
Trust but Verify:
Monitoring Remotely Executing Programs for Progress

and Correctness

Shuo Yang, Ali R. Butt, Y. Charlie Hu and Samuel P. Midkiff
Electrical and Computer Engineering Purdue University

West Lafayette, IN 47907

{yang22,butta,ychu,smidkiff}@purdue.edu

ABSTRACT
The increased popularity of grid systems and cycle sharing
across organizations requires scalable systems that provide
facilities to locate resources, to be fair in the use of those re-
sources, and to monitor jobs executing on remote systems.
This paper describes the GridCop system which allows a
computation on a remote, and potentially fraudulent, host
system to be monitored for progress and execution correct-
ness. A novel feature of our system is that it constructs
cooperating submitter and host programs from the original
program, and these programs allow both progress and exe-
cution correctness to be monitored with negligible overhead
while providing protection against common fraudulent be-
haviors. Experimental results show that the overhead of
this monitoring is low on both the submitting and host ma-
chines. We describe compiler algorithms that allow the re-
quired monitoring code to be automatically generated.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent program-
ming – distributed programming; D.3.4 [Programming Lan-

guages]: Processor – compiler; D.2.5 [Software Engineer-

ing]: Testing and Debugging – monitors, tracing

General Terms
Security, Verification, Performance, Experimentation

Keywords
Grid computing, cycle-sharing, correctness verification, Progress
monitoring, trustworthiness, security

1. INTRODUCTION
Computational workloads for many academic groups, small

businesses and consumers are bursty. That is, they are char-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

acterized by long periods of little or no processing punc-
tuated by periods of insufficient compute cycles. By ag-
gregating large numbers of computers and users together,
the resource demands are “smoothed out” across sub-groups
even as demand remains bursty within sub-groups. Cen-
trally managed software projects [11, 22, 27] have sprung up
to access idle machine to perform computations that would
be economically infeasible to solve on committed hardware.
Centrally managed systems like Condor [20] and LoadLeveler
[14] have been developed to allow resources to be aggregated
within permanent or ad-hoc organizations.

Centralized administration of resources exists because they
allow a trusted entity – the system administrators – to ver-
ify and track the trustworthiness of users given access to
the resources, and they allow users to deal with a known,
trusted entity. Certification of the user of a machine is al-
most always contingent on being an employer of the machine
owner, or being certified by another organization which the
user belongs to, and which is in turn trusted by the machine
owner. This certification requires legal contracts that care-
fully delineate risks and responsibilities, staffs to maintain
accounts, accountants to monitor funding streams and tax
consequences, and generally increase the overhead and real
costs of acquiring and using computing resources. This in
turn restricts the domain of applications that can be run on
shared resources.

The irony of this situation is that the resources to be
shared are extremely perishable – cycles, bandwidth and
disk space not used in the past do not create additional re-
sources to be consumed in the future. The major value of
these resources to their owner is the knowledge that they
are available when needed, and the major costs of shar-
ing unneeded cycles are the legal and administrative over-
heads. Eliminating these overheads would dramatically in-
crease the quantity, and decrease the cost, of available cy-
cles. Both the decreased cost and the ease of accessing cy-
cles would increase the applications that could exploit them.
Academics and research laboratories would have access to
a vast array of machines for running simulations, bench-
marking programs, and running scientific applications; small
businesses would have machines available for data-mining
sales, accounting and forecasting; and consumers would have
machines available to perform computationally intensive,
but low-economic value activities such as games and digi-
tally processing home movies. Elimination of these over-
heads would allow automatic intermediation between con-

sumer and providers of resources, allowing shared resources
to blend seamlessly with locally owned resources.

Significant technical challenges must be overcome to un-
leash the potential of the massive computational resources
that are going unused:

1. How are resources to be used discovered, and how are
providers of these resources to be compensated (and
cheaters punished)?

2. How is the host machine, i.e. the machine executing
the job, protected from hostile binaries?

3. How does the submitter machine, i.e. the machine sub-
mitting a job, know its job is being faithfully executed?

The first two of these items are the subject of research by
the authors of this paper and others [1, 2, 3, 8, 13, 25] These
systems support one or more of sandboxing applications for
host safety, resource discovery and compensation.

The GridCop system described in this paper solves the
third problem – how can the submitter track the progress
of a job, and receive assurances that the job is executing
correctly? In solving this problem, we make the following
technical contributions.

• We present the first known technique to remotely mon-
itor the incremental progress of a program that is ex-
ecuting in an untrusted environment.

• We present a method of instrumenting a program with
location beacons. This technique treats a modified pro-
gram control flow graph as a finite state automata
(FSA), and constructs a transducer using this FSA.
The transducer is part of the program that is executed
on the host, and emits information that allows a corre-
sponding FSA at the submitter machine to follow the
progress of the job.

• Although the transducer provides excellent informa-
tion about the progress of a job, at a low-overhead, it
is susceptible to replay and spoofing attacks, e.g. at-
tacks where the monitoring output from a previous
run is replayed, or the output from the alleged current
run is faked. We present a method of instrumenting
a program with recomputation beacons to compute the
input and output of selected program regions and to
send these inputs and outputs to the submitter ma-
chine for verification.

• We present compiler techniques that can be used to
automatically construct the host and submitter FSAs,
and to collect input and output data for a region of
the program and replay the execution of the program
on the submitter machine.

• We provide experimental results measured over a wide
area network showing the overhead of these techniques
on both the host and submitter machines. The over-
head of these monitoring techniques is less than 3.5%
on the host side. The cost of monitoring a job is less
than 1.6% of that of running it locally on the submitter
side.

The rest of the paper is organized as follows. Section 2
presents the threat model considered in this paper. Sec-
tion 3 gives an overview of our GridCop monitoring system.

Section 4 presents the design of the GridCop system, and
section 5 presents the experimental results showing the ef-
fectiveness of the system. Finally, Section 6 discusses the
related work and Section 7 concludes the paper.

