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Abstract

We presenta new run-time systemfor typedprogram-
minglanguagesthatsupportsobjectsharingin adistributed
system. The key insight in this systemis that the ability
to distinguishpointers from data at run-timeenableseffi-
cientandtransparentsharingof datawith bothfine-grained
and coarse-grainedaccesspatterns. In contrast, conven-
tional distributedsharedmemory(DSM)systemsthat sup-
port sharing of an untypedmemoryregion are limited to
providingonlyonegranularitywith goodperformance.

Thisnew run-timesystem,DOSA,providesa sharedob-
ject spaceabstraction rather than a shared addressspace
abstraction. Three key aspectsof the designare: First,
DOSAusestype information, in particular, the ability to
unambiguouslyrecognizereferences,to make fine-grained
sharing efficient by supportingobject granularity coher-
ence. Second,DOSA aggregates the communicationof
objects,making coarse-grained sharing efficient. Third,
DOSAusesa globally unique“handle” rather than a vir-
tual addressto namean object,enablingeach machine to
allocatestoragejust for theobjectsthat it accesses,improv-
ing spatial locality.

We compareDOSAto TreadMarks,a conventionalDSM
systemthat is efficient at handling coarse-grained shar-
ing. Our performanceevaluationsubstantiatesthe follow-
ing claims:

1. Theperformanceof fine-grainedapplicationsis con-
siderably (up to 98% for Barnes-Hutand 62% for
Water-Spatial)betterthanin TreadMarks.

2. Theperformanceof garbage-collectedapplicationsis
considerably (up to 65%)betterthanin TreadMarks.

3. The performanceof coarse-grained applications is
nearly as goodas in TreadMarks(within 6%). Since
the performanceof such applicationsis alreadygood
in TreadMarks,weconsiderthisanacceptableperfor-
mancepenalty.

1 Intr oduction

This paperaddressesrun-time supportfor sharingob-
jects in a typed languagebetweenthe differentcomputers
within a cluster. Typing must be strongenoughthat it is
possibleto determineunambiguouslywhethera memory
location containsan object referenceor not. Many mod-
ern languagesfall underthis category, including Java and
Modula-3.Direct accessthrougha referenceto objectdata
is supported,unlike Java/RMI or Orca [2], whereremote
objectaccessis restrictedto methodinvocation. Further-
more, in languageswith suitablemultithreadingsupport,
suchasJava, distributedexecutionis transparent:no new
API is introducedfor distributedsharing.This transparency
distinguishesthiswork from many earlierdistributedobject
sharingsystems[2, 6, 11, 9].

The key insight in this paperis that the ability to dis-
tinguish pointers from data at run-time enablesefficient
andtransparentsharingof datawith bothfine-grainedand
coarse-grainedaccesspatterns. In contrast,conventional
distributed sharedmemory (DSM) systemsthat support
sharingof an untypedmemoryregion are limited to pro-
viding only one granularitywith good performance. In-
deed,DSM systemshave beendivided into thoseoffer-
ing supportfor coarse-grainedsharingor for fine-grained
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Figure 1. Objects with handles.

sharing. Coarse-grainsharingsystemsare typically page-
based,andusethevirtual memoryhardwarefor accessand
modificationdetection.Although relaxed memorymodels
andmultiple-writerprotocolsrelievetheimpactof thelarge
pagesize,fine-grainsharingandfalse-sharingremainprob-
lematic.Throughoutthispaper, wewill useTreadMarks[1]
astherepresentativeof suchsystems,but theresultsapplyto
similar systems.Fine-grainsharingsystemstypically aug-
mentthe codewith instructionsto detectreadsandwrites,
freeingthemfrom the largesizeof the consistency unit in
virtual memory-basedsystems,but introducingper-access
overheadthat reducesperformancefor coarse-grainedap-
plications.In addition,thesesystemsdonotbenefitfromthe
implicit aggregationeffect presentin the page-basedsys-
tems.Fine-grainedsystemstypically requirea messageper
object,while page-basedsystemsbring in all datain a page
at once,avoiding additionalmessagesif theapplicationac-
cessesotherobjectsin thesamepage.Again, in this paper
we will usea singlesystem,Shasta[10], to representthis
classof systems,but the discussionappliesto similar sys-
tems.

Considera (single-processor)implementationof sucha
strongly-typedlanguageusingahandletable(seeFigure1).
Eachobjectin thelanguageis uniquelyidentifiedby anob-
ject identifier (OID) that also serves as an index into the
handletablefor thatobject.All referencesto anobjectrefer
in fact to its entry in thehandletable,which in turn points
to theactualobject.In suchanimplementation,it is easyto
relocateobjectsin memory. It sufficesto changethecorre-
spondingentry in thehandletable. No otherchangesneed
to be made,sinceall referencesareindirectedthroughthe
handletable.

Extendingthissimpleobservationallowsanefficientdis-
tributed implementationof theselanguages. Specifically
(seeFigure2), ahandletablerepresentingall sharedobjects
is presentoneachprocessor. A globallyuniqueOID identi-
fieseachobject,andservesasanentryin thehandletables.
As before,eachhandletableentrycontainsa pointerto the
location in memorywherethe object resideson that pro-
cessor. Theconsistency protocolcanthenbe implemented
solely in termsof OIDs, becausetheseare the only refer-
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Figure 2. Shared objects identified by unique
OIDs.

encesthat appearin any of the objects. Furthermore,the
sameobjectmay be allocatedat differentvirtual memory
addresseson differentprocessors.It sufficesfor thehandle
tableentry on eachprocessorto point to the properloca-
tion. In otherwords,althoughthe programmerretainsthe
abstractionof a singleobjectspace,it is no longerthecase
that all of memoryis virtually shared,andthat all objects
have to resideat thesamevirtual addressat all processors,
asis thecasein bothTreadMarksandShasta.

In orderto providegoodperformancefor coarse-grained
applications,we continueto usethevirtual memorysystem
for accessdetection,therebyavoiding the overheadof in-
strumentation.Fine-grainaccessusing VM techniquesis
then provided as follows. Although only a single physi-
cal copy of eachobjectexists on a singleprocessor, each
object can be accessedthroughthreeVM mappings. All
threepoint to the samephysical location in memory, but
with threedifferentprotectionattributes:invalid, read-only,
or read-write. A changein accessmodeis accomplished
by switching betweenthe differentmappingsfor that ob-
ject only. The mappingsfor the otherobjectsin the same
pageremainunaffected.Considertheexamplein Figure3.
A pagecontainsfour objects,oneof which is written on a
differentprocessor. This modificationis communicatedbe-
tweenprocessorsthroughtheconsistency protocol,andre-
sultsin theinvalidmappingbeingsetfor thisobject.Access
to otherobjectscancontinue,unperturbedby this change,
thuseliminatingfalsesharingbetweenobjectson thesame
page.

