Supporting Information for:

Why In₂O₃ Can Make 0.7 nm Atomic Layer Thin Transistors?

Mengwei Si¹, Yaoqiao Hu², Zehao Lin¹, Xing Sun³, Adam Charnas¹, Dongqi Zheng¹, Xiao Lyu¹, Haiyan Wang³, Kyeongjae Cho², and Peide D. Ye^{1,*}

¹School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States

²Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080, USA

³School of Materials Engineering, Purdue University, West Lafayette, IN 47907, United States

* Address correspondence to: yep@purdue.edu (P.D.Y.)

1. TLM Measurements on Thick ALD In₂O₃

Figure S1. TLM measurement of 8.5 nm In₂O₃ on 90 nm SiO₂/Si substrate with 80 nm Ni contacts, exhibiting R_C of 0.36 $\Omega \cdot$ mm, R_{sh} of 1333 Ω/\Box and ρ_c of 1.0×10⁻⁶ Ω/cm^2 .

2. The Impact of TNL Alignments

Figure S2. Energy level with respect to E_C versus trap density for In_2O_3 with different TNL locations at (a) TNL far above E_C , (b) TNL deeply below E_C and (c) TNL near E_C .

3. Infinity Quantum Well Model on TNL Alignments

Figure S3. Conduction band minimum of In_2O_3 at different thicknesses from 0.7 nm to bulk. TNL alignments are modulated by the thickness of In_2O_3 due to quantum confinement.

In In₂O₃ transistor structure as shown in Fig 1(a), the semiconducting In₂O₃ is sandwiched by insulating Al₂O₃ and air, so that electron transport in In₂O₃ behaves like 2D electron gas in an infinity quantum well, as also shown in Fig. S3. Considering the ground state energy in an infinity quantum well, the change of E_C by quantum confinement can be written as $\Delta E_C = \frac{\pi^2 \hbar^2}{2m^* T_{ch}^2}$. The effective mass (m*) of electron in In₂O₃ is about 0.33m_e, where m_e is electron rest mass.^{1,2} Thus, thickness-dependent ΔE_C with respect to TNL can be calculated, as shown in Fig. S3. Since TNL is the intrinsic property of the material so that it is independent on the channel thickness. As can be seen, this simple model shows TNL moves deeper inside bandgap while decreasing the T_{ch}, resulting in the reduction of carrier density and positive V_T shift, which agrees well with the experimental data and DFT calculation.

REFERENCES

- (1) Hamberg, I.; Granqvist, C. G. Evaporated Sn-doped In₂O₃ films: Basic optical properties and applications to energy-efficient windows. *J. Appl. Phys.* **1986**, *60*, R123.
- (2) Preissler, N.; Bierwagen, O.; Ramu, A. T.; Speck, J. S. Electrical Transport, Electrothermal Transport, and Effective Electron Mass in Single-Crystalline In₂O₃ Films. *Phys. Rev. B* 2013, *88*, 085305.