2. THE THREAT MODEL
Untrusted systems can be divided into two categories: ma-

licious and fraudulently irresponsible (e.g. the environment
targeted by the Samsara [7] system.) Malicious systems are
willing to expend significant resources to damage their vic-
tims. For example, a malicious system might be willing to
execute a program until the final results are to be written
to disk, and then terminate it. Our system is assumed to
operate in a less hostile, but perhaps fraudulent environ-
ment. In particular, we assume that hosts are motivated
by self-interest, that our programs execute on unmodified
JVMs, and that the source program is not altered. These
are reasonable assumptions since JVMs are large compli-
cated pieces of software distributed in binary form, and
are not easy to modify without access to the source code.
Our monitoring system makes it very difficult to change a
program without being caught. Moreover, because we ap-
parently monitor almost the entire program execution (but
actually monitor only a small part of the execution), fully
automatic tools will not be effective. Program alteration re-
quiring human intervention is costly enough to preclude its
use.

3. OVERVIEW OF THE GRIDCOP SYSTEM
Every participating node can submit jobs (i.e. be a sub-

mitter node) or host jobs (i.e. be a host node). A node can
perform both roles simultaneously, i.e., its jobs can be run-
ning on remote nodes while jobs from other remote nodes are
running on it. Before a program is executed, it is passed to
our tool which transforms it into a program that executes on
the host machine (H-code) and a program that executes on
the submitter machine (S-code). The H-code is the original
program augmented with beacons and auxiliary code that
send information about the program to the submitter ma-
chine. The S-code, executing on the submitter machine (or
a trusted machine accessible from the submitter machine)
uses this information to track the progress, and verify the
execution of, the program. In our larger system described
in [3], the host and submitter nodes also have the ability to
issue and receive credits for services consumed and provided.
This topic is beyond the scope of this paper, and the credit
system our system will deploy is described in [3].

H-code contains two types of beacons: location beacons
(L-beacons) and recomputation beacons (R-beacons).

L-beacons are placed along certain control flow graph (CFG)
edges, as described in Section 4.1, and identify the location
of the program that is currently executing. L-beacons pro-
vide fine-grained location information, but because their lo-
cation and output are static properties of the program, they
are subject to replay and spoofing attacks. For example, a
tool on the host machine could extract the CFG of the sub-
mitted program and generate a program that simply sends
L-beacon information periodically. To guard against these
attacks, GridCop also adds R-beacons to the program, as de-
scribed in Section 4.2. R-beacons send the input and result
data for a code region to the submitter machine where the
computation of the region can be checked. The effectiveness

of this approach requires that:

• the computation actually duplicated at the submitter
machine be a small part of the overall computation.
Otherwise the submitter machine is not efficiently off-
loading work to the remote system.

• the computation potentially duplicated at the submit-
ter machine must be a large portion of the whole job.
Otherwise, our work will allow malicious hosts to de-
velop a program analysis tool to extract the duplicated
computation from the program and only execute it.

The subset of the potentially duplicated regions that are
actually recomputed is selected randomly, i.e. in a way that
is not predictable by the host machine.

The S-code program corresponding to the H-code pro-
gram, and generated from the original program, is executed
on the submitter node. The S-code program has two func-
tions. The first is performed by a finite state machine (FSA),
derived from the original program CFG, that tracks the L-
beacons sent by the H-code. As each L-beacon is received,
the current state is updated. The second uses R-beacons.
When an R-beacon is received, the code region selected for
recomputation is identified, and the computation is per-
formed. The R-beacon also contains the result of executing
the code region, which is compared with the result of the
recomputation to determine if the host faithfully executed
the region, and by implication, the entire program.

4. IMPLEMENTATION OF THE GRIDCOP
SYSTEM

Our compiler-assisted remote job monitoring system con-
sists of compiler techniques to produce the S-code and H-
code programs, and two monitoring modules, the L-beacon
module and the R-beacon modules. Each module consists
of three run-time components: (i) a beacon message cre-
ation component on the host, which is integrated with the
submitted application, (ii) a beacon reporting component
on the host that sends beacon messages to the submitter,
and (iii) a beacon message processing component on the
submitter. The monitoring system architecture is shown in
Figure 1. The monitoring system can adjust the runtime
configurations, such as the inter-transmission interval of the
reporting components, based on the trust level between the
submitter and the host. For example, when a submitter has
a high level of trust in a host and would like to conduct less
aggressive monitoring, it can set a longer inter-transmission
interval when submitting a job.

4.1 Location Beacons
L-beacons emit information at significant program execu-

tion points. This information is sent to the submitter ma-
chine which uses it to determine what parts of the program
have been executed. Placing L-beacons at every branch
would provide very precise, fine-grained beacon information.
Unfortunately, L-beacon processing would consume unac-
ceptably large amounts of resources on the host and the
submitter machines, since a large percentage of the instruc-
tions executed would be beacon related. Therefore GridCop
places L-beacons at computationally significant points in the
program. In the rest of this section, we describe how bea-
con code is generated for the H-code, how beacon processing
code is generated for the S-code, and the actions that take

R−beacon creation)
running H−code

(with L−beacon and
job

Remote submitted

Asynchronous communication Synchronous communication

Host machine

JVM (sandbox restricted)

Submitter machine

JVM

R−beacon

L−beacon

L−beacon
sending thread

running S−code
(recomputation)

R−beacon processing

L−beacon processing
(FSA transitioning)

running S−codeL−beacon

R−beacon

R−beacon
sending thread

Figure 1: Components of the GridCop monitoring

system

place at runtime to create, report and process beacon mes-
sages.