In addition to avoiding falsesharing,this organization
hasnumerousotherbenefits.First, on a particularproces-
sor, memoryneedsto be allocatedonly for thoseobjects
that are accessedon that processor, resultingin a smaller
memoryfootprint andbettercachelocality. N-bodysimu-
lations illustrate this benefit. Eachprocessortypically ac-
cessesits own bodies,anda smallnumberof “nearbybod-
ieson otherprocessors.With globalallocationof memory,
the remotebodiesarescatteredin memory, causinglots of
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Figure 3. Access detection using the handle pointer s.

misses,messages,and– in the caseof TreadMarks– false
sharing. In contrast,in DOSA, only the local bodiesand
the locally accessedremotebodiesare allocatedin local
memory. As a result, therearefar fewer missesandmes-
sages,andfalsesharingis eliminatedthroughtheper-object
mappings.Moreover, objectscanbe locally re-arrangedin
memory, for instanceto improve cachelocality or during
garbagecollection,without affecting the otherprocessors.
Finally, theaggregationeffect of TreadMarkscanbemain-
tainedaswell. Whena fault is detectedon an object in a
particularpage,all invalidatedobjectsin thesamepageas
the faultedobject are broughtup-to-date. While this ap-
proachpotentially re-introducesfalsesharing,its harmful
effectsaremuchsmallerthanin a conventionalpage-based
system,becausewe arefreeto co-locateor not to co-locate
certainobjectsin apageonaper-processorbasis.Returning
to the N-body application,the locationof bodiestypically
changesslowly over time, anda given processoraccesses
many of the samebodiesfrom one iteration to the next.
Thus,bringing in all bodiesin the samepageon the first
accessmissto any oneof themis beneficial.

While there are many apparentperformancebenefits,
therearesomeobviousquestionsabouttheperformanceof
sucha systemaswell. For instance,the extra indirection
is not free, and consistency information now needsto be
communicatedper-objectratherthanper-page,potentially
leadingto a large increasein its size. To evaluatethese
tradeoffs, we have implementedthesystemoutlinedabove,
andcomparedits performanceto that of TreadMarks.We
have derivedour implementationfrom the samecodebase
asTreadMarks,avoiding, to thelargestextentpossible,per-
formancedifferencesdueto unrelatedcodedifferences.Our
performanceevaluationsubstantiatesthefollowing claims:

1. The performanceof fine-grainedapplicationsis con-
siderablybetter(up to 98% for Barnes-Hutand62%
for Water-Spatial)thanin TreadMarks.

2. The performanceof garbage-collectedapplicationsis
considerably(up to 65%)betterthanin TreadMarks.

3. The performanceof coarse-grainedapplications is
nearlyasgoodasin TreadMarks(within 6%). Since
the performanceof suchapplicationsis alreadygood

in TreadMarks,we considerthis anacceptableperfor-
mancepenalty.

Unfortunately, thereis no similarly available implementa-
tion of fine-grainedsharedmemory, soanexplicit compar-
ison with sucha systemcould not be made,but we offer
somespeculationsbasedon publishedresultscomparing
Cashmere[7], a coarse-grainedsystem,to Shasta.

The outline of the restof this paperis asfollows. Sec-
tion 2: API and memorymodel. Section3: Implemen-
tation and comparisonwith conventional systems. Sec-
tion 4: Compileroptimizationsfor coarse-grainedapplica-
tions. Section5: Experimentalmethodology. Section6:
Environment. Section7: Applications. Section8: Over-
all resultsfor fine-grained,garbage-collected,andcoarse-
grainedapplications. Section9: Breakdown of optimiza-
tions.Section10: Relatedwork. Section11: Conclusions.

2 API and Memory Model

2.1 API

Thegeneralmodelis asharedspaceof objects,in which
eachreferenceto an object is typed. The programmeris
responsiblefor creatinganddestroying threadsof control,
andfor thenecessarysynchronizationto insureorderlyac-
cessby thesethreadsto theobjectspace.Varioussynchro-
nization mechanismsmay be used,such as semaphores,
locks,barriers,monitors,etc. No specialAPI is requiredin
languageswith suitabletyping andmultithreadingsupport,
suchasJava or Modula-3.Unlike Orca,we do allow refer-
encesto beusedfor accessingobjects.We do not requirea
methodinvocationfor eachaccess.

An objectis theunit of sharing.In otherwords,anindi-
vidual objectmustnot beconcurrentlywritten by different
threads,even if thosethreadswrite differentdataitemsin
the object. If two threadswrite to the sameobject, they
shouldsynchronizebetweentheirwrites.Arraysaretreated
ascollectionsof objects,andthereforetheirelementscanbe
written concurrently. Of course,for correctness,thediffer-
entprocessesmustwrite to disjoint elementsin thearrays.

The single-writernatureof individual objectsis not in-
herentto thedesignof oursystem,but wehavefoundthatit

3



correspondsto commonusage,andis thereforenot restric-
tive. As will be seenin Section3, it allows us to usean
efficientsingle-writerprotocolfor individualobjects.

2.2 Memory Model: ReleaseConsistency

The objectspaceis releaseconsistent.Releaseconsis-
tency (RC) is a relaxedmemoryconsistency model.In RC,
ordinaryaccessesto shareddataaredistinguishedfrom syn-
chronizationaccesses,with the lattercategory divided into
acquiresandreleases. An acquireroughlycorrespondsto a
requestfor accessto data,suchasa lock acquire,a wait at
a conditionvariable,or a barrierdeparture.A releasecor-
respondsto the grantingof sucha request,suchasa lock
release,a signal on a condition variable,or a barrier ar-
rival. RC requiresordinary sharedmemoryupdatesby a
processor� to becomevisible to anotherprocessor� only
whena subsequentreleaseby � becomesvisible to � via
somechain of synchronizationevents. Parallel programs
thatareproperlysynchronized(i.e., have a release-acquire
pair betweenconflictingaccessesto shareddata)behaveas
expectedontheconventionalsequentiallyconsistentshared
memorymodel.

3 Implementation

We focuson the consistency maintenanceof individual
objects.Synchronizationis implementedasin TreadMarks.

3.1 ConsistencyProtocol

DOSA usesa single-writer, lazy invalidateprotocol to
maintainreleaseconsistency. The lazy implementationde-
lays the propagationof consistency information until the
timeof anacquire.At thattime,thereleaserinformstheac-
quiring processorwhich objectshave beenmodified. This
informationis carriedin theform of write notices.

Theprotocolmaintainsa vectortimestampon eachpro-
cessor, the � th elementof whichrecordsthehighestinterval
numberof processor� that hasbeenseenlocally. An in-
terval is anepochbetweentwo consecutivesynchronization
operations.The interval numberis simply a count of the
numberof intervalson a processor. Eachwrite noticehas
anassociatedprocessoridentifierandvectortimestamp,in-
dicatingwhereandwhenthemodificationof theobjectoc-
curred. To avoid repeatedsendingof write notices,a pro-
cessorsendsits vector timestampon an acquire,and the
respondingprocessorsendsonly thosewrite noticeswith
a vectortimestampbetweenthereceivedvectortimestamp
andits own currentvectortimestamp.

