MbpsEthernetdemon-
strateghatthe new systemperformscomparablyto Tread-
Marks for coarse-grainedipplications(SOR and Water
Nsquare),and significantly outperformsTreadMarksfor
fine-grainedapplications(up to 98% for Barnes-Hutand
62%for WaterSpatial)Janda garbage-collectedpplication
(65%for OO7).

We have also presenteca completebreakdavn of the
performanceesults,in particular the contributionsof lazy
objectallocationand read aggreyationto DOSAs perfor
mance. Their effects are significant: Without lazy object
allocation,on 32 processorsBarnes-Hutruns 13% slower
and WaterSpatialruns 18% slower; and without readag-
gregation,on 32 processorsBarnes-Hutruns 68% slower,
WaterSpatialruns24% slower, andWaterN-Squareduns
22%slower.

Application Tmk/pref. Tmk/nopref. DOSA/pref. DOSA/nopref.
1-proc | 32-proc | 1-proc | 32-proc || 1-proc | 32-proc| l-proc | 32-proc
SOR(lg) 27.57 1.32| 33.19 154 28.05 1.31| 47.47 1.84
Table 7. Running time (sec.) comparison between SOR with and without the compile-time optimiza-
tion.
References [12] J. Singh,W.-D. Weber andA. Gupta. SPLASH: Stanford

(1]

(2]

(3]

(4]

(5]

(6]

(7]

[8

—_—

9]

[10]

[11]

C. Amza,A. Cox, S. DwarkadasP. Keleher H. Lu, R. Ra-
jamory, W. Yu, andW. Zwaenepoel. TreadMarks:Shared
memory computing on networks of workstations. IEEE
Computey29(2):18—-28Feh 1996.

H. Bal, R. Bhoedjang,R. Hofman, C. JacobsK. Langen-
doen,T. Ruhl,andM. Kaashoek Performancevaluationof
the Orcasharedbbjectsystem.ACM Transactionson Com-
puterSystemsl6(1),Feh 1998.

D. I. Bevan. Distributedgarbagecollectionusingreference
counting. In Parallel Arch. and Lang Europe pagesl17—
187,Eindhoven, The NetherlandsJunel987.Spring-\érlag
LectureNotesin ComputerScience259.

T. BrechtandH. Sandhu.Theregion traplibrary: Handling
trapson application-definedegionsof memory In Proceed-
ingsof the 1999USENIXAnnualTech. Conf, Junel999.

M. Careg/, D. DeWtt, and J. Naughton. The OO7 bench-
mark. Technicalreport, University of Wisconsin-Madison,
July 1994.

R. ChandraA. Gupta,andJ. Hennessy Cool: An object-
basedanguagé€or parallelprogramming.|[EEE Computer
27(8):14—26Aug. 1994.

S. Dwarkadas,K. GharachorlooL. KontothanassisD. J.
Scales,M. L. Scott, and R. Stets. Comparatie evalua-
tion of fine- and coarse-grairapproachesor software dis-
tributedsharednemory In Proceeding®f theFifth Interna-
tional Symposiunon High-PerformanceComputerArchitec-
ture, page60-269,Jan.1999.

A. ltzkovitz andA. SchusterMultiview andmillipage—fine-
grain sharingin page-base®SMs. In Proceedingsf the
Third USENIXSymposiunon Opelfating SystenDesignand
ImplementationFeh 1999.

M. C. RinardandM. S.Lam. Thedesign,implementation,
andevaluationof Jade.ACM Transaction®n Programming
Langugiesand Systems20(3):483-545May 1998.

D. ScalesK. GharachorlocandC. Thekkath.ShastaA low
overheadsoftware-only approachfor supportingfine-grain
sharedmemory In Proceedingsof the 7th Symposiunon
Architectural Supportfor ProgrammingLanguaesand Op-
erating SystemdOct. 1996.

D. J. ScalesandM. S.Lam. The designand evaluationof
asharedbbjectsystemfor distributedmemorymachines.n
Proceeding®f the First USENIXSymposiunon Opelating
SystemDesign and Implementation pages101-114,Nov.
1994,

15

[13]

[14]

[15]

parallel applicationsfor shared-memory ComputerArchi-
tectue News, 20(1):2—12Mar. 1992.

R. Thomas.A dataflav computewith improved asymptotic
performanceTechnicalReportTR-265,MIT Laboratoryfor
ComputerScience1981.

P. Watsonand |. Watson. An efficient garbagecollection
scheméor parallelcomputerarchitecturesln PARLE'87—
Parallel Architectues and Languayes Europe number259
in Lecture Notes in Computer Science, Eindhoven (the
Netherlands)Junel987.SpringerVerlag.

S. C. Woo, M. Ohara,E. Torrie, J. P. Singh,andA. Gupta.
The SPLASH-2 programs: characterizatiorand method-
ological considerationsin Proceeding®f the 22nd Annual
International Symposiunmon ComputerArchitectue, pages
24-36,Junel995.