4.1.1 Code Generation for L-beacons
For H-code, the compiler finds computationally signifi-

cant points in the program and places a beacon at each
of them. It also inserts hard-coded routines into the code
that aggregate and structure information provided by bea-
cons, and that report the information to the submitter pro-
gram. These routines are described in Section 4.1.2. For
the S-code, an FSA is created, where each state in the FSA
corresponds to a beacon in the H-code. Beacon process-
ing consists of checking if a sequence of L-beacon messages
corresponds to legal transitions on the FSA. Viewed in this
light, L-beacons in the H-code can be viewed as a trans-
ducer, i.e. a finite state machine that emits information on
state transitions.

Because L-beacons report the progress of a job, the time
between milestones should be reasonably long. Our ap-
proach is to place L-beacons at the beginning of method
calls, but only at the beginning of method calls that perform
a “significant” amount of work. Two broad strategies can be
used to determine these methods, profiling and compile time
cost models. We have chosen to use a very crude compile-
time analytical cost model, namely, methods that contain
loops are considered to be computationally significant. Fu-
ture work for the project may involve refining this model
(although for the current benchmark set, our current model
is adequate). A beacon is inserted as the first statement
in each computationally significant method. The beginning
of the main program also gets a beacon, as does any node
that can return from the program as the result of a normal
program termination. For a multi-threaded program, each
run() function is also treated as a main program.

As described above, when beacon information is sent to
the submitter machine, the submitter checks the validity of
the beacon information by traversing an FSA. Each beacon
inserted above corresponds to a state in the FSA, and the
beacon’s ID is the input for the transition to the state. The
beacons inserted at the beginning and the end of the pro-
gram serve as the start and the accept state, respectively, in
the FSA.

Nb ⇐ φ;
Nb̃ ⇐ φ;
for(each node n in GF){

if (n is annotated with a beacon)
Nb ⇐ Nb ∪ {n};

else
Nb̃ ⇐ Nb̃ ∪ {n};

}
while(Nb̃ 6= φ){

nb̃ ← dequeue(Nb̃);
for(each node np ∈ predecessor(nb̃)){

for(each node ns ∈ successor(nb̃)){
Edges(GF) = 〈np, ns〉 ∪Edges(GF);

}
}
Edges(GF) = Edges(GF)− {edge connected to Nb̃};
Nb̃ ⇐ Nb̃ − {nb̃};

}
G′

F ⇐ GF ;

StateFSA ⇐ {nodes in G′

F };
TransitionFSA ⇐ φ;
for(〈ni, nj〉 ∈ Edges(G′

F)){
TransitionFSA ← TransitionFSA∪

{transition〈ni, nj〉 with ID nj};
}

Figure 2: Algorithm of Building FSA

The algorithm of Figure 2 describes how to build an FSA.
We build the FSA for the submitter side in two steps. The
first step transforms the control flow graph (CFG) GF of the
program into a graph G′

F that contains only nodes with
beacons. First, we add all nodes of GF that contain L-
beacons (i.e. the computationally significant nodes) to the
set Nb. All other nodes of GF are placed in the set Nb̃ For
each node nb̃ ∈ Nb̃ edges 〈np, ns〉 are added to GF , for all
〈np, nb̃〉 and 〈nb̃, ns〉 in GF . nb̃ is then removed from GF .
We call the graph resulting from the above procedure G′

F .
The second step generates the FSA. The FSA transition

table can be trivially constructed as follows. Let the set of
states be the set of nodes in G′

F . For each edge 〈ni, nj〉 ∈
Edges(G′

F), there is a transition from ni to nj on the sym-
bol which is the beacon ID of nj . The start state of the
FSA corresponds to the node at the beginning of the main
program, and accept states correspond to nodes that can
return from the program.

Figure 3 shows a program fragment with beacons inserted.
For each computationally intensive function in Figure 3(a),
the compiler inserts an L-beacon instruction at the begin-
ning of the function to emit a unique transition ID in Fig-
ure 3(b). These IDs are treated as the transition symbols
between states in the FSA. A transition ID always drives
the FSA to the unique state named by the transition ID.
Consider the FSA shown in Figure 3(c). For example, bar2
in the example emits ”3”, which causes a transition from
any predecessor of bar2, on the FSA, to bar2.

4.1.2 Runtime Support for L-beacons
At runtime, the L-beacon instructions inserted by the

compiler are executed. Each L-beacon deposits a location

(in main function)
. . .
call foo1(. . .)
call foo2(. . .)
. . .

function foo1(. . .){
for(. . .){

call bar1(. . .)
if(. . .) {

call bar2(. . .)
call lightbar(. . .) //this function is loopless

}
}

}
function bar1(. . .){ . . . for(. . .) . . . }
function bar2(. . .){ . . . for(. . .) . . . }
function foo2(. . .){ . . . for(. . .) . . . }

(a) A piece of pseudo code from benchmark LU. All
functions but lightbar() contain a loop

function foo1(. . .){ call create beacon(’1’) . . . }
function bar1(. . .){ call create beacon(’2’) . . . }
function bar2(. . .){ call create beacon(’3’) . . . }
function foo2(. . .){ call create beacon(’4’) . . . }

(b) L-beacon added at the prologues of functions with
loops

‘3’
‘1’ ‘2’

‘4’

‘4’

‘2’

‘4’

‘2’

@foo1 @foo2@bar1 @bar2

To other states

(c) Part of FSA corresponding to above program:
transition symbols on the edges correspond to the unique

IDs emitted by the inserted beacon instructions

Figure 3: A part of FSA derived from the Java

Grande LU benchmark

ID (IDL) and the current thread ID (IDT), which together
form an L-beacon message (IDT , IDL) which is added to the
L-beacon buffer. For multi-threaded programs, L-beacon
messages from different threads are multiplexed in the L-
beacon buffer. IDT s are used to label different threads so
that the L-beacon processing component on the submitter
side can use them to track the progress of different threads.
A different FSA is used for each application thread, thus
IDT in a beacon message identifies an FSA and IDL drives
transitions on that FSA. The L-beacon buffer size is set to
contain 3000 L-beacon messages. If the L-beacon buffer is
full, an L-beacon instruction will return without depositing
any information.