Arrival of a write noticefor anobjectcausestheacquir-
ing processorto invalidateits local copy, andto setthe last

writer field in thehandletableentry to theprocessoriden-
tifier in thewrite notice.A processorincursa pagefault on
thefirst accessto an invalidatedobject,andobtainsanup-
to-dateversionof that objectfrom the processorindicated
in the last writer field.

In DOSA, the write noticesarein termsof objects. As
aconsequence,for veryfine-grainedapplications,thenum-
berof write noticescanpotentiallybe muchlarger thanin
a page-basedDSM. To this end, DOSA employs a novel
compressiontechniqueto reducethe numberof write no-
ticestransmittedduringsynchronizations.

Eachtimea processorcreatesa new interval, it traverses
in reverseorderold intervals that it hascreatedbeforeand
looks for the onethat consistsof similar write notices. If
sucha “match” is found, the differencebetweenthe new
interval andthe old interval arepresumablymuchsmaller
thanwrite noticesthemselves.Theprocessorcanthencre-
ateandlatertransmitwhenrequestedonly thewrite notices
that are different from thoseof the matchedold interval,
andthusreducetheconsistency data.Sinceintervalsareal-
waysreceivedandincorporatedin theforwardorder, when
a processorreceivessuchan interval containingdifference
of write notices,it is guaranteedto have alreadyreceived
theold interval basedon which thediff of thenew interval
is made. It cantheneasilyreconstructthewrite noticesof
thenew interval.

3.2 Data Structur es

A handletableis presenton eachprocessor. Thehandle
tableis indexedbyagloballyuniqueobjectidentifier(OID).
Eachentry in the handletablecontainsthe corresponding
object’saddressin local virtual memory. This addressmay
bedifferentfrom processorto processor. Theobject’s local
state,i.e., invalid, read-only, or read-write,is alsoreflected
in thehandletableentry throughdifferentmappingsof the
object’s local virtual addresswith the correspondingpro-
tectionattributes(seeSection3.4). Thehandletableentry
containsa lastwriter field, indicatingfrom whichprocessor
to fetchanup-to-datecopy of theobjecton anaccessmiss.
Finally, a handletableentrycontainsa field linking it with
otherobjectsallocatedin thesamepage.

A few auxiliary datastructuresaremaintainedaswell.
An inverseobjecttable, implementedasahashtable,isused
by the pagefault handlerto translatea faulting addressto
anOID. Eachprocessormaintainsa perpagelinkedlist of
objectsallocatedin thatpage.This list is usedto implement
communicationaggregation(seeSection3.6). Finally, each
processormaintainsits vector timestampand an efficient
datastructurefor sendingwrite noticeswhenrespondingto
anacquire.

As apracticalmatter, OIDs arecurrentlyassignedasthe
virtual addressesof the entry in the handletable. There-
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Figure 4. Multivie w: one vpage for each ob-
ject.

fore,thehandletablemustresideatthesamevirtual address
on all processors.Shouldthis ever becomea restriction,it
couldeasilyberemoved.

Objectsareinstantiatedby anew operationor theequiv-
alent.An OID is generated,andmemoryis allocatedon the
localprocessorto holdtheobject.In orderto minimizesyn-
chronizationoverheadfor uniqueOID generation,eachpro-
cessoris allocateda largechunkof OIDs at once,andthis
chunkallocationis protectedby agloballock. Eachproces-
sorthenindependentlygeneratesOIDs from its chunk.

3.3 Object StorageAllocation

The ability to allocateobjectsat differentaddresseson
differentprocessorssuggeststhatwe candelaythestorage
allocationfor an objecton a processoruntil that object is
first accessedby that processor. We call this optimization
lazyobjectstorageallocation.

3.4 Switching Protection

DOSAreliesonhardwarepageprotectionmechanismto
detectaccessesto invalid objectsandwrite accessesto read-
only objects. We createthreenon-overlappingvirtual ad-
dressregionsthatmapto thesamephysicalmemory, from
wheresharedobjectsareallocated.An objectthuscanbe
viewed throughany of the threecorrespondingaddresses
from the threemappings. DOSA assignsthe accessper-
missionsto thethreemappingsto beinvalid, read-only, and
read-write,respectively. During programexecution,it reg-
ulatesaccessesto a sharedobjectby adjustingtheobject’s
handleto point to oneof thethreemappings.In additionto
providing per-objectaccesscontrol, this approachhasthe
substantialadditionalbenefitthatno kernel-basedmemory
protectionoperationsarenecessaryaftertheinitializationof
all mappings.

As apracticalmatter, thethreemappingsof sharedmem-
ory region differ in two leading bits of their addresses.
Therefore,changingprotectionis a simplebit maskingop-
eration.

This approachis superficiallysimilar to the MultiV iew
approachused in Millipede [8], but in fact it is funda-
mentallydifferent. In MultiV iew a physicalpagemay be
mappedat multiple addressesin the virtual addressspace,
as in DOSA, but the similarity endsthere. In MultiV iew,
eachobjectresidesin its own vpage, which is thesizeof a
VM page.Differentvpagesaremappedto thesamephysi-
calmemorypage,but theobjectsareoffsetwithin thevpage
such that they do not overlap in the underlyingphysical
page(seeFigure4). Differentprotectionattributesmaybe
setondifferentvpages,therebyachieving thesameeffectas
DOSA, namelyper-objectaccessandwrite detection.The
MultiV iew methodrequiresone virtual memorymapping
per object, while the DOSA methodrequiresonly three
mappingsper page,resultingin considerablylessaddress
spaceconsumptionandpressureon theTLB. Also, DOSA
doesnot requireany changesin theprotectionattributesof
themappingsafterinitialization,while MultiV iew does.

3.5 Modification Detection and Write Aggrega-
tion

On a write fault, we make a copy (a twin) of the page
on which thefault occurred,andwe make all read-onlyob-
jectsin thepageread-write.At a (release)synchronization
point, we comparethe modifiedpagewith the twin to de-
terminewhich objectswerechanged,andhencefor which
objectswrite noticesneedto be generated1. After the (re-
lease)synchronization,the twin is deletedandthe pageis
maderead-onlyagain.

This approachhas better performancethan the more
straightforwardapproach,whereonly oneobjectat a time
is maderead-write.Thelattermethodgeneratesa substan-
tially largernumberof write faults.If thereis locality to the
write accesspattern,the costof thesewrite faultsexceeds
thecostof makingthetwin andperformingthecomparison
(seeSection9.3). We refer to this optimizationaswrite-
aggregation.

3.6 AccessMiss Handling and ReadAggregation

Whenaprocessorfaultson a particularobject,if theob-
ject is smallerthana page,it usesthe list of objectsin the
samepage(seeSection3.2)to find all of theinvalid objects
residingin that page. It sendsout concurrentobject fetch
messagesfor all theseobjectsto theprocessorsrecordedas
thelastwritersof theseobjects.