The reporting component on the host is in a separate
thread (L-Sender) that transmits L-beacon messages to the
submitter through a TCP connection. The reporting com-
ponent uses a paced beacon transmission scheme. It sleeps
for an interval (set by the submitter when the program is
submitted to the host) and wakes up to send the L-beacon
messages in the L-beacon buffer. During the sending pro-
cedure, L-Sender first copies the contents in the L-beacon
buffer to a private buffer and clears the L-beacon buffer.
It then sends the contents in the private buffer across the
network. Thus the cross-network data transfer procedure is
asynchronous to the application program.

The submitter node uses the L-beacon messages sent by
the host as input to the FSAs to track the progress of the re-
mote job. It reads each L-beacon message received from the
host, locates an FSA using IDT and drives transitions using
IDL. In this way, the L-beacon messages are de-multiplexed
and processed. If the submitter receives a full L-beacon
buffer, i.e., the L-buffer was full before the packet was sent,
the submitter assumes that L-beacon messages may have
been discarded on the host side. In this case, the submit-
ter checks whether the first message for each thread in this
packet causes a transition to a state reachable from the cur-
rent state of the thread. After the first message for each
thread gets processed, normal FSA transitioning continues.
Because the L-beacon messages within each transmission
interval are limited by the sending interval, the submitter
overhead to process these beacons is also limited.

4.2 Recomputation Beacons
R-beacons check the validity of the host computation. At

the start of an identified computation region (i.e. an in-
nermost loop in the current implementation), the input of
the computation along with the computation ID (IDC) is
placed in the R-beacon buffer; at the end of the identified
computation, the result of the computation is added to the
R-beacon buffer. An IDC , the input, and the corresponding
result form the R-beacon message (IDC , input, result). The
R-beacon message is transfered to the submitter for verifi-
cation, with the IDC allowing the submitter to know what
computation to apply to the input. If a host has not cor-
rectly executed the program, the result from the host will
differ from the result computed locally on the submitter with
the same input. Thus the submitter can detect a cheating
host by periodically comparing the local computation results
with the remote results for the same inputs.

4.2.1 Code Generation for R-beacons
By inserting R-beacons at significant computation regions,

we are potentially monitoring most of the computation. We

currently use loop nests to identify significant computation
regions. In particular, we place a recomputation beacon
immediately before every innermost loop. Computationally
significant regions could be identified with profiling informa-
tion for general programs, or by using more sophisticated
compile-time analytical cost models [6, 29].

After identifying a significant computation region, the
compiler inserts an R-beacon into the H-Code. This
is a straight-forwardly automatable procedure. At the
prologue of the identified computation region, a call to
addInputToBuffer(), which will put the IDC and the in-
put of this computation region in the R-beacon buffer at
runtime, is inserted. At the epilogue of the identified re-
gion, a call to addResultToBuffer(), which will put the
output of this computation region in the R-beacon buffer
at runtime, is added. For the S-Code, the compiler gener-
ates a subroutine to handle all of the recomputation cases
resulting from the R-beacons in the corresponding regions
in the H-Code. This subroutine is called for every R-beacon
message the submitter processes. Figure 4 shows the code
transformation to insert a R-beacon at a desired region.

In general, the input data passed to the R-beacon must
contain all upwardly exposed uses of variables in the re-
gion, that is variables that are read in the region, but the
value read is defined outside of the region. For scalars, the
SSA form of the program can be used to easily locate these
variables. For arrays, the SSA form may indicate the en-
tire array is upwardly exposed when only some elements
are. Sending the entire array can increase the communi-
cation overhead involved in monitoring. The Array SSA
form [15] allows, via compiler analysis and runtime track-
ing, individual upwardly exposed elements of the array to
be determined, and only those elements to be sent. More-
over, by using the Array SSA form, arbitrarily small and/or
complex regions of the program can be selected for monitor-
ing.

For many dense numerical codes, subscripts are affine and
are not coupled, i.e., each index variable only appears in
one dimension of the array. For these references, a rel-
atively simple static determination of the input for a re-
gion can be made. Since regions are delimited by inner-
most loops, with an index of im, upwardly exposed refer-
ences will be in a slice(s) of arrays a(f0, f1, . . . , fm−1, lb(im) :
ub(im), fm+1, . . . , fn−1, fn), where where fj is the value of
the subscript function of dimension j of the array a,and lb
and ub are the lower bound and, upper bound, respectively,
of the subscript function that contains im evaluated over the
range of im. Again, because the R-beacon is outside of the
innermost loop, all fj are constants within that innermost
loop. In our benchmarks we use these simple slices as the
inputs, and as shown in Section 5 this incurs an acceptable
overhead.

4.2.2 Run Time Support for R-beacons
In Figure 4, addInputToBuffer() is an atomic, thread-

safe operation that puts the computation input and the IDC

of an identified computation region into the R-beacon buffer.
addResultToBuffer() is an atomic, thread-safe operation
that adds the corresponding result to the R-beacon buffer.
Multiple threads of an application can contain R-beacons,
and we must ensure the operation of putting a R-beacon
message to the R-beacon buffer is atomic. The buffer man-
agement routines ensure that the input and result data for

. . .
double dx[], dy[], da;
int dx off, dy off, n;
. . .
for(i=0; i < n; i++)

dy[i +dy off] += da*dx[i +dx off];
. . .

(a) The original ‘hot’ spot code

. . .
double dx[], dy[], da;
int dx off, dy off, n;
. . .
Recomputationbuffer.

addInputToBuffer(7, da, dx, dx off, dy off, n);
for (i=0; i < n; i++)

dy[i + dy off] += da*dx[i + dx off];
Recomputationbuffer.addResultToBuffer(dy);
. . .