By doingso,we aggregatetherequestsfor all objectsin
thesamepage.This approachperformsbetterthansimply

1The twin is usedherefor a differentpurposethanthe twin in Tread-
Marks.Hereit is simplyusedto generatewrite notices.In theTreadMarks
multiple-writer protocol it is usedto generatea diff, an encodingof the
changesto thepage.Sincewe areusinga single-writerprotocol,thereis
noneedfor diffs.
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fetchingonefaultedobjectat a time. Therearetwo funda-
mentalreasonsfor thisphenomenon.

1. If thereis somelocality in the objectsaccessedby a
processor, thenit is likely that theobjectsallocatedin
thesamepagearegoingto beaccessedcloselytogether
in time. Here,again,thelocalobjectstorageallocation
works to our advantage. It is true that someunnec-
essarydatamay be fetched,but the effect of that is
minimal for thefollowing reason.

2. With readaggregation as describedabove, the mes-
sagesto fetch the differentobjectsgo out in parallel,
and thereforetheir latenciesand the latenciesof the
repliesarelargelyoverlapped.

If anobjectis largerthana page,we fall backto a page-
basedapproach.In otherwords,only thepagethat is nec-
essaryto satisfythefault is fetched.

3.7 Summary

We summarizewith a discussionof the salientdiffer-
encesbetweenDOSA on one hand,and TreadMarksand
Shastaon theotherhand.

DOSA shareswith TreadMarksits use of invalidate-
basedlazy releaseconsistency, its useof theVM systemfor
accessandwrite detection,andits page-basedaggregation.
It differs in that it allocatesstoragefor shareddatalocally,
ratherthanglobally, it performsper-objectratherthanper-
pageaccessandwrite detection,andit usesa single-writer
protocol per object rather than a multiple-writer protocol
perpage.

Shastausesan invalidate-basedeagerreleaseconsis-
tency. More importantly, it differs from DOSA in that it
usesglobal rather than local memoryallocation. It uses
instrumentationratherthanthe VM systemfor accessand
write detection.It doesaccessandwrite detectionon a per
“cacheline” basis,wherethecacheline is implementedin
softwareandcanbevariedfrom programto program.There
is no attemptto aggregatedata.

4 Compiler Optimizations

Theextra indirectioncreatesa potentialproblemfor ap-
plicationsthataccesslargearrays,becauseit maycausesig-
nificantoverhead,without any gainfrom bettersupportfor
fine-grainedsharing. This problemcan be addressedus-
ing type-basedaliasanalysisandloop invariantanalysisto
eliminatemany repeatedindirections.

Consider, a C programwith a two-dimensionalarray
of scalars,such as float, that is implementedin the
samefashionas a two-dimensionalJava array of scalars,
i.e., an array of pointers to an array of a scalar type

(“scalar type **a;”). Assumethisprogramperforms
aregulartraversalof thearraywith anestedfor loop.

for i
for j

... = a[i][j];

In general,a C compiler cannotfurther optimize this
loop nest,becauseit cannotprove thata anda[i] do not
changeduringtheloop execution.a, a[i] anda[i][j]
are,however, of differenttypes,andthereforethecompiler
for a typedlanguagecaneasilydeterminethata anda[i]
do notchange,andtransformtheloop accordinglyto

for i
p = a[i];
for j

... = p[j];

resultingin a significantspeedup.In the DOSA program
theoriginalprogramtakestheform of

for i
for j

... = a->handle[i]->handle[j];

which, in a typedlanguagecanbesimilarly transformedto

for i
p = a->handle[i];
for j

... = p->handle[j];

While offering much improvement,this transformation
still leavestheDOSA programat a disadvantagecompared
to the optimizedTreadMarksprogram,becauseof the re-
mainingpointerdereferencingin the inner loop. Observe
also that the following transformationof the DOSA pro-
gramis legalbut not profitable:

for i
p = a->handle[i]->handle;
for j

... = p[j];

The problemwith this transformationoccurswhena-
>handle[i]->handle hasbeeninvalidatedasa result
of a previous synchronization. Before the j-loop, p con-
tainsan addressin the invalid region, which causesa page
fault on the first iterationof the j-loop. The DSM runtime
changesa->handle[i]->handle to its locationin the
read-writeregion,but thischangeis not reflectedin p. As a
result,thej-loop pagefaultson every iteration.

We solve this problemby touchinga->handle[i]-
>handle[0] beforeassigningit to p. In otherwords,
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for i
touch( a->handle[i]->handle[0] );
p = a->handle[i]->handle;
for j

... = p[j];

Touching a->handle[i]->handle[0] outside
the j-loop causes the fault to occur there, and a-
>handle[i]->handle to bechangedto theread-write
location.Thesameoptimizationcanbeappliedto theouter
loopaswell.

Theseoptimizationsare dependenton the lazy imple-
mentationof releaseconsistency. Invalidationscan only
arrive at synchronizationpoints, never asynchronously,
thus the cached referencescannot be invalidated in a
synchronization-freeloop.

5 Evaluation Methodology

Ourperformanceevaluationseeksto substantiatethefol-
lowing claims:

1. The performanceof fine-grainedapplicationsis con-
siderablybetterthanin TreadMarks.

2. The performanceof garbage-collectedapplicationsis
considerablybetterthanin TreadMarks.

3. The performanceof coarse-grainedapplications is
nearly as good as in TreadMarks. Sincethe perfor-
manceof suchapplicationsis alreadygoodin Tread-
Marks, we considerthis an acceptableperformance
penalty.

A difficulty arisesin makingthecomparisonwith Tread-
Marks. Ideally, we would like to make thesecomparisons
by simply taking a numberof applicationsin a typedlan-
guage,and running them, on one hand, on TreadMarks,
simplyusingsharedmemoryasanuntypedregionof mem-
ory, and,on theotherhand,runningthemon top of DOSA,
usinga sharedobjectspace.

For a variety of reasons,the most appealingprogram-
minglanguagefor thispurposeis Java. Unfortunately, com-
monlyavailableimplementationsof Javaareinterpretedand
run on slow Java virtual machines.This would renderour
experimentslargely meaningless,becauseinefficienciesin
the Java implementationandvirtual machinewould dwarf
differencesbetweenTreadMarksandDOSA.Perhapsmore
importantly, we expectefficient compiledversionsof Java
to becomeavailablesoon,andwe would expectthat those
be used in preferenceover the current implementations,
quickly obsoletingour results.Finally, theperformanceof
theseJavaapplicationswouldbemuchinferior to published
resultsfor conventionalprogramminglanguages.