(b) Transformed H-Code that runs on the host node
(note: IDC=7 in this example)

. . .
//Dataobject is a Serializable object transfered from host
. . .
switch (Dataobject.IDC){
. . .
case 7:

double dx[], dy[], da;
int dx off, dy off, n;
da = Dataobject.input.content0;
dx = Dataobject.input.content1;
dx off = Dataobject.input.content2;
dy off = Dataobject.input.content3;
n = Dataobject.input.content4;
for (i=0; i < n; i++)

dy[i +dy off] += da*dx[i +dx off];
for(i=0; i< dy.length; i++)

if(dy[i] != Dataobject.output[i])
report error();

break;
case . . .

. . .
}
. . .

(c) Transformed S-Code that runs on the submitter node

Figure 4: Pseudo-code example showing a trans-

formed ‘hot spot’ in LU Factorization

a single execution instance of a region are grouped together
and added to the buffer as follows.

When a thread attempts to add input data to the R-
beacon buffer by calling addInputToBuffer(), it first checks
to see if the input outstanding flag is false, indicating noth-
ing is in the buffer. If the flag is false, the thread acquires
a lock on input outstanding and rechecks the value of in-
put outstanding. If input outstanding is still false, it is set
to true and the flag thread ID is assigned the value of the
current thread ID. The input data is then deposited into the
buffer, and the lock is released. Another thread attempting
to add input data will find the value of input outstanding is
true on either the initial check, or after acquiring a lock on
input outstanding. In either case, addInputToBuffer() re-
turns without depositing any information into the R-beacon
buffer. The unlocked check of the input outstanding flag
reduces, in practice, the number of locks that must be ac-
quired, while updating input outstanding and thread ID un-
der a lock eliminates data races on these flags.

When a thread attempts to add result data to the buffer
by calling addResultToBuffer(), it again checks the in-
put outstanding flag, but this time it checks to see if in-
put outstanding is true. If it is, a lock is acquired on in-
put outstanding, and input outstanding is checked again. If
it is still set, the thread checks if the value of the thread ID
matches the current thread ID. If it does, the thread knows
that it deposited the input data part of the current R-beacon
message, and now deposits the result part of the message.
thread ID is now assigned an invalid value −1.

When the inter-transmission interval for sending R-beacons
is up (two seconds in our experiments), the message in R-
beacon buffer is copied to a private buffer. A lock is then
acquired on input outstanding, and it is set to false. At this
point, a new message can be added to the buffer by another
instance of a region, and the private buffer is sent to the
submitter via a TCP connection.

When the submitter receives an R-beacon message, the
submitter machine calls the subroutine based on the value
of IDC and performs computation with the input in the R-
beacon message. It then compares its local computation
result with the result in the R-beacon message. If the re-
sults are same, the verification succeeds. Otherwise, the
verification fails.

To prevent replay attacks from a cheating host, we check
for repeated computations using message digests. The sub-
mitter calculates the message digest of each input along with
the IDC in each R-beacon message using the MD5 [24] al-
gorithm. MD5 is a fast secure one-way hash function that
takes arbitrarily-sized data and outputs a 128-bit value. The
message digest is then used to index into a hashtable. If a
calculated message digest is not present in the hashtable,
it is added into the hashtable. If it is present, appropriate
action can be taken based on the likelihood of the previous
redundant computations at the beacon region. Our current
implementation uses a hashtable with a capacity of 6000.
For a runtime configuration with inter-transmission inter-
val of 2 seconds, i.e. highly aggressive monitoring, it can
store about 2.7 hours of R-beacon inputs as message digests
before reaching a load factor of 0.8. In an actual use of
the system, the communication interval will likely be much
longer than 2 seconds. Combined with proper replacement
policies, the mechanism will be able to detect replay attacks
over extremely long periods of time.

5. EXPERIMENTAL RESULTS
In this section, we present performance results showing

the overhead and effectiveness of our system.

5.1 Parallel Java Grande Benchmark
The parallel Java Grande benchmark suite version 1.0 [28]

is a standard benchmark suite for computationally inten-
sive Java applications. Suite II of the parallel Java Grande
benchmarks contains simple kernels which are commonly
found in the most computationally intensive parts of real
numerical applications. It consists of five benchmarks: LU,
which performs LU factorization; SOR, which performs suc-
cessive over-relaxation; Series, which computes Fourier co-
efficients of the function f(x)=(x+1)x on the interval of [0,2];
Sparse, which performs a matrix multiplication of unstruc-
tured sparse matrices; Crypt, which performs an Interna-
tional Data Encryption Algorithm encryption and decryp-
tion of an array. The Java Grande benchmarks are self-
initializing, i.e., there was no network activity to send pro-
gram data sets. We used data size B as the input to our
experiments. Programs were hand-transformed using the
techniques described Section 4.

5.2 Experimental Platform
Our experiment was run on a submitter/host pair located

at University of Illinois at Urbana Champaign and Purdue
University. The submitter machine, located at UIUC, is an
uniprocessor with an Intel 3GHz Xeon processor with 512KB
cache and 1GB main memory. It runs the Sun JDK 1.5.0
and the Linux 2.4.20 kernel. The host machine located at
Purdue is a Dell PowerEdge SMP server with 4 x 1.5GHz
Intel Xeon processors, each with 512KB cache and sharing 4
GB main memory. It runs the Sun JDK 1.4.2 and the Linux
2.4.20 kernel. Both machines are connected to the campus
network.

In our measurements, the inter-transmission intervals of
the L-beacon and R-beacon reporting components were set
to 2 seconds. This is a highly aggressive monitoring sce-
nario. In an actual system, the inter-transmission interval
would be in tens of seconds or minutes. Therefore, our ex-
periment provides an upper bound of performance overhead
and network traffic incurred by using our monitoring system.

5.3 Run Time Computation Overhead
To simulate long running jobs, a loop is added outside

the individual kernels in the benchmarks. Each benchmark
was run in 1, 2 and 4-thread modes. This is to evaluate
the scalability of our system design by showing the system
performance overhead with different degrees of parallelism.

5.3.1 Host side
On the host side, we first measure the time to run the

original benchmarks on our host machine, which reflects
the scenario of remote job execution without monitoring.
These form our baseline numbers. We then run the manu-
ally transformed S-Code and H-Code versions of the same
benchmarks on the submitter/host pair, which reflects the
scenario of a remote job submission with monitoring. Fig-
ure 5 shows the overhead of job executions with beacons
over the corresponding un-monitored baseline job execution
times. In Figure 5, the overhead of our monitoring system
to run benchmark SOR and LU with 4 threads is lower than
that of running benchmark SOR and LU with 2 threads.

1 thread
2 threads
4 threads

0

0.5

1

1.5

2

2.5

3

3.5

4

LU SOR Series Sparse Crypt

O
ve

rh
ea

d(
%

)

Benchmark

Overhead on the SMP host machine

Figure 5: Overhead of executing and transferring

beacons

This is because the change in the SOR and LU program
speedup, going from 2 threads to 4 threads, is smaller than
the increase in monitoring overhead.

Our experimental results show that the maximum perfor-
mance overhead is under 3.5% and the average performance
overhead of the whole benchmark suite is 2.1% in our ex-
periments.

5.3.2 Submitter side
On the submitter side, we measured the time to execute

the benchmarks on the submitter in the single-thread mode
and used it as the baseline (as the submitter is not a SMP
machine). We then measured the time used to process the
L-beacons and R-beacons and to compute and process the
message digests of R-beacon input, while monitoring remote
benchmarks running in 1, 2 and 4-thread modes. These
are the computation resource costs on the submitter. Fig-
ure 6 shows the ratio of CPU time used to monitor a bench-
mark over that of running the same benchmark in the single-
thread mode locally on the submitter.

We observe that the ratio of CPU usage for monitoring
over locally executing the benchmark is always under 1.6%,
and the average ratio is 0.3%. This is a consequence of
our paced beacon transmission technique discussed in Sec-
tion 4.2.2 – the R-beacon messages that are actually put
into the R-beacon buffer and transfered to the submitter for
processing are only a very small fraction of the total poten-
tial R-beacons. The percentage of total beacon sites visited
whose messages are actually sent is under 0.04% for LU and
SOR, under 0.26% for Series and Crypt, and under 1.5%
for Sparse. The submitter cost for monitoring benchmark
Sparse is much higher than the cost for monitoring the other
benchmarks because Sparse contains a single course-grained
loop identified as computationally significant. Thus the per-
centage of the total execution that is recomputed in Sparse
is much higher than that percentage for the other bench-
marks. Nevertheless, the cost is still only 1.6% of the cost
of executing the application locally on the submitter.

5.4 Network Bandwidth Overhead
Another important metric to evaluate our system is the

network resource usage of our system. Since network re-
sources are not unlimited, it is necessary to limit the amount
of data sent from the host to the submitter node. To see
how effectively we accomplished this, we measured the ac-

1 thread on the host
2 threads on the host
4 threads on the host

0

0.5

1

1.5

2

LU SOR Series Sparse Crypt

Su
bm

itt
er

 C
os

t(
%

)

Benchmark

Monitoring a job over running the job machine

Figure 6: Submitter’s computational cost of moni-

toring a remote job over running it locally

. . .
ByteArrayOutputStream baos =

new ByteArrayOutputStream();
ObjectOutputStream objectos

= new ObjectOutputStream(baos);

objectos.writeObject(serializable object to send);
//serializable object to send contains beacons

byte[] bytes = baos.toByteArray();
objectos.close();
baos.close();

size sum += bytes.length;
//size sum will provide network traffic information

. . .

Figure 7: Code to measure the network traffic

caused by our approach

tual network traffic incurred by our beacon subsystem for
each benchmark under different execution modes.

5.4.1 Method of Measuring Serialized Data Volume
The capability to serialize objects is one of the features

of Java that simplified our implementation and increases its
robustness. L-beacons and R-beacons are placed in seri-
alizable objects to make the submitter’s understanding of
the representation of data from the host easier. However,
this mechanism transfers more data across network than
just sending the raw data. Thus we need to measure the
actual network traffic sent by our system. To do this, we se-
rialize an object to be sent across network by the host into
a ByteArrayOutputStream object. We can then measure
the actual transfered size of a serializable object as shown
in Figure 7.

5.4.2 Network Traffic Measurement Results
We measured the network traffic due to beacons for differ-

ent benchmarks running with different numbers of threads.
Table 1 shows that the total network traffic in bytes over
the duration of each benchmark execution. Table 2 shows
the highest average network traffic in unit time among our
benchmarks occurs in Sparse, and is only 45.2 KByte/second.
This is a consequence of our paced R-beacon transmission

technique: the maximum number of R-beacon messages sent
per unit time is the same as for the other benchmarks, yet
the size of each of Sparse’s R-beacon messages is larger than
those of the other benchmarks.

1 thread 2 threads 4 threads
LU 13.9MB / 663s 9.7MB / 399s 7MB / 311s
SOR 2.3MB / 132s 1.9MB / 91s 1.7MB / 81s
Series 600KB / 537s 340KB / 269s 180KB / 135s
Sparse 2.3MB / 138s 2.1MB / 73s 1.9MB / 43s
Crypt 52KB / 243s 29.7KB / 123s 16KB / 62s

Table 1: Network traffic during monitoring process

over the execution time

1 thread 2 threads 4 threads
LU 21.5KB /s 24.9KB /s 23.0KB /s
SOR 17.9KB /s 21.4KB /s 21.5KB /s
Series 1.1KB /s 1.3KB /s 1.3KB /s
Sparse 17.1KB /s 29.5KB /s 45.2KB /s
Crypt 0.2KB /s 0.2KB /s 0.3KB /s

Table 2: Average network bandwidth usage

5.5 Simulation of Cheating Node Detection
In this section, we evaluate the effectiveness of our ap-

proach in detecting cheating nodes, and isolating them from
the system. The non-cheating nodes faithfully run the jobs
sent to them, where as the cheating nodes may either refuse
to run the jobs even if they are not busy, or abandon a
running job without completion. For the purpose of our
experiment, we simulated a pool of 1000 computing nodes.
The peer-to-peer substrate Pastry [4] and the companion re-
source discovery as described in [3] are used to manage and
discover idle nodes in the pool for job issuing.