We have thereforechosento carryout thefollowing ex-
periments.For comparisons1 and3, wehavetakenexisting
C applications,andwe have re-writtenthemto follow the
modelof a handle-basedimplementation.In otherwords,
a handletableis introduced,andall pointersareindirected
throughthe handletable. This approachrepresentsthe re-
sults that could be achieved by a languageor compilation
environmentthatis compatiblewith ourapproachfor main-
taining consistency, but otherwiseexhibits no compilation
or executiondifferenceswith theconventionalTreadMarks
executionenvironment. In otherwords,theseexperiments
isolatethe benefitsand the drawbacksof our consistency
maintenancemethodsfrom otheraspectsof thecompilation
andexecutionprocess.It alsoallows usto assesstheover-
headof theextra indirectionon single-processorexecution
times. The compileroptimizationsdiscussedin Section4
have beenimplementedby handin both the TreadMarks
andtheDOSA programs.We reportresultswith andwith-
out theseoptimizationspresent.

For comparison2, we have implementeda distributed
garbagecollector on both TreadMarksand DOSA that is
representative of the state-of-the-art.Distributed garbage
collectorsare naturally divided into two parts: the inter-
processoralgorithm, which tracks cross-processorrefer-
ences;and the intra-processoralgorithm, which performs
the traversal on eachprocessorand reclaimsthe unused
memory. Our distributedgarbagecollectorusesa weighted
referencecountingalgorithmfor theinter-processorpart[3,
13, 14] anda generational,copying algorithmfor theintra-
processorpart. To implementweightedreferencecounting
transparently, we checkincoming and outgoingmessages
for references.Thesereferencesarerecordedin an import
tableandanexport table,respectively.

6 Experimental Envir onment

Our experimentalplatform is a switched, full-duplex
100MbpsEthernetnetwork of thirty-two 300 MHz Pen-
tium II-basedcomputers.Eachcomputerhasa 512K byte
secondarycacheand 256M bytesof memory. All of the
computerswererunningFreeBSD2.2.6andcommunicat-
ing throughUDP sockets. On this platform, the round-trip
latency for a1-bytemessageis 126microseconds.Thetime
to acquirea lock variesfrom 178to 272microseconds.The
timefor an32-processorbarrieris 1,333microseconds.The
timeto obtainadiff variesfrom 313to 1,544microseconds,
dependingon thesizeof thediff. Thetime to obtaina full
pageis 1,308microseconds.

7 Applications

Ourchoiceof applicationsfollowsimmediatelyfrom the
goals of our performanceevaluation. First, we use two
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Application SmallProblemSize Time (sec.) LargeProblemSize Time (sec.)
Original Handle Original Handle

Red-BlackSOR 3070x2047,20steps 21.13 21.12 4094x2047,20steps 27.57 28.05
Water-N-Squared 1728mols,2 steps 71.59 73.83 2744mols,2 steps 190.63 193.50

Barnes-Hut 32K bodies,3 steps 58.68 60.84 131Kbodies,3 steps 270.34 284.43
Water-Spatial 4K mols,9 steps 89.63 89.80 32K mols,2 steps 158.57 160.39

Table 1. Applications, input data sets, and sequential execution time .

fine-grainedapplicationsfor which we hopeto seesignif-
icant benefitsover a page-basedsystem. Theseapplica-
tionsareBarnes-HutandWater-Spatialfrom theSPLASH-
2 [15] benchmarksuite. Barnes-Hutis an N-bodysimula-
tion, andWater-Spatialis a moleculardynamicssimulation
optimizedfor spatiallocality.

Second,we usetwo coarse-grainedapplicationsto as-
sessthe potential performanceloss in such applications,
comparedto a systemthat is gearedtowardssuchcoarse-
grained applications. These two applicationsare SOR
and Water-N-Squared. SOR performsred-blacksucces-
sive over-relaxationon a 2-D grid, and Water-N-Squared
is amoleculardynamicssimulationfrom theSPLASH[12]
benchmarksuite.

For eachof theseapplications,Table1 lists theproblem
sizeandthesequentialexecutiontimes.Thesequentialex-
ecutiontimes were obtainedby removing all TreadMarks
or DOSA calls from the applicationsandfor DOSA using
thecompile-timeoptimizationsdescribedin Section4. The
optimizationswereappliedby hand. Thesetimings show
that the overheadof the extra level of dereferencingin the
handle-basedversionsof theapplicationsis nevermorethan
5.2%ononeprocessorfor any of thefour non-syntheticap-
plications.Thesequentialexecutiontimeswithout handles
wereusedasthebasisfor computingthespeedupsreported
laterin thepaper.

Third, to exercisethe distributedgarbagecollector, we
useamodifiedversionof theOO7object-orienteddatabase
benchmark[5]. This benchmarkis designedto match
thecharacteristicsof many CAD/CAM/CASEapplications.
TheOO7databasecontainsatreeof assemblyobjects,with
leavespointing to threecompositepartschosenrandomly
from among500 objects. Eachcompositepart containsa
graphof atomicpartslinked by connectionobjects. Each
atomicparthas3 outgoingconnections.

Ordinarily, OO7 doesnot releasememory. Thus,there
would be nothingfor a garbagecollectorto do. Our mod-
ified versionof OO7 createsgarbageby replacingrather
updatingobjectswhen the databasechanges. After the
new object,containingthe updateddata,is in placein the
database,theold objectbecomeseligible for collection.

The OO7 benchmarkdefinesseveral databasetraver-
sals[5]. For our experiments,we usea mixed sequence
of T1, T2a, andT2b traversals. T1 performsa depth-first

traversalof the entirecompositepart graph. T2a andT2b
areidenticalto T1 exceptthatT2amodifiestheroot atomic
partof thegraph,while T2bmodifiesall theatomicparts.

Table2 lists thesequentialexecutiontimesfor OO7run-
ningwith thegarbagecollectoronTreadMarksandDOSA.
It alsolists thetime spentin thememoryallocator/garbage
collector. DOSA incurs 2% overheadto the copying col-
lectorbecauseof extra overheadin handlemanagement;it
hasto updatethe handletableentry whenever an objectis
created,deleted,or moved. Overall, DOSA underperforms
TreadMarksby 3% dueto handledereferencecost.

Tree Tmk DOSA
Overall time (in sec.) 184.8 190.8
Alloc andGCtime (in sec.) 10.86 11.04

Table 2. Statistics for TreadMarks and DOSA
on 1 processor for OO7 with garba ge collec-
tion.

8 Overall Results

8.1 Fine-grainedApplications

Figure5 shows thespeedupcomparisonbetweenTread-
MarksandDOSA for Barnes-HutandWater-Spatialon 16
and32 processorsfor small andlarge problemsizes. Fig-
ure 6 shows normalizedstatisticsfrom the execution of
theseapplicationson 32 processorsfor bothproblemsizes.
Thedetailedstatisticsarelistedin Table3.

We derive the following conclusionsfrom this data.
First, from Table1, theoverheadof theextra indirectionin
thesequentialcodefor theseapplicationsis lessthan5.2%
for Barnes-Hutand1.1%for Water-Spatial. Second,even
for asmallnumberof processors,thebenefitsof thehandle-
basedimplementationare larger thanthe costof the extra
indirection. For Barnes-Hutwith 32K and 128K bodies,
DOSA outperformsTreadMarksby 29%and52%,respec-
tively, on 16 processors.For Water-Spatialwith 4K and
32K molecules,DOSA outperformsTreadMarksby 62%
and47%,respectively, on16processors.Third, asthenum-
berof processorsincreases,thebenefitsof thehandle-based
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Figure 5. Speedup comparison between
TreadMarks and DOSA for fine-grained ap-
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Figure 6. Statistics for TreadMarks and
DOSA on 32 processor s for fine-grained
applications with large data sizes, normal-
ized to TreadMarks measurements.