To drive the simulation we created a job trace as follows.
We selected 100 application executions uniformly randomly
from the 15 different application executions shown in Fig-
ure 5. Next, we determined the mean execution time (Tµ)
for the 100 selected jobs and created a random job issue
sequence such that the inter-arrival time between two con-
secutive jobs has a uniform random distribution with a mean
of Tµ. 500 of the 1000 nodes issued 100 jobs each using the
created trace. We made 250 of these 500 nodes cheat. The
presence of these nodes affects the time it takes for jobs
issued by non-cheating nodes to complete.

Figure 8 shows the number of jobs issued by non-cheating
nodes only that are issued but waiting in queue over time.
Note that the total number of jobs issued by non-cheating
nodes is 25,000. The topmost curve shows the scheme when
no cheaters are caught. Here jobs from non-cheating nodes
have to compete with jobs from cheating nodes, and hence
it takes longer for them to complete. When a job is sent
to a cheating node, it can either immediately refuse to run
the job or abandon the job without completing it. In any
case, the submitter detects that its job is not running and
resubmits it to some other (probably non-cheating) node.
The process is repeated till the job successfully completes.

The bottom curve in Figure 8 shows an ideal situation
where all cheaters are known a priori. In this case, the non-
cheating nodes send their jobs to other non-cheating nodes

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500

Jo
bs

 in
 q

ue
ue

Time (x10 seconds)

No cheaters caught
60% prob. cheaters
40% prob. cheaters
All cheaters caught

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500

Jo
bs

 in
 q

ue
ue

Time (x10 seconds)

No cheaters caught
60% prob. cheaters
40% prob. cheaters
All cheaters caught

Figure 8: Number of jobs issued but not completed

over time. The percentages represent the portion of

cheaters that are not immediately caught.

only, and do not run any jobs submitted by a known cheat-
ing node. The number of jobs in queue submitted by non-
cheating nodes increases little due to the issue sequence, and
all jobs complete within 2000 seconds after the issuance of
the the last job at 11730 seconds. The remaining two curves
show more realistic cases where cheaters accept a job, but
abandon it after processing it for a random time. We assume
that within 2 seconds from a node abandoning a job, i.e., the
next beacon interval, the cheating node is caught. We simu-
late two mixtures of cheating nodes: The percentage in the
legend represents the percentage of cheating nodes that fail
probabilistically over the length of the job; the remaining
cheaters simply refuse to run jobs and are detected imme-
diately. The curves show that our scheme is able to catch
the cheaters, and the jobs for non-cheating nodes complete
much faster than the case where cheaters were not caught at
all. In this scenario both probabilistic cheater schemes were
able to complete under 15560 seconds, compared to 21690
seconds for when no cheaters were caught. In contrast, the
ideal case took 13730 seconds to complete all the issued jobs.
The simulation shows that our scheme is effective in deter-
mining the cheating nodes, and isolating their effect from
the overall system.

6. RELATED WORK
The compiler algorithm for reducing the overhead of mon-

itoring in Section 4.2.1 is a form of program slicing, see [19,
21, 30] for a small sample of the work in this area. Most
program slices are with respect to a variable v and program
point p, and take a slice from p back to the beginning of
the program. We differ in that our variable v is a part of
an array (usually treated as atomic items in slicing, with
the slice computing the entire array if any part of the ar-
ray is computed) and in not taking the slice back to the
beginning of the program, but rather maintaining a list of
items (i.e upwardly exposed array elements) that must be
acquired from outside the loop. The Array SSA [15] pro-
gram representation will be necessary for doing this on less
well structured programs than those in our benchmark suite.
Lee and Hall [18] use a similar technique to extract slices of
a program in order to do performance debugging on large

applications. Their goal is different than ours, and assumes
the computation host is trustworthy. Our technique of find-
ing regular section descriptions of upwardly exposed arrays,
or result arrays, borrows heavily on techniques developed
for HPF compilers [12, 16], and in particular the work of
Koelbel [17].

With the increasing popularity of volunteer-based cycle
sharing, efficient protection against malicious machines has
become an important research topic. Sarmenta discusses a
spot checking mechanism to catch malicious machines (sabo-
teurs) [26]. The central manager randomly assigns some
computation, whose results are known to the central man-
ager, to volunteer machines. By comparing the known re-
sults with the results sent by the volunteer machines, ma-
licious volunteers can be caught efficiently. Du et al. [9]
proposed a Merkle (Hash) tree based technique to detect
cheating nodes when embarrassingly parallel computations
are being performed. By verifying a subset of leaves in the
Merkle tree, a central job manager can verify the correct-
ness of results in the tree. Both of above techniques ensure
the integrity of participant machines by checking a subset
of independent computations completed by the participant
machines. Over time, our approach monitors the correct-
ness of all parts of an application. Moreover, our technique
monitors the progress of the application, enabling partial
payments or detection of errors before a long running appli-
cation has finished.

Various remote debugging techniques have existed for years,
see [5, 23]. Remote debugging techniques are used as a
development facility to help developers to find bugs on a
trusted remote platform during the program development
phase. Our approach differs from these techniques in that
our approach collects execution correctness information in
an untrusted platform after the program has been developed
and released, and in how the data is gathered.

Program monitoring is also employed in the Globus project
for providing better quality of service [10]. This monitor-
ing is either achieved indirectly by determining the resource
utilization of the program, or by modifying the program to
insert explicit calls to the Globus API. The motivation of
our work is different in that we are using the monitoring to
determine if we are getting a resource as promised.