Application Barnes-Hut/sm Barnes-Hut/lg Water-Spatial/sm Water-Spatial/lg
Tmk DOSA Tmk DOSA Tmk DOSA Tmk DOSA

Time 18.07 12.06 89.07 45.98 12.52 8.04 12.89 8.52
Data(MB) 315.3 82.6 1307 246 475.1 262.6 342.1 166.8
Messages 2549648 307223 10994350 1027932 617793 188687 330737 109560
Overlappeddatarequests 108225 98896 439463 341303 193692 66937 202170 41491
Objectmemoryalloc. (MB) 7.36 1.05 29.4 3.35 3.15 0.61 25.2 2.64

Table 3. Detailed statistics for TreadMarks and DOSA on 32 processor s for fine-grained applica-
tions, Barnes-Hut and Water-Spatial. In TreadMarks, a call to diff request whic h may involve parallel
messa ges to diff erent processor s is counted as one overlapped request. In DOSA, a call to object
request whic h may involve parallel messa ges to diff erent processor s to update other objects in the
same page is counted as one overlapped request.
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implementationgrow. For Barnes-Hutwith 128K bodies,
DOSA outperformsTreadMarksby 52% on 16 processors
and 98% on 32 processors.For Water-Spatialwith 32K
molecules,DOSA outperformsTreadMarksby 47%on 16
processorsand51%on32processors.Fourth,if theamount
of falsesharingunderTreadMarksdecreasesas the prob-
lemsizeincreases,asin Water-Spatial,thenDOSA’sadvan-
tageover TreadMarksdecreases.If, on theotherhand,the
amountof falsesharingunderTreadMarksdoesn’t change,
asin Barnes-Hut,thenDOSA’sadvantageoverTreadMarks
is maintained.In fact,for Barnes-Hut,theadvantagegrows
dueto slower growth in the amountof communicationby
DOSA, resultingfrom improvedlocality dueto lazy object
allocation.

The reasonsfor DOSA’s clear dominanceover Tread-
Markscanbeseenin Figure6. This figureshows thenum-
berof messagesexchanged,thenumberof overlappeddata
requests2, the amountof datacommunicated,andthe av-
erageamountof shareddataallocatedon eachprocessor.
Specifically, weseeasubstantialreductionin theamountof
datasentfor DOSA,asaresultof thereductionin falseshar-
ing. Furthermore,thenumberof messagesis reducedby a
factorof 11 for Barnes-Hut/lgand3 for Water-Spatial/lg.
More importantly, the numberof overlappeddatarequests
is reducedby a factorof 1.3 for Barnes-Hut/lgand4.9 for
Water-Spatial/lg.Finally, thebenefitsof lazy objectalloca-
tion for theseapplicationsarequiteclear:thememoryfoot-
print of DOSA is considerablysmallerthanthat of Tread-
Marks.

8.2 GarbageCollectedApplications

Figures7 and8 show theexecutionstatisticson 16 pro-
cessorsfor theOO7benchmarkrunningonTreadMarksand
DOSA usingthe generational,copying collector. The de-
tailedstatisticsarelisted in Table4. We do not presentre-
sults on 32 processorsbecausethe total datasize, which
increaseslinearlywith thenumberof processors,is solarge
thatit causespagingon 32 processors.

On 16 processors,OO7on DOSA outperformsOO7on
TreadMarksby almost65%. Figure7 shows that the time
spentin thememorymanagementcodeperformingalloca-
tion andgarbagecollection is almostthe samefor Tread-
Marks andDOSA. The effectsof the interactionbetween
thegarbagecollectorandDOSAorTreadMarksactuallyap-
pearduringtheexecutionof theapplicationcode.Themain
causefor the large performanceimprovementin DOSA is
reducedcommunication,asshown in Figure8.

Theextra communicationon TreadMarksis primarily a
side-effect of garbagecollection. On TreadMarks,whena

2Theconcurrentmessagesfor updatingapagein TreadMarksor updat-
ing all invalid objectsin a pagein DOSA arecountedasoneoverlapped
datarequest.Sincethesemessagesgo out andrepliescomebackin paral-
lel, their latenciesarelargely overlapped.

processorcopiesan objectduring garbagecollection, this
is indistinguishablefrom ordinary writes. Consequently,
when anotherprocessoraccessesthe object after garbage
collection, the object is communicatedto it, even though
the object’s contentshave not beenchangedby the copy.
In fact, the processormay have an up-to-datecopy of the
objectin its memory, just at the wrong virtual address.In
contrast,on DOSA,whena processorcopiesanobjectdur-
ing garbagecollection, it simply updatesits handletable
entry, which is local information that never propagatesto
otherprocessors.

Thelazy storageallocationin DOSA alsocontributesto
the reductionin communication.In OO7, live objectsand
garbagemay coexist in the samepage. In TreadMarks,if
a processorrequestsa page,it may get both live objects
andgarbage.In DOSA, however, only live objectswill be
communicated,reducingtheamountof datacommunicated.
This alsoexplainswhy the memoryfootprint in DOSA is
smallerthanin TreadMarks.

8.3 Coarse-grainedApplications

Figure9 shows thespeedupcomparisonbetweenTread-
MarksandDOSA for SORandWater-Nsquaredon 16 and
32 processorsfor smallandlargeproblemsizes.Figure10
showsnormalizedstatisticsfrom theexecutionof theseap-
plicationson 32 processorsfor both problemsizes. The
detailedstatisticsare listed in Table 5. The resultsshow
thattheperformanceof thesecoarse-grainedapplicationsin
DOSA is within 6%asin TreadMarks.

9 Effectsof the Various Optimizations

To achieve theresultsdescribedin theprevioussection,
variousoptimizationswereusedin DOSA.Theseoptimiza-
tions includelazy objectallocation(Section3.3), readag-
gregation(Section3.6),write aggregation(Section3.5),and
compile-timeoptimization(Section4). To seewhat effect
eachoptimizationhasindividually, we performedthe fol-
lowingexperiments:Foreachof theoptimizations,wecom-
paretheperformanceof DOSAwithout thatoptimizationto
the fully-optimizedsystem.Figure11 shows thespeedups
for eachof the experiments,except for compile-timeop-
timization, for Barnes-Hut,Water-Spatial, and Water-N-
Squared.Thecompile-timeoptimizationis omittedbecause
it only effectsSOR.SORis omittedbecausetheonly opti-
mizationthat hasany effect is the compile-timeoptimiza-
tion. Table 6 provides further detail beyond speedupson
theeffectsof theoptimizations.

10



TreadMarks DOSA
0

4

8

12

16

20

24

Alloc and GC time Rest time

Figure 7. Time breakdo wn (in seconds) for
the OO7 benc hmark on TreadMarks and
DOSA on 16 processor s.

Data Msg Overlap 
req

Mem alloc
0

0.25

0.5

0.75

1

TreadMarks DOSA

Figure 8. Statistics for OO7 on TreadMarks
and DOSA on 16 processor s, normaliz ed
to TreadMarks measurements.

Tree OO7
Tmk DOSA

Time 23.4 14.2
Alloc andGCtime 0.70 0.70
Data(MB) 48.4 17.9
Messages 427811 117403
Overlappeddatarequests 171024 43747

Table 4. Detailed statistics for TreadMarks and DOSA on 16 processor s for OO7.

9.1 Lazy Object Allocation

Table6 showsthatwithout lazyobjectallocation,DOSA
sends57%and68%moremessagesandruns13%and18%
slower thanDOSA with lazy objectallocation,for Barnes-
Hut andWater-Spatial,respectively.

Lazy object allocation has no impact on Water-N-
Squaredbecausemoleculesareallocatedin a1-D array, and
eachprocessoralwaysaccessesthe samesegmentconsist-
ing of half of thearrayelementsin afixedincreasingorder.

Lazyobjectallocationsignificantlybenefitsirregularap-
plicationsthat exhibit spatiallocality of referencein their
physicaldomain. For example,even thoughthe bodiesin
Barnes-Hutandthemoleculesin Water-Spatialareinput or
generatedin randomorder, in theparallelalgorithms,each
processoronly updatesbodiesor moleculescorresponding
to a contiguousphysicalsubdomain. Furthermore,inter-
subdomaindatareferencesonly happenon theboundaryof
eachsubdomain.As describedin theintroduction,for such
applications,lazy objectallocationwill only allocatespace
for objectson a processorthatareaccessedby thatproces-
sor. Therefore,a physicalpagewill containonly “useful”
objects.With readaggregation,theseobjectswill all beup-
datedin a singleroundof parallelmessageswhenfaulting

on the first object. In contrast,without lazy objectaggre-
gation,objectsareallocatedon all processorsin the same
orderandat the samevirtual address.Thus, the orderof
theobjectsin memoryreflectstheaccesspatternof theini-
tializationwhichmaydiffer from thecomputation.In other
words,objectsaccessedby aspecificprocessormaybescat-
teredin many more pagesthan in the scenariowith lazy
objectallocation. Whenaccessingtheseobjects,this pro-
cessorhasto fault many moretimesandsendmany more
roundsof messagesin orderto updatethem.

9.2 ReadAggregation

Thesingleoptimizationthataffectsperformancemostis
readaggregation.Table6 shows thatwithout readaggrega-
tion, DOSA sends2.2, 4.4, and5.2 timesmoremessages,
and3.3, 5.8, and5.8 timesmoredatamessageroundsfor
Barnes-Hut,Water-Spatial,andWater-N-Squared,respec-
tively. As a consequence,DOSA without readaggregation
is 310%,24%,and22%slower thanDOSA for thesethree
applications.

Intuitively, the potential problem with read aggrega-
tion is that DOSA may fetch moreobjectsthannecessary.
DOSA without readaggregation,however, only fetchesac-
cessedor necessaryobjects.Thus,by looking at thediffer-
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Figure 10. Statistics for TreadMarks and
DOSA on 32 processor s for coar se-grained
applications with large data sizes, normal-
ized to TreadMarks measurements.

Application SOR/sm SOR/lg Water-Nsquare/sm Water-Nsquare/lg
Tmk DOSA Tmk DOSA Tmk DOSA Tmk DOSA

Time 1.10 1.10 1.32 1.31 4.52 4.27 9.74 9.58
Data(MB) 23.6 23.6 23.6 23.6 134.1 114.0 212.4 181.4
Messages 12564 12564 12440 12440 77075 63742 114322 101098
Overlappeddatarequests 4962 4962 4962 4962 33033 28032 51816 44758
Objectmemoryalloc. (MB) 1.64 1.64 1.64 2.18 1.58 0.66 2.10 1.04

Table 5. Detailed statistics for TreadMarks and DOSA on 32 processor s for coar se-grained applica-
tions SOR and Water-N-Squared.

encebetweenDOSAwith andwithoutreadaggregation,we
can determinethe amountof unnecessarydatacommuni-
cated.Table6 shows thatDOSA without readaggregation
sendsalmostthe sameamountof dataas fully-optimized
DOSA for Water-SpatialandWater-N-Squared,but half as
muchdatafor Barnes-Hut.Thedatatotalsfor Water-Spatial
andWater-N-Squaredarenearlyidenticalbecauselazy ob-
jectallocationimprovestheinitial spatiallocalityof thedata
on eachprocessor. Since the set of moleculesaccessed
by eachprocessorremainsstatic, spatial locality is good
throughouttheexecution.Consequently, objectsprefetched
by readaggregationaretypically used.In Barnes-Hut,how-
ever, thesetof bodiesaccessedby aprocessorchangesover
time. In effect,whenabodymigratesfrom its old processor
to its new one,it leavesbehinda “hole” in thepagethat it
usedto occupy. Whentheold processoraccessesany of the
remainingobjectsin that page,readaggregationwill still
updatethehole.

9.3 Write Aggregation

Table6 shows that write aggregationreducesthe num-
berof pagefaultsby factorsof 21, 5.3,and5.7 for Barnes-
Hut, Water-Spatial,andWater-N-Squared,respectively. As
a result, DOSA is one secondor 2.2% fasterfor Barnes-
Hut thanDOSA without write aggregation. The impacton
Water-SpatialandWater-N-Squareis marginal.

9.4 Write Notice Reduction

Table6 shows thatour write noticereductionoptimiza-
tion is highly effective for Barnes-HutandWater-Spatial.
For Barnes-Hut,it reducestheamountof write noticedata
by afactorof 5.5,resultingin a10%performanceimprove-
ment;andfor Water-Spatial,it reducestheamountof write
noticedataby afactorof 4.5,resultingin a3%performance
improvement.Thisoptimizationhaslittle effectontheother
applications.
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Figure 11. Speedup comparison between DOSA and DOSA without each of the optimizations on 32
processor s.

Application DOSA w/o Read w/o Lazy w/o Write w/o W.N.
Aggre. Obj. Alloc. Aggre. Reduc.