7. CONCLUSION
We have described what we believe is the first solution to

monitoring the progress and correctness of a remote job.
Moreover, the overhead of performing this monitoring is
shown to be insignificant– less than 3.5% on the host side.
On the submitter side, the cost of monitoring a remote job
is less than 1.6% of that of running the job locally. This
technique, combined with our work, and the work of oth-
ers, in resource discovery, sandboxed execution and auto-
matic credit systems, opens the way for exploiting idle cycles
across the Internet in a dynamic, decentralized and account-
able fashion.

Acknowledgment
We thank Josep Torrellas for giving us access to his ma-
chines at UIUC to perform remote job submission and mon-
itoring experiments. This work was supported in part by
NSF CAREER award grant ACI-0238379 and NSF grants
CCR-0313026 and CCR-0313033.

8. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proc. 19th ACM Symposium on Operating Systems
Principles, October 2003.

[2] A. R. Butt, S. Adabala, N. H. Kapadia, R. J.
Figueiredo, and J. A. B. Fortes. Grid-computing
Portals and Security Issues. Journal of Parallel and
Distributed Computing: Special issue on Scalable Web
Services and Architecture, 63(10), October 2003.

[3] A. R. Butt, X. Fang, Y. C. Hu, and S. Midkiff. Java,
Peer-to-Peer, and Accountability: Building Blocks for
Distributed Cycle Sharing. In Proceedings of the 3rd
USENIX Virtual Machines Research and Technology
Syposium (VM ’04), May 2004.

[4] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron.
Exploiting Network Proximity in Peer-to-Peer
OverlayNetworks. Technical report, Technical Report
MSR-TR-2002-82, 2002.

[5] D. Cheng and R. Hood. A Portable Debugger for
Parallel and Distributed Programs. In Proceedings of
the 1994 ACM/IEEE conference on Supercomputing
(SC’94), November 1994.

[6] M. J. Clement and M. J. Quinn. Analytical
Performance Prediction on Multicomputers. In
Proceedings of the 1993 ACM/IEEE Conference on
Supercomputing, November 1993.

[7] L. P. Cox and B. D. Noble. Samsara: Honor Among
Thieves in Peer-to-Peer Storage. In Proc. 19th ACM
Symposium on Operating Systems Principles, October
2003.

[8] A. P. David. BOINC:A System for Public-Resource
Computing and Storage. In Proc. 5th IEEE/ACM
International Workshop on Grid Computing,
November 2004.

[9] W. Du, J. Jia, M. Mangal, and M. Murugesan.
Uncheatable Grid Computing. In Proceedings of the
24th International Conference on Distributed
Computing Systems (ICDCS’04), March 2004.

[10] I. Foster, A. Roy, and V. Sander. A Quality of Service
Architecture that Combines Resource Reservation and
Application Adaptation. In Proc. 8th International
Workshop on Quality of Service, June 2000.

[11] Genome@home. Genome at home.
http://www.stanford.edu/group/pandegroup/genome/
index.html (December 16, 2004).

[12] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri,
D. Shields, K.-Y. Wang, W.-M. Ching, and T. Ngo.
An HPF Compiler for the IBM SP2. In Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing
(CDROM). ACM Press, December 1995.

[13] X. Jiang and D. Xu. Collapsar: A VM-Based
Architecture for Network Attack Detention Center. In
Proceedings of the 13th USENIX Security Symposium
(Security ’04), August 2004.

[14] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and
J. F. Skovira. Workload Management with
LoadLeveler. IBM International Technical Support
Organization, 2001. http://www.ibm.com/redbooks
(Dec. 17, 2004), publication number SG24-6038-00.

[15] K. Knobe and V. Sarkar. Array SSA Form and Its Use

in Parallelization. In Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL), January 1998.

[16] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and
M. Zosel. The High Performance Fortran Handbook.
MIT Press, 1993.

[17] C. Koelbel and P. Mehrotra. Compiling Global
Name-space Parallel Loops for Distributed Execution.
IEEE Transactions on Parallel and Distributed
Systems, 2(4):440–451, October 1991.

[18] Y.-J. Lee and M. Hall. A Code Isolator: Isolating
Code Fragments from Large Programs. In 17th
Workshop on Languages and Compilers for Parallel
Computing (LCPC ’04), September 2004.

[19] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum,
and M. S. Lam. SUIF Explorer: an Interactive and
Interprocedural Parallelizer. In Proceedings of the
Seventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM Press,
May 1999.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor - A
Hunter of Idle Workstations. In Proc. 8th
International Conference on Distributed Computing
Systems (ICDCS 1988), June 1988.

[21] M. Mock, D. C. Atkinson, C. Chambers, and S. J.
Eggers. Improving Program Slicing with Dynamic
Points-to Data. In Proceedings of the tenth ACM
SIGSOFT Symposium on Foundations of software
engineering. ACM Press, November 2002.

[22] Nile. Scalable Solution for Distributed Processing of
Independant Data.
http://www.nile.cornell.edu/index.html (September
29, 2003).

[23] D. D. Redell. Experience with Topaz Teledebugging.
In Proceedings SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, May 1988.

[24] R. L. Rivest. RFC 1321 –MD5 Message-Digest
Algorithm, 1992.

[25] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), November 2001.

[26] L. F. Sarmenta. Sabotage Tolerance Mechanism for
Volunteer Computing Systems. In CCGrid’01, May
2001.

[27] SETI@home. Search for extraterrestrial intelligence at
home. http://setiathome.ssl.berkeley.edu/index.html
(December 16, 2004).

[28] L. A. Smith, J. M. Bull, and J. Obdrzalek. A Parallel
Java Grande Benchmark Suite. In Proceedings of the
2001 ACM/IEEE Conference on Supercomputing
(SC2001), November 2001.

[29] K.-Y. Wang. Precise compile-time performance
prediction for superscalar-based computers. In PLDI
’94: Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and
Implementation, June 1994.

[30] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering.
IEEE Press, 1981.