Barnes-Hut Time (sec.) 45.07 139.88 50.90 46.05 49.56
(lg) Data(MB) 245.8 124.7 251.7 246.2 277.4

Write notices(M) 6.42 6.42 6.42 6.42 35.4
Messages 1027903 2254374 1612276 1027944 1027991
Overlappeddatarequests 341303 1123734 428537 341303 341303
Mem. allocated(MB) 3.35 3.35 23.2 3.35 3.35
Write faults 27586 28248 163865 582533 27728

Water-Spatial Time (sec.) 8.52 10.54 10.07 8.54 8.75
(lg) Data(MB) 166.8 166.0 167.2 166.7 169.4

Write notices(M) 0.74 0.74 0.74 0.74 3.30
Messages 109560 478674 183965 109560 109558
Overlappeddatarequests 41486 238341 72664 41491 41490
Mem. allocated(MB) 2.64 2.64 22.5 2.64 2.64
Write faults 20989 20777 35277 110864 21062

Water-N-Squared Time (sec.) 9.58 11.74 9.58 9.58 9.58
(lg) Data(MB) 181.3 183.2 181.8 181.4 181.6

Write notices(M) 0.81 0.81 0.81 0.81 0.97
Messages 101098 530783 101228 101116 101108
Overlappeddatarequests 44758 261669 44874 44770 44757
Mem. allocated(MB) 1.04 1.04 1.89 1.04 1.04
Write faults 16953 87498 16978 96589 16968

Table 6. Statistics for DOSA and DOSA without each of the optimizations on 32 processor s for
Barnes-Hut, Water-Spatial, and Water-N-Squared.
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9.5 Compile-time Optimization

Table7 shows thatfor SOR,thecompile-timeoptimiza-
tion cansignificantlyimprovetheperformance.Onasingle
processor, thecompile-timeoptimizationimprovestheper-
formanceof theoriginal array-basedversionof SOR/lgby
20%,andthe handle-basedversionby 69%. On 32 nodes,
the improvementsare17% and40% for the two versions,
respectively.

10 RelatedWork

Two othersystemshave usedVM mechanismsfor fine-
grain DSM: Millipede [8] and the Region Trapping Li-
brary[4]. ThefundamentaldifferencebetweenDOSA and
thesesystemsis thatDOSAtakesadvantageof a typedlan-
guage to distinguisha pointer from data at run-time and
theseother systemsdo not. This allows DOSA to imple-
ment a numberof optimizationsthat are not possiblein
theseothersystems.

Specifically, in Millipede a physical page may be
mappedatmultipleaddressesin thevirtual addressspace,as
in DOSA, but thesimilarity endsthere. In Millipede, each
objectresidesin its own vpage, which is thesizeof a VM
page. Different vpagesare mappedto the samephysical
memorypage,but the objectsareoffset within the vpage
such that they do not overlap in the underlyingphysical
page. Differentprotectionattributesmay be seton differ-
ent vpages,therebyachieving the sameeffect as DOSA,
namelyper-objectaccessandwrite detection. The Milli-
pedemethodrequiresonevirtual memorymappingperob-
ject,while theDOSA methodrequiresonly threemappings
perpage,resultingin considerablylessaddressspacecon-
sumptionandpressureon the TLB. Also, DOSA doesnot
requireany costly OS systemcalls (e.g.,mprotect) to
changepageprotectionsafterinitialization,while Millipede
does.

TheRegionTrappingLibrary is similar to DOSA in that
it allocatesthreedifferent regionsof memorywith differ-
ent protectionattributes. Unlike DOSA, it doesn’t usethe
regions in any way that is transparentto the programmer.
Instead,it providesa specialAPI. Furthermore,in the im-
plementation,the readmemoryregion and the read-write
memoryregionarebackedby differentphysicalmemoryre-
gions.This decisionhastheunfortunatesideeffect of forc-
ingmodificationsmadein theread-writeregionto becopied
to thereadregion,everytimeprotectionchangesfrom read-
write to read.

Orca[2], Jade[9], COOL[6], andSAM [11] areparallel
or distributedobject-orientedlanguages.All of thesesys-
temsdiffer from oursin thatthey presentanew languageor
API to theprogrammerto expressdistributedsharing,while
DOSA doesnot. DOSA aimsto provide transparentobject

sharingfor existing typedlanguages,suchasJava. Further-
more,noneof Orca,Jade,COOL, or SAM useVM-based
mechanismsfor objectsharing.

Dwarkadaset al. [7] comparedCashmere,a coarse-
grainedsystem,somewhatlike TreadMarks,andShasta,an
instrumentation-basedsystem,runningon anidenticalplat-
form – a clusterof four 4-way AlphaServersconnectedby
a MemoryChannelnetwork. In general,Cashmereoutper-
formedShastaon coarse-grainedapplications(e.g.,Water-
N-Squared),and ShastaoutperformedCashmereon fine-
grainedapplications(e.g.,Barnes-Hut).The only surprise
wasthat ShastaequaledCashmereon the fine-grainedap-
plication Water-Spatial. They attributed this result to the
run-timeoverheadof theinline accesschecksin Shasta.In
contrast,DOSA outperformsTreadMarksby 62% on the
sameapplication.Weattributethis to lazyobjectallocation,
which is notpossiblein Shasta,andreadaggregation.

11 Conclusions

In this paper, we have presenteda new run-timesystem,
DOSA,thatefficiently implementsasharedobjectspaceab-
stractionunderneatha typedprogramminglanguage.The
key insight behindDOSA is that the ability to unambigu-
ouslydistinguishpointers fromdataat run-timeenablesef-
ficientfine-grainedsharingusingVM support. Like earlier
systemsdesignedfor fine-grainedsharing,DOSAimproves
theperformanceof fine-grainedapplicationsby eliminating
falsesharing.In contrastto theseearliersystems,DOSA’s
VM-basedapproachandreadaggregationenableit to match
a page-basedsystemon coarse-grainedapplications.Fur-
thermore,its architecturepermits optimizations,such as
lazy object allocation,which are not possiblein conven-
tional fine-grainedor coarse-grainedDSM systems.Lazy
objectallocationtransparentlyimprovesthelocality of ref-
erencein many applications,improving their performance.

Our performanceevaluationon a clusterof 32 Pentium
II processorsconnectedwith a 100MbpsEthernetdemon-
stratesthat thenew systemperformscomparablyto Tread-
Marks for coarse-grainedapplications(SOR and Water-
Nsquare),and significantly outperformsTreadMarksfor
fine-grainedapplications(up to 98% for Barnes-Hutand
62%for Water-Spatial)andagarbage-collectedapplication
(65%for OO7).

We have also presenteda completebreakdown of the
performanceresults,in particular, thecontributionsof lazy
object allocationand readaggregation to DOSA’s perfor-
mance. Their effects are significant: Without lazy object
allocation,on 32 processors,Barnes-Hutruns13% slower
andWater-Spatialruns18% slower; andwithout readag-
gregation,on 32 processors,Barnes-Hutruns68% slower,
Water-Spatialruns24%slower, andWater-N-Squaredruns
22%slower.

14



Application Tmk/pref. Tmk/nopref. DOSA/pref. DOSA/nopref.
1-proc 32-proc 1-proc 32-proc 1-proc 32-proc 1-proc 32-proc

SOR(lg) 27.57 1.32 33.19 1.54 28.05 1.31 47.47 1.84

Table 7. Running time (sec.) comparison between SOR with and without the compile-time optimiza-
tion.
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